Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Occurrence Data
2.3. Variables for the MaxEnt Model
2.4. Land Use/Land Cover (LULC) Dynamics
2.5. MaxEnt Distribution Model
3. Results
3.1. Analysis of the Variable Contributions
3.2. Predicted Snow Leopard Habitat
3.3. Overlap of Suitable Habitat with Human Activities
4. Discussion
4.1. Predicted Snow Leopard Habitat
4.2. Factors Determining Suitable Habitats for Snow Leopards
4.3. Land Use/Land Cover (LULC) Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashid, W.; Shi, J.; Rahim, I.U.; Sultan, H.; Dong, S.; Ahmad, L. Research trends and management options in human-snow leopard conflict. Biol. Conserv. 2020, 242, 108413. [Google Scholar] [CrossRef]
- Alexander, J.S.; Cusack, J.J.; Pengju, C.; Kun, S.; Riordan, P. Conservation of snow leopards: Spill-over benefits for other carnivores? Oryx 2016, 50, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Forrest, J.L.; Wikramanayake, E.; Shrestha, R.; Areendran, G.; Gyeltshen, K.; Maheshwari, A.; Mazumdar, S.; Naidoo, R.; Thapa, G.J.; Thapa, K. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Conserv. 2012, 150, 129–135. [Google Scholar] [CrossRef]
- Xu, A.; Jiang, Z.; Li, C.; Guo, J.; Da, S.; Cui, Q.; Yu, S.; Wu, G. Status and conservation of the snow leopard Panthera uncia in the Gouli Region, Kunlun Mountains, China. Oryx 2008, 42, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Maheshwari, A.; Niraj, S.K. Monitoring illegal trade in snow leopards: 2003–2014. Glob. Ecol. Conserv. 2018, 14, e00387. [Google Scholar] [CrossRef]
- Foggin, M. Pastoralists and wildlife conservation in western China: Collaborative management within protected areas on the Tibetan Plateau. Pastor. Res. Policy Pract. 2012, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Foggin, J.M. Environmental Conservation in the Tibetan Plateau Region: Lessons for China’s Belt and Road Initiative in the Mountains of Central Asia. Land 2018, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Weiskopf, S.R.; Kachel, S.M.; Mccarthy, K.P. What Are Snow Leopards Really Eating? Identifying Bias in Food-Habit Studies. Wildl. Soc. Bull. 2016, 40, 233–240. [Google Scholar] [CrossRef]
- Lyngdoh, S.; Shrotriya, S.; Goyal, S.P.; Clements, H.; Hayward, M.W.; Habib, B. Prey Preferences of hte Snow Leopard (Panthera uncia): Regional Diet Specificity Holds Global Significan for Conservation. PLoS ONE 2014, 9, e88349. [Google Scholar] [CrossRef]
- Mahmood, T.; Younas, A.; Akrim, F.; Andleeb, S.; Hamid, A.; Nadeem, M.S. Range contraction of snow leopard (Panthera uncia). PLoS ONE 2019, 14, e0218460. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.B.; Jackson, R.; Nadeem, M.S.; Janečka, J.E.; Hussain, S.; Beg, M.A.; Muhammad, G.; Qayyum, M. Food habits of the snow leopard Panthera uncia (Schreber, 1775) in Baltistan, Northern Pakistan. Eur. J. Wildl. Res. 2011, 57, 1077–1083. [Google Scholar] [CrossRef]
- Kachel, S.M.; Mccarthy, K.P.; Mccarthy, T.M.; Oshurmamadov, N. Investigating the potential impact of trophy hunting of wild ungulates on snow leopard Panthera uncia conservation in Tajikistan. Oryx 2017, 51, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S. The status of the snow leopard in Pakistan and its conflict with local farmers. Oryx 2003, 37, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S. Protecting the Snow Leopard and Enhancing Farmer’s Livelihood. Mt. Res. Dev. 2000, 20, 226–231. [Google Scholar] [CrossRef] [Green Version]
- White, K.D. The Snow Leopard and Cultural Landscape in Contemporary Kazakhstan. Soc. Anim. 2018, 26, 1–23. [Google Scholar] [CrossRef]
- Terborgh, J.; Lopez, L.; Nuñez, P.; Rao, M.; Shahabuddin, G.; Orihuela, G.; Riveros, M.; Ascanio, R.; Adler, G.H.; Lambert, T.D.; et al. Ecological meltdown in predator-free forest fragments. Science 2001, 294, 1923–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusi, N.; Sillero-Zubiri, C.; Macdonald, D.W.; Johnson, P.J.; Werhahn, G. Perspectives of traditional Himalayan communities on fostering coexistence with Himalayan wolfand snow leopard. Conserv. Sci. Pract. 2019, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Foggin, J.M. Depopulating the Tibetan Grasslands. Mt. Res. Dev. 2008, 28, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Murali, R.; Lkhagvajav, P.; Saeed, U.; Kizi, V.A.; Jumabay-Uulu, K.; Nawaz, M.A.; Bhatnagar, Y.V.; Sharma, K.; Mishra, C. Valuation of Ecosystem Services in Snow Leopard Landscapes of Asia; Bishkek, Kyrgyz Republic, 2017. pp. 1–47. Available online: https://globalsnowleopard.org/wp-content/uploads/2018/12/Valuation-of-ecosystem-services-in-snow-leopard-landscapes.pdf (accessed on 5 November 2019).
- Murali, R.; Redpath, S.; Mishra, C. The value of ecosystem services in the high altitude Spiti Valley, Indian Trans-Himalaya. Ecosyst. Serv. 2017, 28, 115–123. [Google Scholar] [CrossRef]
- McCarthy, T.M.; Mallon, D.; Jackson, R.; Zahler, P.; McCarthy, K.P. Panthera Uncia. The IUCN Red List of Threatened Species; International Union for Conservation of Nature and Natural Resources: UK, 2017; pp. 1–27. [Google Scholar]
- Li, J.; Weckworth, B.V.; McCarthy, T.M.; Liang, X.; Liu, Y.; Xing, R.; Li, D.; Zhang, Y.; Xue, Y.; Jackson, R.; et al. Defining priorities for global snow leopard conservation landscapes. Biol. Conserv. 2020, 241, 108387. [Google Scholar] [CrossRef]
- Ale, S.B.; Mishra, C. The snow leopard’s questionable come back. Science 2018, 359, 1110. [Google Scholar] [CrossRef] [PubMed]
- Poyarkov, A.D.; Munkhtsog, B.; Korablev, M.P.; Kuksin, A.N.; Alexandrov, D.U.; Chistopolova, M.D.; Hernandez-Blanco, J.-A.; Munkhtogtokh, O.; Karnaukhov, A.S.; Lkhamsuren, N.; et al. Assurance of the existence of a trans-boundary population of the snow leopard (Panthera uncia Schreber, 1776) at Tsagaanshuvuut–Tsagan-Shibetu SPA at the Mongolia-Russia border. Integr. Zool. 2019, 15, 224–231. [Google Scholar] [CrossRef]
- Mishra, C. The elusive snow leopard Panthera uncia. Oryx 2017, 51, 4. [Google Scholar] [CrossRef] [Green Version]
- Suryawanshi, K.R.; Khanyari, M.; Sharma, K.; Lkhagvajav, P.; Mishra, C. Sampling bias in snow leopard population estimation studies. Popul. Ecol. 2019, 61, 268–276. [Google Scholar] [CrossRef]
- Shrestha, B.; Kindlmann, P. Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci. Rep. 2020, 10, 19853. [Google Scholar] [CrossRef] [PubMed]
- Khan, A. Snow Leopard Conservation in Pakistan: A historical Perspective. In Snow Leopards. Biodiversity of the World: Conservation from Genes to Landscapes; McCarthy, T., Mallon, D., Nyhus, P.J., Eds.; Academic Press: London, UK, 2016; pp. 481–485. [Google Scholar] [CrossRef]
- Din, J.U.; Ali, H.; Nawaz, M.A. The Current State of Snow Leopard Conservation in Pakistan. In Snow Leopards. Biodiversity of the World: Conservation from Genes to Landscapes; McCarthy, T., Mallon, D., Nyhus, P.J., Eds.; Academic Press: London, UK, 2016; pp. 486–491. [Google Scholar]
- Rosen, T.; Hussain, S.; Mohammad, G.; Jackson, R.; Janecka, J.E.; Michel, S. Reconciling Sustainable Development of Mountain Communities With Large Carnivore Conservation. Mt. Res. Dev. 2012, 32, 286–293. [Google Scholar] [CrossRef]
- Khan, M.Z.; Khan, B.; Awan, M.S.; Begum, F. Livestock depredation by large predators and its implications for conservation and livelihoods in the Karakoram Mountains of Pakistan. Oryx 2017, 52, 519–525. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Zhou, C.; Meng, J.; Sun, J.; Zhou, T.; Tao, J. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecol. Inform. 2019, 50, 62–67. [Google Scholar] [CrossRef]
- Franklin, J. Species distribution models in conservation biogeography: Developments and challenges. Divers. Distrib. 2013, 19, 1217–1223. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudık, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Pasquale, G.D.; Saracino, A.; Bosso, L.; Russo, D.; Moroni, A.; Bonanomi, G.; Allevato, E. Coastal Pine-Oak Glacial Refugia in the Mediterranean Basin: A Biogeographic Approach Based on Charcoal Analysis and Spatial Modelling. Forests 2020, 11, 673. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, X.; Xiang, W.; Chen, L.; Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecol. Inform. 2021, 64, 101393. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-Niche Factor Analysis: How to Compute Habitat-Suitability Maps without Absence Data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Khan, B.; Ablimit, A.; Khan, G.; Jasra, A.W.; Ali, H.; Ali, R.; Ahmad, E.; Ismail, M. Abundance, distribution and conservation status of Siberian ibex, Marco Polo and Blue sheep in Karakoram-Pamir mountain area. J. King Saud Univ. Sci. 2016, 28, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Namgung, H.; Kim, M.-J.; Baek, S.; Lee, J.-H.; Kim, H. Predicting potential current distribution of Lycorma delicatula (Hemiptera: Fulgoridae) using MaxEnt model in South Korea. J. Asia Pac. Entomol. 2020, 23, 291–297. [Google Scholar] [CrossRef]
- Fonderflick, J.; Azam, C.; Brochier, C.; Cosson, E.; Quékenborn, D. Testing the relevance of using spatial modeling to predict foraging habitat suitability around bat maternity: A case study in Mediterranean landscape. Biol. Conserv. 2015, 192, 120–129. [Google Scholar] [CrossRef]
- Holt, C.D.S.; Nevin, O.T.; Smith, D.; Convery, I. Environmental niche overlap between snow leopard and four prey species in Kazakhstan. Ecol. Inform. 2018, 48, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, D.; Yin, H.; Zhaxi, D.; Jiagong, Z.; Schaller, G.B.; Mishra, C.; McCarthy, T.M.; Wang, H.; Wu, L.; et al. Role of Tibetan Buddhist Monasteries in Snow Leopard Conservation. Conserv. Biol. 2013, 28, 87–94. [Google Scholar] [CrossRef]
- Watts, S.M.; McCarthy, T.M.; Namgail, T. Modelling potential habitat for snow leopards (Panthera uncia) in Ladakh, India. PLoS ONE 2019, 14, e0211509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, A.; Shrestha, U.B.; Ji, W.; Ale, S.B.; Shrestha, S.; Ingty, T.; Maraseni, T.; Cockfield, G.; Raubenheimer, D. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 2016, 6, 4065–4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, B.; Abdukadir, A.; Qureshi, R.; Mustafa, G. Medicinal uses of plants by the inhabitants of Khunjerab national park, Gilgit, Pakistan. Pak. J. Bot. 2011, 43, 2301–2310. [Google Scholar]
- Butz, D. Sustainable Tourism And Everyday Life In Shimshal, Pakistan. Tour. Recreat. Res. 2002, 27, 53–65. [Google Scholar] [CrossRef]
- Ali, S.; Gao, J.; Begum, F.; Rasool, A.; Ismail, M.; Cai, Y.; Ali, S.; Ali, S. Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 4685–4698. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for Global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Wu, Y.-N.; Ma, Y.-J.; Liu, W.-L.; Zhang, W.-Z. Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China. Animals 2019, 9, 843. [Google Scholar] [CrossRef] [Green Version]
- Suleman, S.; Khan, W.A.; Anjum, K.M.; Shehzad, W.; Hashmi, S.G.M. Habitat Suitability Index (HSI) model of Punjab Urial (Ovis vegnei punjabiensis) in Pakistan. J. Anim. Plant Sci. 2020, 30, 229–238. [Google Scholar]
- Zhang, J.; Jiang, F.; Li, G.; Qin, W.; Li, S.; Gao, H.; Cai, Z.; Lin, G.; Zhang, T. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecol. Evol. 2019, 9, 6643–6654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Yu, Y.; Liu, P.; Tang, R.; Dai, Y.; Li, L.; Zhang, L. Identifying climate refugia and its potential impact on small population of Asian elephant (Elephas maximus) in China. Glob. Ecol. Conserv. 2019, 19, e00664. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, P.; Lin, F.; Yang, W.; Gaisberger, H.; Christopher, K.; Zheng, Y. MaxEnt modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol. Eng. 2019, 141, 105612. [Google Scholar] [CrossRef]
- Cord, A.F.; Klein, D.; Mora, F.; Dech, S. Comparing the suitability of classified land cover data and remote sensing variables for modeling distribution patterns of plants. Ecol. Model. 2014, 272, 129–140. [Google Scholar] [CrossRef]
- Yi, Y.-j.; Zhou, Y.; Cai, Y.-p.; Yang, W.; Li, Z.-w.; Zhao, X. The influence of climate change on an endangered riparian plant species: The root of riparian Homonoia. Ecol. Indic. 2018, 92, 40–50. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, B.; Bai, C.; Li, G.; Mao, M. Predicting suitable cultivation regions of medicinal plants with Maxent modeling and fuzzy logics: A case study of Scutellaria baicalensis in China. Environ. Earth Sci. 2016, 75, 361–372. [Google Scholar] [CrossRef]
- Ancillotto, L.; Mori, E.; Bosso, L.; Agnelli, P.; Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy–first confirmed record and potential distribution. Mamm. Biol. 2019, 96, 61–67. [Google Scholar] [CrossRef]
- Su, H.; Bista, M.; Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 2021, 11, 14135. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species distribution from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Jiang, C.; Huang, T.; Zhang, Z.; Wang, M.; Shen, Z.; Wang, Y.; Li, Q. A Simulation Study of the Geographical Distribution of Actinidia arguta in China. Pol. J. Environ. Stud. 2020, 29, 1889–1898. [Google Scholar] [CrossRef]
- Kalashnikova, Y.A.; Karnaukhov, A.S.; Dubinin, M.Y.; Poyarkov, A.D.; Rozhnov, V.V. Potential habitat of Snow leopard (Panthera uncia, felinae) in south Siberia and adjacent territories based on the Maximum Entropy Distribution Model. Zool. Zhurnal 2019, 98, 332–342. [Google Scholar] [CrossRef]
- Li, J.; Mccarthy, T.M.; Wang, H.; Weckworth, B.V.; Schaller, G.B.; Mishra, C.; Lu, Z.; Beissinger, S.R. Climate refugia of snow leopards in High Asia. Biol. Conserv. 2016, 203, 188–196. [Google Scholar] [CrossRef]
- Bai, D.-F.; Chen, P.-J.; Atzeni, L.; Cering, L.; Li, Q.; Shi, K. Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool. Res. 2018, 39, 373–386. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, T.; Mallon, D.; Sanderson, E.W.; Zahler, P.; Fisher, K. What is a Snow Leopard? Biogeography and Status Overview. In Snow Leopards. Biodiversity of the World: Conservation from Genes to Landscapes; McCarthy, T., Mallon, D., Nyhus, P.J., Eds.; Academic Press: London, UK, 2016; pp. 23–42. [Google Scholar]
- Estes, A.B.; Kuemmerle, T.; Kushnir, H.; Radeloff, V.C.; Shugart, H.H. Land-cover change and human population trends in the greater Serengeti ecosystem from 1984–2003. Biol. Conserv. 2012, 147, 255–263. [Google Scholar] [CrossRef]
- Acharya, K.P.; Paudel, P.K.; Jnawali, S.R.; Neupane, P.R.; Köhl, M. Can forest fragmentation and configuration work as indicators of human–wildlife conflict? Evidences from human death and injury by wildlife attacks in Nepal. Ecol. Indic. 2017, 80, 74–83. [Google Scholar] [CrossRef]
- Filla, M.; Lama, R.P.; Ghale, T.R.; Signer, J.; Filla, T.; Aryal, R.R.; Heurich, M.; Waltert, M.; Balkenhol, N.; Khorozyan, I. In the shadows of snow leopards and the Himalayas: Density and habitat selection of blue sheep in Manang, Nepal. Ecol. Evol. 2021, 11, 108–122. [Google Scholar] [CrossRef]
- Singh, R.; Krausman, P.R.; Pandey, P.; Maheshwari, A.; Rawal, R.S.; Sharma, S.; Shekhar, R. Predicting Habitat Suitability of Snow Leopards in the Western Himalayan Mountains, India. Biol. Bull. Russ. Acad. Sci. 2020, 47, 655–664. [Google Scholar] [CrossRef]
- Rashid, W.; Shi, J.; Rahim, I.U.; Dong, S.; Sultan, H. Issues and Opportunities Associated with Trophy Hunting and Tourism in Khunjerab National Park, Northern Pakistan. Animals 2020, 10, 597. [Google Scholar] [CrossRef] [Green Version]
- Lukarevskiy, V.S.; Dalannast, M.; Lukarevskiy, S.; Damdin, E. Factors Determining the Distribution and Status of the Snow Leopard Population (Panthera uncia) in Western Mongolia. Anim. Vet. Sci. 2020, 7, 127–132. [Google Scholar]
- Michalski, F.; Boulhosa, R.L.P.; Faria, A.; Peres, C.A. Human–wildlife conflicts in a fragmented Amazonian forest landscape: Determinants of large felid depredation on livestock. Anim. Conserv. 2006, 9, 179–188. [Google Scholar] [CrossRef]
- Farrington, J.D.; Tsering, D. Human-snow leopard conflict in the Chang Tang region of Tibet, China. Biol. Conserv. 2019, 237, 504–513. [Google Scholar] [CrossRef]
- Brashares, J.S.; Arcese, P.; Sam, M.K. Human Demography and Reserve Size Predict Wildlife Extinction in West Africa. Proc. Biol. Sci. 2001, 268, 2473–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. USA 2009, 107, 940–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, S.; Sabir, M.; Ali, G. Infrastructure projects and sustainable development: Discovering the stakeholders’ perception in the case of the China–Pakistan Economic Corridor. PLoS ONE 2020, 15, e0237385. [Google Scholar] [CrossRef]
- Lashari, A.H.; Li, W.; Hassan, M.; Nabi, G.; Mabey, P.T.; Islam, M.M.; Rashid, W.; Ujjan, S.A.; Memon, K.H. Biodiversity Governance and Management in Pakistan: A Way Forward Through the China-Pakistan Economic Corridor. Pol. J. Environ. Stud. 2021, 30, 1–8. [Google Scholar] [CrossRef]
- Goursi, U.H.; Anwar, M.; Bosso, L.; Nawaz, M.A.; Kabir, M. Spatial distribution of the threatened Asiatic black bear in northern Pakistan. Ursus 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Lechner, A.M.; Chan, F.; Campos-Arceiz, A. Biodiversity conservation should be a core value of China’s Belt and Road Initiative. Nat. Ecol. Evol. 2018, 2, 408–409. [Google Scholar] [CrossRef]
Variable Code | Variable Definition | Unit |
---|---|---|
Bio 1 | Annual mean temperature | °C |
Bio 2 | Mean diurnal range: mean of monthly (max temp−min temp) | °C |
Bio 3 | Isothermality (Bio 2/Bio 7) (×100) | % |
Bio 4 | Temperature seasonality (standard deviation × 100) | °C |
Bio 5 | Maximum temperature of warmest month | °C |
Bio 6 | Minimum temperature of coldest month | °C |
Bio 7 | Temperature annual range (Bio 5−Bio 6) | °C |
Bio 8 | Mean temperature of wettest quarter | °C |
Bio 9 | Mean temperature of driest quarter | °C |
Bio 10 | Mean temperature of warmest quarter | °C |
Bio 11 | Mean temperature of coldest quarter | °C |
Bio 12 | Annual precipitation | mm |
Bio 13 | Precipitation of wettest month | mm |
Bio 14 | Precipitation of driest month | mm |
Bio 15 | Precipitation seasonality (coefficient of variation) | % |
Bio 16 | Precipitation of wettest quarter | mm |
Bio 17 | Precipitation of driest quarter | mm |
Bio 18 | Precipitation of warmest quarter | mm |
Bio 19 | Precipitation of coldest quarter | mm |
Ruggedness | Elevation difference between adjacent cells | m |
DEM | Altitude | m |
Slope | Slope angle | Degree |
Dist_water | Distance to Water | m |
Land cover | Land cover type (Categorical) | |
Aspect | Direction of slope | Degree |
Variables | Percent Contribution | Permutation Importance |
---|---|---|
Mean diurnal temperature range | 51.7 | 88.1 |
Temperature annual range | 18.5 | 0.3 |
Aspect | 14.2 | 0.7 |
Land cover | 6.9 | 1.7 |
Slope | 2.2 | 0.5 |
Temperature seasonality | 2.0 | 0.7 |
Precipitation of wettest month | 2.0 | 3.7 |
Mean temperature of wettest quarter | 1.2 | 1.9 |
Precipitation seasonality | 0.8 | 0.3 |
Precipitation of wettest quarter | 0.4 | 2.0 |
Land Use | 2008 | 2018 | Change in Area (ha) | Change in Percent (%) | ||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | |||
Barren | 403,750 | 47.05 | 511,110 | 59.56 | +107,360 | +26.59 |
Snow/Glaciers | 417,354 | 48.63 | 293,900 | 34.25 | −123,454 | −29.58 |
Rangeland | 33,470 | 3.90 | 47,200 | 5.50 | +13,730 | +41.02 |
Water bodies | 2120 | 0.25 | 2720 | 0.32 | +600 | +28.30 |
Built-up | 306 | 0.04 | 840 | 0.10 | +534 | +174.51 |
Agriculture | 1200 | 0.14 | 2400 | 0.28 | +1200 | +100.00 |
Total | 858,200 | 100 | 858,200 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, W.; Shi, J.; Rahim, I.u.; Qasim, M.; Baloch, M.N.; Bohnett, E.; Yang, F.; Khan, I.; Ahmad, B. Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts. Sustainability 2021, 13, 13229. https://doi.org/10.3390/su132313229
Rashid W, Shi J, Rahim Iu, Qasim M, Baloch MN, Bohnett E, Yang F, Khan I, Ahmad B. Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts. Sustainability. 2021; 13(23):13229. https://doi.org/10.3390/su132313229
Chicago/Turabian StyleRashid, Wajid, Jianbin Shi, Inam ur Rahim, Muhammad Qasim, Muhammad Naveed Baloch, Eve Bohnett, Fangyuan Yang, Imran Khan, and Bilal Ahmad. 2021. "Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts" Sustainability 13, no. 23: 13229. https://doi.org/10.3390/su132313229
APA StyleRashid, W., Shi, J., Rahim, I. u., Qasim, M., Baloch, M. N., Bohnett, E., Yang, F., Khan, I., & Ahmad, B. (2021). Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts. Sustainability, 13(23), 13229. https://doi.org/10.3390/su132313229