Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Prototype Proposed for Analysis
2.2. Computational Fluid Dynamics Modeling
2.2.1. Pre-Processing
2.2.2. Processing
2.2.3. Post-Processing
2.2.4. Response Surface Modeling
3. Results and Discussion
3.1. Airflow Patterns
3.1.1. Side Ventilation (S)
3.1.2. Roof Ventilation (R)
3.1.3. Side and Roof Ventilation (RS)
3.2. Renewal Index (RI)
3.3. Spatial Distribution of Temperature
3.3.1. Side Ventilation (S)
3.3.2. Roof Ventilation (R)
3.3.3. Side Ventilation and Roof (RS)
3.4. Response Surface Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villagrán, E.A.; Romero, E.J.B.; Bojacá, C.R. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Lin, R.; Zhang, Z.; Zhang, B. Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sens. 2021, 13, 2820. [Google Scholar] [CrossRef]
- Villagran, E.; Leon, R.; Rodriguez, A.; Jaramillo, J. 3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions. Sustainability 2020, 12, 8101. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of Greenhouse Crops. Horticulturae 2019, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Pakari, A.; Ghani, S. Airflow assessment in a naturally ventilated greenhouse equipped with wind towers: Numerical simulation and wind tunnel experiments. Energy Build. 2019, 199, 1–11. [Google Scholar] [CrossRef]
- Holcman, E.; Sentelhas, P.C.; Mello, S.D.C. Cherry tomato yield in greenhouses with different plastic covers. Ciência Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Revathi, S.; Sivakumaran, N.; Radhakrishnan, T. Design of solar-powered forced ventilation system and energy-efficient thermal comfort operation of greenhouse. Mater. Today Proc. 2021, 46, 9893–9900. [Google Scholar] [CrossRef]
- Salah, A.H.; Hassan, G.E.; Fath, H.; Elhelw, M.; Elsherbiny, S. Analytical investigation of different operational scenarios of a novel greenhouse combined with solar stills. Appl. Therm. Eng. 2017, 122, 297–310. [Google Scholar] [CrossRef]
- Jiménez-Lao, R.; Aguilar, F.; Nemmaoui, A.; Aguilar, M. Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research. Remote Sens. 2020, 12, 2649. [Google Scholar] [CrossRef]
- Munar, E.; Aldana, C. CFD Simulation of the Increase of the Roof Ventilation Area in a Traditional Colombian Greenhouse: Effect on Air Flow Patterns and Thermal Behavior. Int. J. Heat Technol. 2019, 37, 881–892. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Bojacá, C.; Akrami, M. Evaluation of the Microclimate in a Traditional Colombian Green-house Used for Cut Flower Production. Agronomy 2021, 11, 1330. [Google Scholar] [CrossRef]
- Diaz, D.; Bojacá, C.; Schrevens, E. Modeling the suitability of the traditional plastic greenhouse for tomato production across Colombian regions. Acta Hortic. 2018, 857–864. [Google Scholar] [CrossRef]
- Fernández-García, M.; Vidal-López, P.; Rodríguez-Robles, D.; Villar-García, J.; Agujetas, R. Numerical Simulation of Multi-Span Greenhouse Structures. Agriculture 2020, 10, 499. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C.; Akrami, M. Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure. Sustainability 2021, 13, 4748. [Google Scholar] [CrossRef]
- Flores-Velazquez, J. Analisis de la Ventilación en los Principales Modelos de Invernaderos en Mejico Mediante Dinámica de Fluidos Computacional (CFD). Ph.D. Thesis, University of Almería, Almería, Spain, 2010. [Google Scholar]
- Munar, E.A.V.; Aldana, C.R.B. Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornam. Hortic. 2019, 25, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Sol. Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Bot, G. Physical modeling of greenhouse climate. IFAC Proc. Vol. 1991, 24, 7–12. [Google Scholar] [CrossRef]
- Seven, S.A.; Taştan, Ö.F.; Tas, C.E.; Ünal, H.; Ince, I.A.; Menceloglu, Y.Z. Insecticide-releasing LLDPE films as greenhouse cover materials. Mater. Today Commun. 2019, 19, 170–176. [Google Scholar] [CrossRef]
- Babaghayou, M.; Mourad, A.-H.I.; Lorenzo, V.; Chabira, S.; Sebaa, M. Anisotropy evolution of low density polyethylene greenhouse covering films during their service life. Polym. Test. 2018, 66, 146–154. [Google Scholar] [CrossRef]
- Alsadon, A.; Al-Helal, I.; Ibrahim, A.; Abdel-Ghany, A.; Al-Zaharani, S.; Ashour, T. The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growth. Ecol. Eng. 2016, 87, 305–312. [Google Scholar] [CrossRef]
- Bournet, P.-E.; Boulard, T. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Cemek, B.; Atiş, A.; Küçüktopçu, E. Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu J. Agric. Sci. 2017, 32, 54. [Google Scholar] [CrossRef] [Green Version]
- Ghoulem, M.; El Moueddeb, K.; Nehdi, E.; Boukhanouf, R.; Calautit, J.K. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosyst. Eng. 2019, 183, 121–150. [Google Scholar] [CrossRef]
- Teitel, M.; Montero, J.; Baeza, E. Greenhouse Design: Concepts and Trends. Acta Hortic. 2012, 952, 605–620. [Google Scholar] [CrossRef]
- Akrami, M.; Javadi, A.A.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Tabor, G.R.; Negm, A. Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability 2020, 12, 986. [Google Scholar] [CrossRef] [Green Version]
- Benni, S.; Santolini, E.; Barbaresi, A.; Torreggiani, D.; Tassinari, P. Calibration and comparison of different CFD approaches for airflow analysis in a glass greenhouse. J. Agric. Eng. 2017, 48, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.-W.; Kim, J.-G.; Lee, I.-B.; Yeo, U.-H.; Lee, S.-Y.; Decano-Valentin, C. Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD. Biosyst. Eng. 2021, 207, 33–58. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Bojacá, C.R. Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. J. Agric. Eng. 2019, 50, 20–27. [Google Scholar] [CrossRef]
- Tong, G.; Christopher, D.M.; Zhang, G. New insights on span selection for Chinese solar greenhouses using CFD analyses. Comput. Electron. Agric. 2018, 149, 3–15. [Google Scholar] [CrossRef]
- Molina-Aiz, F.; Valera, D. Configuration by evaluating ventilation efficiency based on computational fluid dynamics. Acta Hortic. 2011, 893, 669–677. [Google Scholar] [CrossRef]
- He, K.; Chen, D.; Sun, L.; Huang, Z.; Liu, Z. Effects of Vent Configuration and Span Number on Greenhouse Microclimate under Summer Conditions in Eastern China. Int. J. Vent. 2015, 13, 381–396. [Google Scholar] [CrossRef]
- Kacira, M.; Sase, S.; Okushima, L. Effects of Side Vents and Span Numbers on Wind-Induced Natural Ventilation of a Gothic Multi-Span Greenhouse. Jpn. Agric. Res. Q. JARQ 2004, 38, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Boulard, T.; Fatnassi, H. Greenhouse Aeration and Climate Optimization Based on CFD Studiess. Plasticulture 2005, 124, 38. [Google Scholar]
- Fatnassi, H.; Boulard, T.; Benamara, H.; Roy, J.; Suay, R.; Poncet, C. Increasing the height and multiplying the number of spans of greenhouse: How far can we go? Acta Hortic. 2017, 1170, 137–144. [Google Scholar] [CrossRef]
- Xu, F.-Y.; Lu, H.-F.; Chen, Z.; Guan, Z.-C.; Chen, Y.-W.; Shen, G.-W.; Jiang, Z. Selection of a computational fluid dynamics (CFD) model and its application to greenhouse pad-fan cooling (PFC) systems. J. Clean. Prod. 2021, 302, 127013. [Google Scholar] [CrossRef]
- Villagran, E.; Henao-Rojas, J.; Franco, G. Thermo-Environmental Performance of Four Different Shapes of Solar Greenhouse Dryer with Free Convection Operating Principle and No Load on Product. Fluids 2021, 6, 183. [Google Scholar] [CrossRef]
- Akrami, M.; Salah, A.H.; Javadi, A.A.; Fath, H.E.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Negm, A. Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield. Sustainability 2020, 12, 2794. [Google Scholar] [CrossRef] [Green Version]
- Villagran, E. Implementation of ventilation towers in a greenhouse established in low altitude tropical climate conditions: Numerical approach to the behavior of the natural ventilation. Rev. Ceres 2021, 68, 10–22. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Villagran, E.; Ramirez, R.; Rodriguez, A.; Pacheco, R.; Jaramillo, J. Simulation of the Thermal and Aerodynamic Behavior of an Established Screenhouse under Warm Tropical Climate Conditions: A Numerical Approach. Int. J. Sustain. Dev. Plan. 2020, 15, 487–499. [Google Scholar] [CrossRef]
- Villagran, E.A.; Noreña, J.E.J. Microclimatic behavior of a screen house proposed for horticultural production in low-altitude tropical climate conditions. Comun. Sci. 2020, 11, e3350. [Google Scholar] [CrossRef]
- Munar, E.A.V.; Aldana, C.R.B. Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornam. Hortic. 2019, 25, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.-R.; Lan, T.-W.; Tasi, R.-K.; Wu, T.-R.; Yang, C.-K. Wind-driven natural ventilation of greenhouses with vegetation. Biosyst. Eng. 2017, 164, 221–234. [Google Scholar] [CrossRef]
- Senhaji, A.; Mouqallid, M.; Majdoubi, H. CFD Assisted Study of Multi-Chapels Greenhouse Vents Openings Effect on Inside Airflow Circulation and Microclimate Patterns. Open J. Fluid Dyn. 2019, 9, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. Yearly numerical evaluation of greenhouse cover materials. Comput. Electron. Agric. 2018, 149, 54–70. [Google Scholar] [CrossRef]
- Rasheed, A.; Lee, J.W.; Kim, H.T.; Lee, H.W. Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse. Prot. Hortic. Plant Fact. 2019, 28, 225–233. [Google Scholar] [CrossRef]
- Aguilar-Rodríguez, C.E.; Flores-Velázquez, J.; Rojano, F.; Flores-Magdaleno, H.; Panta, E.R. Simulation of Water Vapor and Near Infrared Radiation to Predict Vapor Pressure Deficit in a Greenhouse Using CFD. Processes 2021, 9, 1587. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Montaño-Rodríguez, S.; Villagrán-Munar, E.A.; Osorio-Fiaga, D.F.; Bojacá-Aldana, C.R.; Velásquez-Vargas, W.L. Numeric Simulation of Macrotunnel Greenhouse Thermic Behavior Used for Edible Mushrooms under Tropical Weather Conditions. Tecnol. Marcha J. 2020, 32, 78–85. [Google Scholar]
- Sun, X.; Yang, H.; Liu, Q.-F.; Liu, Y.-H. Event-triggered control for greenhouse temperature under natural ventilation based on computational fluid dynamics. Syst. Sci. Control. Eng. 2021, 9, 93–101. [Google Scholar] [CrossRef]
- Lenth, R.V. Response-Surface Methods inR, Usingrsm. J. Stat. Softw. 2009, 32, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kalita, K.; Shivakoti, I.; Ghadai, R.K. Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater. Manuf. Process. 2017, 32, 1101–1108. [Google Scholar] [CrossRef]
- Kalita, K.; Dey, P.; Joshi, M.; Haldar, S. A Response Surface Modelling Approach for Multi-Objective Optimization of Com-posite Plates. Steel Compos. Struct. 2019, 32, 455–466. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Baeza, E.J.; Pérez-Parra, J.J.; Montero, J.I.; Bailey, B.J.; López, J.C.; Gázquez, J.C. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Gil, R.; Acuña, J.F.; Bojacá, C.R. Optimization of Ventilation and Its Effect on the Microclimate of Acolombian Multispan Greenhouse. Agron. Colomb. 2012, 30, 282–288. [Google Scholar]
- Ma, D.; Carpenter, N.; Maki, H.; Rehman, T.U.; Tuinstra, M.R.; Jin, J. Greenhouse environment modeling and simulation for microclimate control. Comput. Electron. Agric. 2019, 162, 134–142. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Valera, D.L.; Álvarez, A.J. Measurement and simulation of climate inside Almería-type greenhouses using computational fluid dynamics. Agric. For. Meteorol. 2004, 125, 33–51. [Google Scholar] [CrossRef]
- López, A.; Valera, D.L.; Molina-Aiz, F. Sonic Anemometry to Measure Natural Ventilation in Greenhouses. Sensors 2011, 11, 9820–9838. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-K.; Lee, S.-H.; Seong, J.-H.; Moon, J.-P.; Lee, S.-J.; Choi, B.-M.; Kim, K.-J. Analysis of Natural Ventilation Characteristics of Venlo-type Greenhouse with Continuous Roof Vents. J. Biosyst. Eng. 2011, 36, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Reynafarje, X.; Villagrán, E.; Bojacá, C.; Gil, R.; Schrevens, E. Simulation and validation of the airflow inside a naturally ventilated greenhouse designed for tropical conditions. Acta Hortic. 2020, 55–62. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R.; Acuña-Caita, J.F. Diseño y Evaluación Climatica de Un Invernadero Para Condiciones de Clima Intertropical de Montaña; Universidad Nacional de Colombia: Bogota, Colombia, 2016; p. 138. [Google Scholar]
- Mesmoudi, K.; Meguellati, K.; Bournet, P.-E. Thermal analysis of greenhouses installed under semi arid climate. Int. J. Heat Technol. 2017, 35, 474–486. [Google Scholar] [CrossRef] [Green Version]
- McCartney, L.; Orsat, V.; Lefsrud, M.G. An experimental study of the cooling performance and airflow patterns in a model Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosyst. Eng. 2018, 174, 173–189. [Google Scholar] [CrossRef]
- ASAE. Heating, Ventilating and Cooling Greenhouses. ANSI/ASAE 2008, 3, 9. [Google Scholar] [CrossRef]
- Villagran, E. Two-Dimensional Numerical Study of the Microclimate Generated in Three Screenhouses for the Climatic Conditions of the Colombian Caribbean. Int. J. Heat Technol. 2021, 39, 460–468. [Google Scholar] [CrossRef]
- Espejel Trujano, D.; López Cruz, I.L. Determinación de Las Tasas de Ventilación Natural En Un Invernadero Mediante Modelos Teóricos y Gases Trazadores. Rev. Mex. Cienc. Agrícolas 2013, 4, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Baeza, E.J.; Pérez-Parra, J.; Lopez, J.C.; Kacira, M.; Gázquez, J.C.; Montero, J.I. Validation of CFD Simulations for Three Dimensional Temperature Distributions of a Naturally Ventilated Multispan Greenhouse Obtained by Wind Tunnel Measurements. Acta Hortic. 2011, 893, 571–580. [Google Scholar] [CrossRef]
- Mimar, E.A.V.; Aldana, C.R.B. Microclimate i Simulation in a Greenhouse Used for Roses Production under Conditions of Intertropical Climate. Chil. J. Agric. Anim. Sci. 2019, 35, 137–150. [Google Scholar] [CrossRef]
- Kacira, M.; Sase, S.; Okushima, L. Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Trans. ASAE 2004, 47, 2059–2067. [Google Scholar] [CrossRef]
- Bartzanas, T.; Boulard, T.; Kittas, C. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Comput. Electron. Agric. 2002, 34, 207–221. [Google Scholar] [CrossRef]
- Molina-Aiz, F.; Fatnassi, H.; Boulard, T.; Roy, J.; Valera, D. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Comput. Electron. Agric. 2010, 72, 69–86. [Google Scholar] [CrossRef]
- He, K.; Chen, D.; Sun, L.; Huang, Z.; Liu, Z. Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes. Korean J. Hortic. Sci. Technol. 2014, 32, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Sase, S. Air movement and climate uniformity in ventilated greenhouses. Acta Hortic. 2006, 719, 313–324. [Google Scholar] [CrossRef]
- Baeza, E.; Montero, J.I.; Pérez-Parra, J.; Bailey, B.J.; López, J.C.; Vázquez, J.C. Avances En El Estudio de La Ventilación Natural; Cajamar Caja Rural: Almeria, España, 2012. [Google Scholar]
- Kittas, C.; Boulard, T.; Papadakis, G. Natural ventilation of a greenhouse with ridge and side openings: Sensitivity to temperature and wind effects. Trans. ASAE 1997, 40, 415–425. [Google Scholar] [CrossRef]
- Gil, R.; Bojacá, C.; Casilimas, H.; Schrevens, E.; Suay, R. Assessment of sidewall and roof vents opening configurations to improve airflow inside greenhouses. Acta Hortic. 2012, 952, 141–146. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Gil, R.; Acuña, J.F.; Bojacá, C.R. Agronomía Colombiana; Universidad Nacional de Colombia, Facultad de Agronomía: Bogota, Colombia, 2012; Volume 30. [Google Scholar]
- Katsoulas, N.; Bartzanas, T.; Boulard, T.; Mermier, M.; Kittas, C. Effect of Vent Openings and Insect Screens on Greenhouse Ventilation. Biosyst. Eng. 2006, 93, 427–436. [Google Scholar] [CrossRef]
- Flores-Velázquez, J.; López-Cruz, I.L.; Mejía-Sáenz, E.; Montero, J.I. Evaluación Del Desempeño Climático de Un Inver-nadero Baticenital Del Centro de México Mediante Dinámica de Fluidos Computacional (CFD). Agrociencia 2014, 48, 131–146. [Google Scholar]
- Villagran, E.; Bojacá, C. Experimental evaluation of the thermal and hygrometric behavior of a Colombian greenhouse used for the production of roses (Rosa spp.). Ornam. Hortic. 2020, 26, 205–219. [Google Scholar] [CrossRef]
- Saberian, A.; Sajadiye, S.M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renew. Energy 2019, 138, 722–737. [Google Scholar] [CrossRef]
- Park, M.J.; Choi, D.K.; Son, J.K.; Yoon, S.-W.; Kim, H.T.; Lee, S.-K.; Kang, D.H. Field Survey and Analysis of Natural Ventilation Characteristics of Multi-span Greenhouse with Different Roof Vent. Prot. Hortic. Plant Fact. 2020, 29, 36–42. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C. Analysis of the microclimatic behavior of a greenhouse used to produce carnation (Dianthus caryophyllus L.). Ornam. Hortic. 2020, 26, 190–204. [Google Scholar] [CrossRef]
- Zorzeto, T.Q.; Leal, P.A.M.; Nunes, E.F. Homogeneity of Temperature and Relative Humidity of Air in Greenhouse. Environment 2014, 1, 12. [Google Scholar]
- Bustamante, N.; Acuña, C.J.F.; Valera, D.L. Effect of the Height of the Greenhouse on the Plant-Climate Relationship as a Development Parameter in Mint (Mentha Spicata) Crops in Colombia. Ing. Investig. 2016, 36, 6–13. [Google Scholar] [CrossRef] [Green Version]
Property | Soil | Air | Polyethylene |
---|---|---|---|
Density (ρ, kg m−3) | 1350 | 1.225 | 923 |
Thermal conductivity (k, W m−1 K−1) | 1.3 | 0.0242 | 0.4 |
Specific heat (Cp, J K−1 kg−1) | 800 | 1006.43 | 2300 |
Absorptivity | 0.90 | 0.19 | 0.06 |
Scattering coefficient | −15 | 0 | 0 |
Refractive index | 1.92 | 1 | 1.53 |
Emissivity | 0.95 | 0.9 | 0.7 |
Model | H1 (m) | SV (m) | Scheme |
---|---|---|---|
Model 1 (M1) | 2.5 | 1.2 | |
Model 2 (M1) | 3.0 | 1.7 | |
Model 3 (M3) | 3.5 | 2.2 | |
Model 4 (M4) | 4.0 | 2.7 | |
Model 5 (M5) | 4.5 | 3.2 | |
Model 6 (M6) | 5.0 | 3.7 |
Scenarios | |||||
---|---|---|---|---|---|
S-M1S1 | S-M4S1 | R-M1S1 | R-M4S1 | RS-M1S1 | RS-M4S1 |
S-M1S2 | S-M4S2 | R-M1S2 | R-M4S2 | RS-M1S2 | RS-M4S2 |
S-M1S3 | S-M4S3 | R-M1S3 | R-M4S3 | RS-M1S3 | RS-M4S3 |
S-M1S4 | S-M4S4 | R-M1S4 | R-M4S4 | RS-M1S4 | RS-M4S4 |
S-M2S1 | S-M5S1 | R-M2S1 | R-M5S1 | RS-M2S1 | RS-M5S1 |
S-M2S2 | S-M5S2 | R-M2S2 | R-M5S2 | RS-M2S2 | RS-M5S2 |
S-M2S3 | S-M5S3 | R-M2S3 | R-M5S3 | RS-M2S3 | RS-M5S3 |
S-M2S4 | S-M5S4 | R-M2S4 | R-M5S4 | RS-M2S4 | RS-M5S4 |
S-M3S1 | S-M6S1 | R-M3S1 | R-M6S1 | RS-M3S1 | RS-M6S1 |
S-M3S2 | S-M6S2 | R-M3S2 | R-M6S2 | RS-M3S2 | RS-M6S2 |
S-M3S3 | S-M6S3 | R-M3S3 | R-M6S3 | RS-M3S3 | RS-M6S3 |
S-M3S4 | S-M6S4 | R-M3S4 | R-M6S4 | RS-M3S4 | RS-M6S4 |
Scenario—Ventilation Type | Model | Adjusted R-Squared | Lack of Fit Test |
---|---|---|---|
Roof (R) | 0.6405 | F = 0.6145; p = 0.891 | |
0.5663 | F = 1.0693; p = 0.378 | ||
Side (S) | 0.8908 | F = 0.5115; p = 0.954 | |
0.5893 | F = 2.2616; p = 0.002 | ||
Roof + Side (RS) | 0.8986 | F = 0.6915; p = 0.822 | |
0.5114 | F = 0.2596; p = 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villagrán, E.; Flores-Velazquez, J.; Akrami, M.; Bojacá, C. Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability 2021, 13, 13631. https://doi.org/10.3390/su132413631
Villagrán E, Flores-Velazquez J, Akrami M, Bojacá C. Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability. 2021; 13(24):13631. https://doi.org/10.3390/su132413631
Chicago/Turabian StyleVillagrán, Edwin, Jorge Flores-Velazquez, Mohammad Akrami, and Carlos Bojacá. 2021. "Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach" Sustainability 13, no. 24: 13631. https://doi.org/10.3390/su132413631
APA StyleVillagrán, E., Flores-Velazquez, J., Akrami, M., & Bojacá, C. (2021). Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability, 13(24), 13631. https://doi.org/10.3390/su132413631