Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach
Abstract
:1. Introduction
- An improved data-driven method based on RNN with multi-channel input (MCI) profile is employed to predict the RUL of lithium-ion batteries under various training datasets.
- A 31-dimensional input data format is generated using the multi parameters under the charging profile including battery discharge capacity, voltage, current, and temperature.
- Systematic sampling is implemented to identify and extract critical samples from charging parameters such as voltage, current, and temperature, where 10 samples are collected from every charging cycle. The execution of systematic sampling assists in reconstructing the predicted curve while training the models.
- The effectiveness of the proposed intelligent RNN algorithm is executed under various training datasets, and a comparative analysis is carried out with other notable data-driven methods by evaluating various performance metrics.
2. Degradation Mechanism of the Lithium-Ion Battery
3. Acquisition of Lithium-Ion Battery Data for RUL Prediction
3.1. Battery Dataset
3.2. Data Sampling from the Charging Profile
3.3. Phenomena of Capacity Regeneration
4. RUL Prediction Approach Using Data-Driven Recurrent Neural Network Algorithm
4.1. Recurrent Neural Network Approach
4.2. Levenberg–Marquardt Algorithm
4.3. Systematic Sampling Technique for Feature Extraction
5. Methodological Framework and Implementation for RUL Prediction Using Multi-Charging Profile
6. Results and Discussion
6.1. Analysis for SCI Profile
6.2. Analysis for MCI Profile
6.2.1. Training with Three Datasets
6.2.2. Training with Two Datasets
6.2.3. Training with One Dataset
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARIMA | Auto Regressive Integrated Moving Average |
BCT | Box–Cox Transformation |
BMS | Battery Management System |
BPTT | Backpropagation Through Time |
CCCV | Constant Current and Constant Voltage |
CFNN | Cascaded Forward Neural Network |
EEMD | Ensemble Empirical Mode Decomposition |
FNN | Fitting Forward Neural Network |
FFNN | Feed-forward Neural Network |
HI | Health Indicator |
IMMPF | Interacting Multiple Model Particle Filter |
LIP | Lithium Iron Phosphate |
LM | Levenberg–Marquardt |
LMO | Lithium Magnesium Oxide |
LTO | Lithium Titanium Oxide |
MAE | Mean Average Error |
MAPE | Mean Absolute Percentage Error |
MC | Monte Carlo |
MCI | Multi-Channel Input |
MSE | Mean Square error |
PF | Particle Filtering |
PL | Particle Learning |
RMSE | Root Mean Square Error |
RUL | Remaining Useful Life |
RNN | Recurrent Neural Network |
RVM | Relevance Vector Machine |
SCI | Single-Channel Input |
SD | Standard Deviation |
SEI | Solid Electrolyte Interphase |
SOH | State of Health |
SVM | Support Vector Machine |
References
- Hannan, M.A.; Lipu, M.S.H.; Ker, P.J.; Begum, R.A.; Agelidis, V.G.; Blaabjerg, F. Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations. Appl. Energy 2019, 251, 113404. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Guo, P.; Chen, S.; Bian, H.; Tong, X.; Ni, L. Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive model. J. Energy Storage 2021, 33, 101863. [Google Scholar] [CrossRef]
- Qu, J.; Liu, F.; Ma, Y.; Fan, J. A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery. IEEE Access 2019, 7, 87178–87191. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach. IEEE Access 2018, 6, 50587–50598. [Google Scholar] [CrossRef]
- Jiao, R.; Peng, K.; Dong, J. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter. IEEE Trans. Instrum. Meas. 2020, 69, 8831–8843. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Y.; Cheng, C.; Zhou, B.; Hu, P.; Yuan, Y. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl. Energy 2019, 253, 1–11. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Xiong, Q.; Ding, B.; Hou, J.; Luo, D.; Rong, Y.; Li, S. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network. J. Power Sources 2020, 459, 228069. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Hoque, M.M.; Ker, P.J.; Saad, M.H.M.; Ayob, A. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018, 205, 115–133. [Google Scholar] [CrossRef]
- Che, Y.; Deng, Z.; Lin, X.; Hu, L. Predictive Battery Health Management With Transfer Learning and Online Model Correction. IEEE Trans. Veh. Technol. 2021, 70, 1269–1277. [Google Scholar] [CrossRef]
- Shen, P.; Ouyang, M.; Lu, L.; Li, J.; Feng, X. The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 92–103. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, Z.; Sun, C. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter. IEEE Access 2018, 6, 17729–17740. [Google Scholar] [CrossRef]
- Chinomona, B.; Chung, C.; Chang, L.-K.; Su, W.-C.; Tsai, M.-C. Long Short-Term Memory Approach to Estimate Battery Remaining Useful Life Using Partial Data. IEEE Access 2020, 8, 165419–165431. [Google Scholar] [CrossRef]
- Khelif, R.; Chebel-Morello, B.; Zerhouni, N. Experience based approach for Li-ion batteries RUL prediction. IFAC-Pap. 2015, 28, 761–766. [Google Scholar]
- Liu, Q.; Zhang, J.; Li, K.; Lv, C. The Remaining Useful Life Prediction by Using Electrochemical Model in the Particle Filter Framework for Lithium-Ion Batteries. IEEE Access 2020, 8, 126661–126670. [Google Scholar] [CrossRef]
- Sun, T.; Xia, B.; Liu, Y.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. A novel hybrid prognostic approach for remaining useful life estimation of lithium-ion batteries. Energies 2019, 12, 3678. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Köttig, F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 2014, 63, 191–207. [Google Scholar] [CrossRef]
- Lyu, C.; Lai, Q.; Ge, T.; Yu, H.; Wang, L.; Ma, N. A lead-acid battery ’ s remaining useful life prediction by using electrochemical model in the Particle Filtering framework. Energy 2017, 120, 975–984. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, G.; Bu, S.; Han, J.; Member, S.; Tang, X.; Pecht, M. Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries. IEEE Trans. Instrum. Meas. 2016, 66, 280–293. [Google Scholar] [CrossRef]
- Su, X.; Wang, S.; Pecht, M.; Zhao, L.; Ye, Z. Microelectronics Reliability Interacting multiple model particle fi lter for prognostics of lithium-ion batteries. Microelectron. Reliab. 2017, 70, 59–69. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 2016, 65, 265–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Lithium-Ion Battery Remaining Useful Life Prediction with Box-Cox Transformation and Monte Carlo Simulation. IEEE Trans. Ind. Electron. 2019, 66, 1585–1597. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, X.; Lin, X.; Xu, L.; Che, Y.; Hu, L. General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries. IEEE/ASME Trans. Mechatron. 2021, 26, 1295–1306. [Google Scholar] [CrossRef]
- Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Ayob, A.; Saad, M.H.M.; Karim, T.F.; How, D.N.T. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy 2016, 173, 134–140. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, J.; Liao, H.; Peng, Y.; Peng, X. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 915–928. [Google Scholar]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Blaabjerg, F. State of Charge Estimation for Lithium-ion Battery Using Recurrent NARX Neural Network Model Based Lighting Search Algorithm. IEEE Access 2018, 6, 28150–28161. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Ker, P.J.; Mahlia, T.M.I.; Mansor, M.; Ayob, A.; Saad, M.H.; Dong, Z.Y. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques. Sci. Rep. 2020, 10, 1–15. [Google Scholar]
- Ansari, S.; Ayob, A.; Lipu, M.S.H.; Hussain, A.; Hanif, M.S. A Comparative Analysis of Lithium Ion Battery Input Profiles for Remaining Useful Life Prediction by Cascade Forward Neural Network. In Proceedings of the IEEE World AI IoT Congress 2021, Seattle, WA, USA, 10–13 May 2021; pp. 181–186. [Google Scholar]
- Liu, J.; Saxena, A.; Goebel, K.; Saha, B.; Wang, W. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In Proceedings of the Annual Conference of the Prognostics and Health Management Society 2010, Portland, OR, USA, 10–16 October 2010; pp. 1–9. [Google Scholar]
- Ansari, S.; Ayob, A.; Lipu, M.S.H.; Hussain, A.; Saad, M.H.M. Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries. Energies 2021, 14, 7521. [Google Scholar] [CrossRef]
- Zhu, J.; Dewi Darma, M.S.; Knapp, M.; Sørensen, D.R.; Heere, M.; Fang, Q.; Wang, X.; Dai, H.; Mereacre, L.; Senyshyn, A.; et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. J. Power Sources 2020, 448, 28–30. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Jia, J.; Liang, J.; Shi, Y.; Wen, J.; Pang, X.; Zeng, J. SOH and RUL Prediction of Lithium-Ion Batteries. Energies 2020, 13, 375. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.A.; Tippens, J.; Cortes, F.J.Q.; McDowell, M.T. Chemo-Mechanical Challenges in Solid-State Batteries. Trends Chem. 2019, 1, 845–857. [Google Scholar] [CrossRef]
- Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Prognostics Center of Excellence—Data Repository. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ (accessed on 11 May 2021).
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-Based Battery Remaining Useful Life Prediction with Multi-Channel Charging Profiles. IEEE Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Pang, X.; Huang, R.; Wen, J.; Shi, Y.; Jia, J.; Zeng, J. A lithium-ion battery rul prediction method considering the capacity regeneration phenomenon. Energies 2019, 12, 2247. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mei, X.; Prokhorov, D.; Tao, D. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 690–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaoui, H.; Ibe-Ekeocha, C.C. State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks. IEEE Trans. Veh. Technol. 2017, 66, 8773–8783. [Google Scholar] [CrossRef]
- Lv, C.; Xing, Y.; Zhang, J.; Na, X.; Li, Y.; Liu, T.; Cao, D.; Wang, F.Y. Levenberg-marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system. IEEE Trans. Ind. Inform. 2018, 14, 3436–3446. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Saad, M.H.; Ayob, A. Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm. IEEE Access 2018, 6, 10069–10079. [Google Scholar] [CrossRef]
Battery Dataset | Methods | Performance Metrics | Actual RUL | Predicted RUL | RUL Error | ||||
---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAPE | MAE | SD | |||||
B0005 | BPNN | 0.0061 | 0.7823 | 0.3958 | 0.2883 | 0.7756 | 126 | 124 | −2 |
FNN | 0.0027 | 0.5154 | 0.2842 | 0.1948 | 0.4930 | 126 | 124 | −2 | |
FFNN | 0.0013 | 0.3674 | 0.2505 | 0.1732 | 0.3501 | 126 | 125 | −1 | |
CFNN | 0.0011 | 0.3311 | 0.2365 | 0.1544 | 0.3311 | 126 | 125 | −1 | |
RNN | 2.9164 × 10−4 | 0.1708 | 0.0960 | 0.0684 | 0.1566 | 126 | 125 | −1 | |
B0006 | BPNN | 0.0287 | 1.6949 | 0.8255 | 0.6419 | 1.5140 | 110 | 113 | +3 |
FNN | 0.0166 | 1.0749 | 0.3468 | 0.2580 | 1.0446 | 110 | 112 | +2 | |
FFNN | 0.0086 | 0.9259 | 0.3959 | 0.2975 | 0.8887 | 110 | 112 | +1 | |
CFNN | 0.0028 | 0.5323 | 0.2649 | 0.1709 | 0.5178 | 110 | 111 | +1 | |
RNN | 0.0016 | 0.4017 | 0.1883 | 0.1332 | 0.4015 | 110 | 111 | +1 | |
B0007 | BPNN | 0.0152 | 1.2346 | 0.6278 | 0.4211 | 1.1073 | 122 | 124 | +2 |
FNN | 0.0023 | 0.4806 | 0.2460 | 0.1601 | 0.4703 | 122 | 123 | +1 | |
FFNN | 0.0013 | 0.3552 | 0.2357 | 0.1512 | 0.3426 | 122 | 120 | −2 | |
CFNN | 9.1250 × 10−4 | 0.3021 | 0.1973 | 0.1268 | 0.3029 | 122 | 121 | −1 | |
RNN | 7.3445 × 10−4 | 0.2710 | 0.1376 | 0.0925 | 0.2596 | 122 | 121 | −1 | |
B0018 | BPNN | 0.0030 | 0.5436 | 0.2736 | 0.1920 | 0.5382 | 92 | 93 | +1 |
FNN | 0.0020 | 0.4458 | 0.2418 | 0.1650 | 0.4475 | 92 | 93 | +1 | |
FFNN | 0.0015 | 0.3868 | 0.2066 | 0.1438 | 0.3694 | 92 | 93 | +1 | |
CFNN | 0.0012 | 0.3473 | 0.1690 | 0.1140 | 0.3467 | 92 | 91 | −1 | |
RNN | 7.2506 × 10−4 | 0.2693 | 0.1173 | 0.0808 | 0.2685 | 92 | 91 | −1 |
Testing Dataset | Training Dataset | Methods | Performance Metrics | Actual RUL | Predicted RUL | RUL Error | ||||
---|---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAPE | MAE | SD | ||||||
B0005 | BPNN | 0.0061 | 0.7823 | 0.3958 | 0.2883 | 0.7756 | 126 | 124 | −2 | |
B0006 | FNN | 0.0027 | 0.5154 | 0.2842 | 0.1948 | 0.4930 | 126 | 124 | −2 | |
B0007 | FFNN | 0.0013 | 0.3674 | 0.2505 | 0.1732 | 0.3501 | 126 | 125 | −1 | |
B0018 | CFNN | 0.0011 | 0.3311 | 0.2365 | 0.1544 | 0.3311 | 126 | 125 | −1 | |
RNN | 2.9164 × 10−4 | 0.1708 | 0.0960 | 0.0684 | 0.1566 | 126 | 125 | −1 | ||
B0006 | BPNN | 0.0287 | 1.6949 | 0.8255 | 0.6419 | 1.5140 | 110 | 113 | +3 | |
B0005 | FNN | 0.0166 | 1.0749 | 0.3468 | 0.2580 | 1.0446 | 110 | 112 | +2 | |
B0007 | FFNN | 0.0086 | 0.9259 | 0.3959 | 0.2975 | 0.8887 | 110 | 112 | +1 | |
B0018 | CFNN | 0.0028 | 0.5323 | 0.2649 | 0.1709 | 0.5178 | 110 | 111 | +1 | |
RNN | 0.0016 | 0.4017 | 0.1883 | 0.1332 | 0.4015 | 110 | 111 | +1 | ||
B0007 | BPNN | 0.0152 | 1.2346 | 0.6278 | 0.4211 | 1.1073 | 122 | 124 | +2 | |
B0005 | FNN | 0.0023 | 0.4806 | 0.2460 | 0.1601 | 0.4703 | 122 | 123 | +1 | |
B0006 | FFNN | 0.0013 | 0.3552 | 0.2357 | 0.1512 | 0.3426 | 122 | 120 | −2 | |
B0018 | CFNN | 9.1250 × 10−4 | 0.3021 | 0.1973 | 0.1268 | 0.3029 | 122 | 121 | −1 | |
RNN | 7.3445 × 10−4 | 0.2710 | 0.1376 | 0.0925 | 0.2596 | 122 | 121 | −1 | ||
B0018 | BPNN | 0.0030 | 0.5436 | 0.2736 | 0.1920 | 0.5382 | 92 | 93 | +1 | |
B0005 | FNN | 0.0020 | 0.4458 | 0.2418 | 0.1650 | 0.4475 | 92 | 93 | +1 | |
B0006 | FFNN | 0.0015 | 0.3868 | 0.2066 | 0.1438 | 0.3694 | 92 | 93 | +1 | |
B0007 | CFNN | 0.0012 | 0.3473 | 0.1690 | 0.1140 | 0.3467 | 92 | 91 | −1 | |
RNN | 7.2506 × 10−4 | 0.2693 | 0.1173 | 0.0808 | 0.2685 | 92 | 91 | −1 |
Testing Dataset | Training Dataset | Methods | Performance Metrics | Actual RUL | Predicted RUL | RUL Error | ||||
---|---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAPE | MAE | SD | ||||||
B0005 | BPNN | 9.2505 × 10−4 | 0.3041 | 0.2364 | 0.1506 | 0.3008 | 126 | 123 | −3 | |
B0006 | FNN | 2.0229 × 10−4 | 0.1422 | 0.1058 | 0.0663 | 0.1363 | 126 | 124 | −2 | |
B0007 | FFNN | 4.3063 × 10−5 | 0.0656 | 0.0508 | 0.0315 | 0.0651 | 126 | 124 | −2 | |
CFNN | 1.5813 × 10−5 | 0.0398 | 0.0394 | 0.0254 | 0.0054 | 126 | 125 | −1 | ||
RNN | 1.7412 × 10−6 | 0.0132 | 0.0088 | 0.0056 | 0.0131 | 126 | 125 | −1 | ||
BPNN | 0.0028 | 0.5276 | 0.3948 | 0.2518 | 0.5168 | 126 | 124 | −2 | ||
B0007 | FNN | 7.5118 × 10−5 | 0.0867 | 0.0743 | 0.0491 | 0.0811 | 126 | 124 | −2 | |
B0018 | FFNN | 2.5709 × 10−4 | 0.1603 | 0.1169 | 0.0761 | 0.1608 | 126 | 124 | −2 | |
CFNN | 1.7999 × 10−5 | 0.0424 | 0.0347 | 0.0241 | 0.0319 | 126 | 125 | −1 | ||
RNN | 4.1439 × 10−6 | 0.0204 | 0.0144 | 0.0089 | 0.0197 | 126 | 125 | −1 | ||
BPNN | 0.0382 | 1.9547 | 1.6306 | 1.0215 | 1.8250 | 126 | 116 | −10 | ||
B0006 | FNN | 7.0358 × 10−4 | 0.2653 | 0.1922 | 0.1232 | 0.2173 | 126 | 120 | −6 | |
B0018 | FFNN | 9.6784 × 10−4 | 0.3111 | 0.1353 | 0.0854 | 0.3116 | 126 | 128 | +2 | |
CFNN | 3.1315 × 10−5 | 0.0560 | 0.0305 | 0.0178 | 0.0526 | 126 | 124 | −2 | ||
RNN | 2.7048 × 10−5 | 0.0520 | 0.0336 | 0.0208 | 0.0521 | 126 | 125 | −1 | ||
B0006 | BPNN | 0.0682 | 2.6113 | 2.0469 | 1.3950 | 2.6118 | 110 | 116 | +6 | |
B0005 | FNN | 0.0030 | 0.5473 | 0.4082 | 0.2754 | 0.5393 | 110 | 108 | −2 | |
B0007 | FFNN | 0.0021 | 0.4588 | 0.2369 | 0.1464 | 0.4578 | 110 | 108 | −2 | |
CFNN | 4.9482 × 10−5 | 0.0703 | 0.0467 | 0.0287 | 0.0702 | 110 | 109 | −1 | ||
RNN | 3.1804 × 10−5 | 0.0564 | 0.0228 | 0.0131 | 0.0556 | 110 | 109 | −1 | ||
BPNN | 0.0180 | 1.3409 | 0.8992 | 0.5827 | 1.2640 | 110 | 108 | −2 | ||
B0007 | FNN | 0.0041 | 0.6434 | 0.3580 | 0.2668 | 0.6023 | 110 | 108 | −2 | |
B0018 | FFNN | 0.0023 | 0.4768 | 0.2561 | 0.1534 | 0.4751 | 110 | 108 | −2 | |
CFNN | 9.5339 × 10−5 | 0.0977 | 0.0810 | 0.0568 | 0.0899 | 110 | 109 | −1 | ||
RNN | 8.3644 × 10−5 | 0.0915 | 0.0308 | 0.0190 | 0.0912 | 110 | 109 | −1 | ||
BPNN | 0.0065 | 0.8064 | 0.5697 | 0.3835 | 0.8087 | 110 | 108 | −2 | ||
B0005 | FNN | 0.0021 | 0.4540 | 0.2913 | 0.1869 | 0.4553 | 110 | 108 | −2 | |
B0018 | FFNN | 0.0011 | 0.3344 | 0.2671 | 0.1881 | 0.2664 | 110 | 109 | −1 | |
CFNN | 6.5913 × 10−5 | 0.0812 | 0.0789 | 0.0518 | 0.0191 | 110 | 109 | −1 | ||
RNN | 1.8108 × 10−5 | 0.0426 | 0.0215 | 0.0141 | 0.0396 | 110 | 109 | −1 | ||
B0007 | BPNN | 0.0188 | 1.3718 | 0.9669 | 0.5621 | 1.3652 | 122 | 120 | −2 | |
B0005 | FNN | 2.3479 × 10−4 | 0.1532 | 0.1164 | 0.0718 | 0.1226 | 122 | 120 | −2 | |
B0006 | FFNN | 7.6538 × 10−5 | 0.0875 | 0.0608 | 0.0360 | 0.0877 | 122 | 121 | −1 | |
CFNN | 3.7793 × 10−5 | 0.0615 | 0.0521 | 0.0302 | 0.0331 | 122 | 121 | −1 | ||
RNN | 2.0039 × 10−6 | 0.0142 | 0.0107 | 0.0064 | 0.0142 | 122 | 121 | −1 | ||
BPNN | 0.1132 | 3.3646 | 2.7413 | 1.6852 | 3.2590 | 122 | 114 | −8 | ||
B0006 | FNN | 0.0023 | 0.4757 | 0.4234 | 0.2591 | 0.4407 | 122 | 125 | −3 | |
B0018 | FFNN | 0.0014 | 0.3692 | 0.2967 | 0.1779 | 0.3679 | 122 | 120 | −2 | |
CFNN | 3.3179 × 10−5 | 0.0576 | 0.0414 | 0.0254 | 0.0521 | 122 | 120 | −2 | ||
RNN | 1.5112 × 10−5 | 0.0389 | 0.0291 | 0.0169 | 0.0295 | 122 | 121 | −1 | ||
BPNN | 0.0134 | 1.1556 | 0.8075 | 0.4876 | 1.1146 | 122 | 120 | −2 | ||
B0005 | FNN | 8.2667 × 10−4 | 0.2875 | 0.1701 | 0.0988 | 0.2336 | 122 | 120 | −2 | |
B0018 | FFNN | 1.7690 × 10−4 | 0.1330 | 0.0591 | 0.0348 | 0.1301 | 122 | 120 | −2 | |
CFNN | 1.718 × 10−5 | 0.0414 | 0.0347 | 0.0208 | 0.0411 | 122 | 121 | −1 | ||
RNN | 5.1220 × 10−6 | 0.0226 | 0.0119 | 0.0067 | 0.0222 | 122 | 121 | −1 | ||
B0018 | BPNN | 0.0416 | 2.0401 | 1.5852 | 1.0448 | 1.8977 | 92 | 102 | +10 | |
B0005 | FNN | 0.0061 | 0.7813 | 0.5764 | 0.3771 | 0.5925 | 92 | 96 | +4 | |
B0006 | FFNN | 0.0038 | 0.6136 | 0.5010 | 0.3231 | 0.3954 | 92 | 95 | +3 | |
CFNN | 1.2124 × 10−4 | 0.1101 | 0.0385 | 0.0247 | 0.1095 | 92 | 93 | +1 | ||
RNN | 3.6099 × 10−5 | 0.0601 | 0.0310 | 0.0192 | 0.0544 | 92 | 91 | −1 | ||
BPNN | 0.1032 | 3.2130 | 2.2695 | 1.4028 | 2.8098 | 92 | 88 | −4 | ||
B0006 | FNN | 0.0063 | 0.7934 | 0.3238 | 0.2046 | 0.7633 | 92 | 89 | −3 | |
B0007 | FFNN | 0.0018 | 0.4262 | 0.3026 | 0.1957 | 0.3568 | 92 | 90 | −2 | |
CFNN | 5.6511 × 10−5 | 0.0752 | 0.0255 | 0.0157 | 0.0726 | 92 | 91 | −1 | ||
RNN | 1.8961 × 10−5 | 0.0435 | 0.0168 | 0.0106 | 0.0437 | 92 | 91 | −1 | ||
BPNN | 0.0651 | 2.5514 | 2.1803 | 1.4277 | 1.8171 | 92 | 86 | −6 | ||
B0005 | FNN | 0.0155 | 1.0726 | 0.5963 | 0.3873 | 1.0767 | 92 | 88 | −4 | |
B0007 | FFNN | 0.0011 | 0.3335 | 0.2561 | 0.1711 | 0.2576 | 92 | 90 | −2 | |
CFNN | 9.0269 × 10−4 | 0.3004 | 0.1612 | 0.1075 | 0.2707 | 92 | 90 | −2 | ||
RNN | 1.5726 × 10−4 | 0.1254 | 0.0450 | 0.0284 | 0.1226 | 92 | 91 | −1 |
Testing Dataset | Training Dataset | Methods | Performance Metrics | Actual RUL | Predicted RUL | RUL Error | ||||
---|---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAPE | MAE | SD | ||||||
B0005 | B0006 | BPNN | 0.1671 | 4.0880 | 3.4556 | 2.2650 | 3.8375 | 126 | 132 | +6 |
FNN | 0.0117 | 1.0818 | 0.7972 | 0.4799 | 0.9484 | 126 | 129 | +3 | ||
FFNN | 0.0053 | 0.7252 | 0.6008 | 0.3703 | 0.7191 | 126 | 128 | +2 | ||
CFNN | 0.0018 | 0.4279 | 0.4174 | 0.2693 | 0.1433 | 126 | 125 | +1 | ||
RNN | 2.5076 × 10−4 | 0.1584 | 0.1086 | 0.0669 | 0.1519 | 126 | 125 | +1 | ||
B0007 | BPNN | 0.4506 | 6.7126 | 6.2497 | 3.9541 | 2.5462 | 126 | 142 | +16 | |
FNN | 0.0130 | 1.1383 | 0.7377 | 0.4945 | 0.1281 | 126 | 122 | −4 | ||
FFNN | 0.0056 | 0.7502 | 0.5728 | 0.3702 | 0.6835 | 126 | 124 | −2 | ||
CFNN | 0.0023 | 0.4808 | 0.5728 | 0.3702 | 0.6835 | 126 | 125 | −1 | ||
RNN | 0.0016 | 0.4013 | 0.3003 | 0.1867 | 0.3057 | 126 | 125 | −1 | ||
B0018 | BPNN | 0.2634 | 5.1323 | 3.9706 | 2.5402 | 4.7825 | 126 | 129 | +3 | |
FNN | 0.0932 | 3.0526 | 2.0003 | 1.2279 | 2.3591 | 126 | 123 | −3 | ||
FFNN | 0.0657 | 2.5631 | 1.8745 | 1.2129 | 2.0677 | 126 | 124 | −2 | ||
CFNN | 0.0360 | 1.8977 | 0.8157 | 0.5003 | 1.7679 | 126 | 124 | −2 | ||
RNN | 0.0329 | 1.8147 | 0.6579 | 0.3901 | 1.8201 | 126 | 125 | −1 | ||
B0006 | B0005 | BPNN | 0.1943 | 4.4079 | 3.4827 | 2.2576 | 4.4039 | 110 | 118 | +8 |
FNN | 0.0485 | 2.2019 | 1.6560 | 1.0824 | 2.1430 | 110 | 116 | +6 | ||
FFNN | 0.0375 | 1.9354 | 1.7361 | 1.1543 | 1.3600 | 110 | 114 | +4 | ||
CFNN | 0.0158 | 1.2576 | 1.0324 | 0.6541 | 1.2566 | 110 | 113 | +3 | ||
RNN | 0.0079 | 0.8885 | 0.7224 | 0.4963 | 0.6578 | 110 | 112 | +2 | ||
B0007 | BPNN | 0.6952 | 8.3377 | 6.5960 | 4.3897 | 8.3393 | 110 | 126 | +16 | |
FNN | 0.2652 | 5.1498 | 4.4517 | 3.0587 | 2.9582 | 110 | 122 | +12 | ||
FFNN | 0.0930 | 3.0501 | 2.4023 | 1.6615 | 3.0295 | 110 | 113 | +3 | ||
CFNN | 0.0523 | 2.2870 | 2.0459 | 1.3821 | 1.5281 | 110 | 116 | +6 | ||
RNN | 0.0420 | 2.0486 | 1.5358 | 0.9510 | 1.6905 | 110 | 112 | +2 | ||
B0018 | BPNN | 0.3035 | 5.5086 | 3.9863 | 2.6282 | 5.4911 | 110 | 124 | +14 | |
FNN | 0.1459 | 3.8194 | 2.4805 | 1.4876 | 3.7212 | 110 | 114 | +4 | ||
FFNN | 0.1142 | 3.3789 | 1.8470 | 1.1559 | 3.3501 | 110 | 113 | +3 | ||
CFNN | 0.0672 | 2.5931 | 1.4095 | 0.8477 | 2.2401 | 110 | 112 | +2 | ||
RNN | 0.0485 | 2.2023 | 1.2024 | 0.6914 | 1.9405 | 110 | 112 | +2 | ||
B0007 | B0005 | BPNN | 0.0740 | 2.7211 | 2.3071 | 1.4089 | 2.7292 | 122 | 126 | +4 |
FNN | 0.0249 | 1.5781 | 1.1815 | 0.6888 | 1.5521 | 122 | 125 | +3 | ||
FFNN | 0.0085 | 0.9239 | 0.7320 | .4353 | 0.9209 | 122 | 125 | +3 | ||
CFNN | 0.0018 | 0.4274 | 0.3538 | 0.2138 | 0.2432 | 122 | 124 | +2 | ||
RNN | 0.0016 | 0.3995 | 0.2422 | 0.1369 | 0.3819 | 122 | 124 | +2 | ||
B0006 | BPNN | 0.2901 | 5.3864 | 4.6191 | 2.8416 | 3.5351 | 122 | 116 | −6 | |
FNN | 0.0493 | 2.2202 | 1.9066 | 1.1869 | 1.5142 | 122 | 126 | +4 | ||
FFNN | 0.0453 | 2.1293 | 1.5508 | 0.9761 | 1.5118 | 122 | 118 | −4 | ||
CFNN | 0.0129 | 1.1360 | 0.5775 | 0.3522 | 1.0993 | 122 | 120 | −2 | ||
RNN | 0.0051 | 0.7132 | 0.5286 | 0.3181 | 0.7068 | 122 | 121 | −1 | ||
B0018 | BPNN | 0.2946 | 5.4273 | 4.5280 | 2.7229 | 5.0548 | 122 | 128 | +6 | |
FNN | 0.1792 | 4.2332 | 3.0993 | 1.7532 | 3.2424 | 122 | 125 | +3 | ||
FFNN | 0.1173 | 3.4253 | 2.4642 | 1.4629 | 3.4334 | 122 | 126 | +4 | ||
CFNN | 0.0906 | 3.0104 | 1.8602 | 1.1069 | 2.7933 | 122 | 123 | +1 | ||
RNN | 0.0310 | 1.7598 | 1.2856 | 0.7642 | 1.7019 | 122 | 121 | −1 | ||
B0018 | B0005 | BPNN | 0.4887 | 6.9907 | 5.2274 | 3.3572 | 5.5300 | 92 | 88 | −4 |
FNN | 0.0414 | 2.0344 | 1.3561 | 0.8613 | 1.9467 | 92 | 96 | +4 | ||
FFNN | 0.0355 | 1.8855 | 1.3615 | 0.9355 | 1.6326 | 92 | 95 | +3 | ||
CFNN | 0.0217 | 1.4732 | 1.1000 | 0.6997 | 1.2514 | 92 | 90 | −2 | ||
RNN | 0.0172 | 1.3110 | 0.7933 | 0.4922 | 1.2266 | 92 | 93 | +1 | ||
B0006 | BPNN | 0.2862 | 5.3496 | 3.8865 | 2.3794 | 5.3341 | 92 | 94 | +2 | |
FNN | 0.0251 | 1.5831 | 0.9067 | 0.5552 | 1.3582 | 92 | 94 | +2 | ||
FFNN | 0.0064 | 0.8031 | 0.5503 | 0.3538 | 0.7687 | 92 | 90 | −2 | ||
CFNN | 0.0101 | 1.0060 | 0.3438 | 0.2271 | 1.0076 | 92 | 90 | −2 | ||
RNN | 0.0092 | 0.9569 | 0.4539 | 0.2962 | 0.9392 | 92 | 91 | −1 | ||
B0007 | BPNN | 0.3924 | 6.2645 | 4.4663 | 2.9252 | 5.6851 | 92 | 86 | −6 | |
FNN | 0.1155 | 3.3991 | 2.5947 | 1.6493 | 3.3255 | 92 | 96 | +4 | ||
FFNN | 0.0426 | 2.0628 | 1.7292 | 1.1177 | 1.9258 | 92 | 95 | +3 | ||
CFNN | 0.0377 | 1.8362 | 0.9305 | 0.5910 | 1.8379 | 92 | 93 | +1 | ||
RNN | 0.0187 | 1.3669 | 0.9362 | 0.5926 | 1.3400 | 92 | 91 | −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, S.; Ayob, A.; Hossain Lipu, M.S.; Hussain, A.; Saad, M.H.M. Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach. Sustainability 2021, 13, 13333. https://doi.org/10.3390/su132313333
Ansari S, Ayob A, Hossain Lipu MS, Hussain A, Saad MHM. Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach. Sustainability. 2021; 13(23):13333. https://doi.org/10.3390/su132313333
Chicago/Turabian StyleAnsari, Shaheer, Afida Ayob, Molla Shahadat Hossain Lipu, Aini Hussain, and Mohamad Hanif Md Saad. 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach" Sustainability 13, no. 23: 13333. https://doi.org/10.3390/su132313333
APA StyleAnsari, S., Ayob, A., Hossain Lipu, M. S., Hussain, A., & Saad, M. H. M. (2021). Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach. Sustainability, 13(23), 13333. https://doi.org/10.3390/su132313333