Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System
Abstract
:1. Introduction
- Land use characteristics.
- Site characteristics.
- Catchment characteristics.
- Quantity and quality performance.
- Amenity and environmental necessities.
2. Simulation Model
3. Methodology
3.1. Description of the Cases Study
3.2. Model Validation and Testing
4. Results and Discussions
4.1. Susceptibility to Flood Risk
4.2. Economic Viability
4.2.1. Life Cost Analysis
- Procurement and design costs;
- Capital construction costs (CCC);
- Operation and maintenance costs (OMC);
- Monitoring costs;
- Replacement or decommissioning costs (RDC).
4.2.2. Damage Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe—An Overview of the Last Decade; European Environment Agency Technical report 13/2010; European Environment Agency: Copenhagen, Denmark, 2010; p. 144. [Google Scholar]
- European Commission: Developments and Forecasts on Continuing Urbanisation. Available online: https://knowledge4policy.ec.europa.eu/foresight/topic/continuing-urbanisation/developments-and-forecasts-on-continuing-urbanisation_en (accessed on 13 November 2021).
- United Nation: New Urban Agenda. 2017. Available online: https://unhabitat.org/sites/default/files/2019/05/nua-english.pdf (accessed on 14 November 2021).
- European Commission: Population Data Collection for European Local Administrative Units from 1960 Onwards. 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/3baa2718-41dd-4913-9034-a5740bc5e654/language-en (accessed on 14 November 2021).
- COP26 Outcomes. Available online: https://ukcop26.org/the-conference/cop26-outcomes/ (accessed on 18 November 2021).
- Besharat, M.; Dadfar, A.; Viseu, M.T.; Brunone, B.; Ramos, H.M. Transient-Flow Induced Compressed Air Energy Storage (TI-CAES) System towards New Energy Concept. Water 2020, 12, 601. [Google Scholar] [CrossRef] [Green Version]
- Ramos, H.M.; Pérez-Sánchez, M.; Franco, A.B.; López-Jiménez, P.A. Urban Floods Adaptation and Sustainable Drainage Measures. Fluids 2017, 2, 61. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shen, Z.Y.; Chen, L. Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China. Landsc. Urban Plan. 2018, 176, 51–63. [Google Scholar] [CrossRef]
- Li, C.L.; Liu, M.; Hu, Y.M.; Shi, T.; Qu, X.Q.; Walter, M.T. Effects of urbanization on direct runoff characteristics in urban functional zones. Sci. Total Environ. 2018, 643, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.H.; Shao, W.W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Technol. Sci. 2017, 3, 317–329. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.H.; Dong, Z.C.; Tang, Q.H.; Lv, X.Z.; Dong, G.T. Analysis of Natural Streamflow Variation and Its Influential Factors on the Yellow River from 1957 to 2010. Water 2018, 10, 1155. [Google Scholar] [CrossRef] [Green Version]
- Kefi, M.; Mishra, B.K.; Kumar, P.; Masago, Y.; Fukushi, K. Assessment of Tangible Direct Flood Damage Using a Spatial Analysis Approach under the Effects of Climate Change: Case Study in an Urban Watershed in Hanoi, Vietnam. ISPRS Int. J. Geo-Inf. 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim. Extremes 2018, 20, 45–53. [Google Scholar] [CrossRef]
- Schmitt, T.G.; Thomas, M.; Ettrich, N. Analysis and modeling of flooding in urban drainage systems. J. Hydrol. 2004, 299, 300–311. [Google Scholar] [CrossRef]
- Rangari, V.A.; Umamahesh, N.V.; Bhatt, C.M. Assessment of inundation risk in urban floods using HEC RAS 2D. Model. Earth Syst. Environ. 2019, 5, 1839–1851. [Google Scholar] [CrossRef]
- Gonzalez-Alvarez, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias, Colombia. Fluids 2018, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Ashu, A.B.; Lee, S.-I. Assessing Climate Change Effects on Water Balance in a Monsoon Watershed. Water 2020, 12, 2564. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, Y.; Liu, T.; Luo, M. Climate Change Impacts on Extreme Flows Under IPCC RCP Scenarios in the Mountainous Kaidu Watershed, Tarim River Basin. Sustainability 2020, 12, 2090. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yao, W.; Wang, M.; Xiao, P.; Yang, J.; Zhang, P.; Tang, Q.; Kong, X.; Wu, J. The Influence of River Channel Occupation on Urban Inundation and Sedimentation Induced by Floodwater in Mountainous Areas: A Case Study in the Loess Plateau, China. Sustainability 2019, 11, 761. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.C.; Nally, R.M.; Read, J.; Baker, P.J.; White, M.; Thomson, J.R.; Griffioen, P. A robust technique for mapping vegetation condition across a major river system. Ecosystems 2009, 12, 207–219. [Google Scholar] [CrossRef]
- Lauer, J.W.; Caitlyn, E.; Christian, L.; Patrick, B.; Rachel, R. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget. Geomorphology 2017, 297, 170–184. [Google Scholar] [CrossRef]
- Philip, K.L.; Lalit, K.; Richard, K. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology 2019, 325, 92–102. [Google Scholar]
- Mejia, A.I.; Moglen, G.E. Spatial distribution of imperviousness and the space-time variability of rainfall, runoff generation, and routing. Water Resour. Res. 2010, 46, W07509. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.V.F.; Schardong, A.; Garcia, J.I.B.; Oliveira, C.D.P.M. Climate Change Impacts and Flood Control Measures for Highly Developed Urban Watersheds. Water 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Ballard, B.; Wilson, S.; Udale-Clark, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual (CIRIA C753); CIRIA: London, UK, 2015. [Google Scholar]
- DHI. MIKE SHE User Manual; Danish Hydraulic Institute: Hørsholm, Denmark, 2019. [Google Scholar]
- Obeysekera, J.; Salas, J.D. Frequency of recurrent extremes under nonstationarity. J. Hydrol. Eng. 2016, 21, 04016005. [Google Scholar] [CrossRef]
- Salas, J.D.; Obeysekera, J.; Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, E.S. A multi-criteria decision analysis framework for prioritizing sites and types of low impact development practices. Water 2017, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Russo, B.; Gómez, M.; Macchione, F. Pedestrian hazard criteria for flooded urban areas. Nat. Hazards 2013, 69, 251–265. [Google Scholar] [CrossRef]
- Sandink, D.; Simonovic, S.P.; Schardong, A.; Srivastav, R. A Decision Support System for Updating and Incorporating Climate Change Impacts into Rainfall Intensity-DurationFrequency Curves: Review of the Stakeholder Involvement Process. Environ. Model. Softw. J. 2016, 84, 193–209. [Google Scholar]
- Abdellatif, M.; Atherton, W.; Alkhaddar, R.; Osman, Y. Flood risk assessment for urban water system in a changing climate using artificial neural network. Nat. Hazards 2015, 79, 1059–1077. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Yang, Y.; Chui, T.F.M. Rapid Assessment of Hydrologic Performance of Low Impact Development Practices under Design Storms. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 613–630. [Google Scholar] [CrossRef]
- Szewranski, S.; Kazak, J.; Zmuda, R.; Wawer, R. Indicator-based assessment for soil resource management in the Wroclaw larger urban zone of Poland. Pol. J. Environ. Stud. 2017, 26, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- Ramos, H.M.; Teyssier, C.; Samora, I.; Schleiss, A.J. Energy recovery in SuDS towards smart water grids: A case study. Energy Policy 2013, 62, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Ertan, S.; Çelik, R.N. The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS. Sustainability 2021, 13, 2293. [Google Scholar] [CrossRef]
- Neupert, J.W.; Lau, P.; Venghaus, D.; Barjenbruch, M. Development of a New Testing Approach for Decentralised Technical Sustainable Drainage Systems. Water 2021, 13, 722. [Google Scholar] [CrossRef]
- Fraga, J.P.R.; Okumura, C.K.; Guimarães, L.F.; de Arruda, R.N.; Becker, B.R.; de Oliveira, A.K.B.; Veról, A.P.; Miguez, M.G. Cost-benefit analysis of sustainable drainage systems considering ecosystems services benefits: Case study of canal do mangue watershed in Rio de Janeiro city, Brazil. Clean Technol. Environ. Policy 2021. [Google Scholar] [CrossRef]
Technique | Maintenance | Community Acceptance | Cost | Habitat Creation Potential |
---|---|---|---|---|
Retention Pond | Medium | High | Medium | High |
Wetland | Medium | Low | High | Medium |
Infiltration trench | Low | Medium | Low | Low |
Soakaway | Low | Medium | Medium | Low |
Filter strip | High | High | Medium | High |
Filter trench | Medium | Medium | Medium | Low |
Detention basin | Low | High | Low | Medium |
Green roof | High | High | High | High |
Permeable Pavement | Medium | Medium | Medium | Low |
Risk | No Intervention | Infiltration Trenches | Detention Basin | Permeable Pavement | Combined Techniques |
---|---|---|---|---|---|
No Vulnerability | 53.47% | 52.66% | 50.52% | 79.37% | 81.74% |
Very Low | 18.67% | 19.81% | 28.13% | 10.72% | 9.65% |
Low | 18.47% | 19.54% | 19.34% | 20.24% | 7.26% |
Moderate | 1.10% | 3.74% | 1.41% | 2.20% | 1.35% |
High | 4.09% | 4.26% | 0.60% | 0.43% | - |
Very High | 4.20% | - | - | - | - |
Component | CCC | OMC | RDC | Secondary | Total |
---|---|---|---|---|---|
Infiltration trench | 142,212.50 | 1422.13 | 49,774.38 | 28,442.50 | 172,077.13 |
Detention basin | 52,643.07 | 584.92 | 18,425.07 | 10,528.61 | 63,756.61 |
Permeable pavement | 317,925.00 | 7065.00 | 111,273.75 | 63,585.00 | 492,783.75 |
Combined techniques | 209,243.07 | 3910.84 | 73,235.07 | 41,848.61 | 255,002.53 |
Risk | No Intervention | Infiltration Trenches | Detention Basin | Permeable Pavement | Combined Techniques |
---|---|---|---|---|---|
No Vulnerability | - | - | - | - | - |
Very Low | 6514.259 | 3474.910 | 4362.509 | 1812.087 | 4794.334 |
Low | 5337.568 | 4957.725 | 4839.746 | 5397.790 | 2296.978 |
Moderate | 628.090 | 1306.412 | 422.569 | 1464.443 | 1049.828 |
High | 1931.644 | 4811.403 | 1397.274 | 535.126 | - |
Very High | 5.417.045 | - | - | - | - |
Total | 19,928.607 | 14,550.452 | 11,022.099 | 9209.446 | 8141.142 |
Saving | - | 5278.155 | 8806.507 | 10,619.160 | 11,687.464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, H.M.; Besharat, M. Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System. Sustainability 2021, 13, 13889. https://doi.org/10.3390/su132413889
Ramos HM, Besharat M. Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System. Sustainability. 2021; 13(24):13889. https://doi.org/10.3390/su132413889
Chicago/Turabian StyleRamos, Helena M., and Mohsen Besharat. 2021. "Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System" Sustainability 13, no. 24: 13889. https://doi.org/10.3390/su132413889
APA StyleRamos, H. M., & Besharat, M. (2021). Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System. Sustainability, 13(24), 13889. https://doi.org/10.3390/su132413889