The SDGs, Ecosystem Services and Cities: A Network Analysis of Current Research Innovation for Implementing Urban Sustainability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Urban Themes in the Sustainable-Development-Goals Knowledge Base
3.2. Urban-Ecosystem Services Themes in the Sustainable-Development-Goals Knowledge Base
3.3. Urban Green Infrastructure in the Literature
4. Discussion
4.1. The Evolving Knowledge Base of the SDGs, Cities, and Ecosystem Services
- Ecosystem services that contribute directly to SDGs (cluster 1).
- Ecosystem services that contribute indirectly to the SDGs (cluster 2).
- The impact of urbanisation on ecosystem services (cluster 3).
- Building resilience and sustainability infrastructure to enhance ecosystem services and SDGs more broadly (cluster 4).
4.2. The State of Research on Urban Green Infrastructure and the SDGs
4.3. Addressing Critical Knowledge Gaps to Harness UGI to Meet the SDGs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colglazier, W. Sustainable Development Agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, D. Cities and Human Settlements in the Development Agenda. SAIS Rev. Int. Aff. 2014, 34, 63–81. [Google Scholar] [CrossRef]
- United Nations World Urbanization Prospects—Population Division—United Nations. Available online: http://esa.un.org/unpd/wup/DataQuery/ (accessed on 11 January 2016).
- UN-Habitat. State of African Cities 2014: Re-Imagining Sustainable Urban. Transitions; UN-Habitat: Nairobi, Kenya, 2015. [Google Scholar]
- UN-Habitat. The State of Asian Cities 2010/11; UN-Habitat: Fukuoka, Japan, 2010. [Google Scholar]
- Dovey, K. Informal Urbanism and Complex Adaptive Assemblage. Int. Dev. Plan. Rev. 2012, 34, 349–367. [Google Scholar] [CrossRef]
- Gouverneur, D. Planning and Design for Future Informal Settlements: Shaping the Self-Constructed City; Routledge: Abingdon, UK; New York, NY, USA, 2014; ISBN 1-315-76593-4. [Google Scholar]
- Montgomery, M.; Balk, D. The Urban Transition in Developing Countries: Demography Meets Geography. In Global urbanization; Birch, E.L., Wachter, S.M., Eds.; University of Pennsylvania Press: Philadelphia, PA, USA, 2011; pp. 89–106. ISBN 978-0-8122-4284-3. [Google Scholar]
- Dovey, K. Incremental Urbanism: The Emergence of Informal Settlements. In Emergent Urbanism; Routledge: Abingdon, UK; New York, NY, USA, 2016; pp. 61–70. [Google Scholar]
- Kamalipour, H.; Dovey, K. Mapping the Visibility of Informal Settlements. Habitat Int. 2019, 85, 63–75. [Google Scholar] [CrossRef]
- Parker, S. The Majority Urban World: The Growth and Development of Cities in the Global South. In Urban Theory and the Urban Experience; Routledge: Abingdon, UK; New York, NY, USA, 2015; pp. 183–204. [Google Scholar]
- Sirakaya, A.; Cliquet, A.; Harris, J. Ecosystem Services in Cities: Towards the International Legal Protection of Ecosystem Services in Urban Environments. Ecosyst. Serv. 2018, 29, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Kanuri, C.; Revi, A.; Espey, J.; Kuhle, H. Getting Started with the SDGs in Cities: A Guide for Stakeholders; United Nations Sustainable Development Solutions Network: New York, NY, USA; Paris, France, 2016. [Google Scholar]
- United Nations. A New Global Partnership: Eradicate Poverty and Transform. Economies through Sustainable Development; United Nations: New York, NY, USA, 2013. [Google Scholar]
- Independent Group of Scientists appointed by the Secretary-General. In Global Sustainable Development Report 2019: The Future Is Now: Science for Achieving Sustainable Development; United Nations: New York, NY, USA, 2019.
- Millennium Ecosystem Assessment. In Living beyond Our Means: Natural Assets and Human Well-Being; Millennium Ecosystem Assessment: Washington, DC, USA, 2005.
- Kennedy, C.; Corfee-Morlot, J. Past Performance and Future Needs for Low Carbon Climate Resilient Infrastructure—An Investment Perspective. Energy Policy 2013, 59, 773–783. [Google Scholar] [CrossRef]
- Li, F.; Liu, H.X.; Huisingh, D.; Wang, Y.T.; Wang, R.S. Shifting to Healthier Cities with Improved Urban Ecological Infrastructure: From the Perspectives of Planning, Implementation, Governance and Engineering. J. Clean. Prod. 2017, 163, S1–S11. [Google Scholar] [CrossRef]
- Zhang, X.L.; Hes, D.; Wu, Y.Z.; Hafkamp, W.; Lu, W.S.; Bayulken, B.; Schnitzer, H.; Li, F. Catalyzing Sustainable Urban Transformations towards Smarter, Healthier Cities through Urban Ecological Infrastructure, Regenerative Development, Eco Towns and Regional Prosperity. J. Clean. Prod. 2016, 122, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning Multifunctional Green Infrastructure for Compact Cities: What Is the State of Practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Childers, D.L.; Bois, P.; Hartnett, H.E.; McPhearson, T.; Metson, G.S.; Sanchez, C.A. Urban Ecological Infrastructure: An Inclusive Concept for the Non-Built Urban Environment. Elem. Sci. Anthr. 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J. Urban Landscape Sustainability and Resilience: The Promise and Challenges of Integrating Ecology with Urban Planning and Design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Childers, D.L.; Cadenasso, M.L.; Morgan Grove, J.; Marshall, V.; McGrath, B.; Pickett, S.T.A. An Ecology for Cities: A Transformational Nexus of Design and Ecology to Advance Climate Change Resilience and Urban Sustainability. Sustainability 2015, 7, 3774–3791. [Google Scholar] [CrossRef] [Green Version]
- Andersson, E.; Barthel, S.; Borgström, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, Å. Reconnecting Cities to the Biosphere: Stewardship of Green Infrastructure and Urban Ecosystem Services. AMBIO 2014, 43, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A Blueprint for Mapping and Modelling Ecosystem Services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Nel, J.L.; Le Maitre, D.C.; Roux, D.J.; Colvin, C.; Smith, J.S.; Smith-Adao, L.B.; Maherry, A.; Sitas, N. Strategic Water Source Areas for Urban Water Security: Making the Connection between Protecting Ecosystems and Benefiting from Their Services. Ecosyst. Serv. 2017, 28, 251–259. [Google Scholar] [CrossRef]
- Breuste, J.; Haase, D.; Elmqvist, T. Urban Landscapes and Ecosystem Services. In Ecosystem Services in Agricultural and Urban Landscapes; John Wiley and Sons Ltd.: Chicester, UK, 2013; pp. 83–104. [Google Scholar] [CrossRef]
- Wood, S.; Jones, S.; Johnson, J.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the Role of Ecosystem Services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.L.; DeClerck, F. Ecosystems and Human Well-Being in the Sustainable Development Goals. Front. Ecol. Environ. 2015, 13, 123. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Cherubini, F.; Fu, B.; Pereira, P. Prioritizing Sustainable Development Goals and Linking Them to Ecosystem Services: A Global Expert’s Knowledge Evaluation. Geogr. Sustain. 2020, 1, 321–330. [Google Scholar] [CrossRef]
- Cumming, T.L.; Shackleton, R.T.; Förster, J.; Dini, J.; Khan, A.; Gumula, M.; Kubiszewski, I. Achieving the National Development Agenda and the Sustainable Development Goals (SDGs) through Investment in Ecological Infrastructure: A Case Study of South Africa. Ecosyst. Serv. 2017, 27, 253–260. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Q.; Jiang, P.; Li, M. Incorporating Ecosystem Services to Assess Progress towards Sustainable Development Goals: A Case Study of the Yangtze River Economic Belt, China. Sci. Total Environ. 2022, 806, 151277. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T.; Fund, M.A.T.C. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2012; ISBN 978-1-59726-764-9. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and More—The Evolution and Application of Terminology Surrounding Urban Drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Towards a Comprehensive Green Infrastructure Typology: A Systematic Review of Approaches, Methods and Typologies. Urban Ecosyst. 2017, 20, 15–35. [Google Scholar] [CrossRef]
- Da Silva, J.M.C.; Wheeler, E. Ecosystems as Infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- Pincetl, S. Cities as Novel Biomes: Recognizing Urban Ecosystem Services as Anthropogenic. Front. Ecol. Evol. 2015, 3, 140. [Google Scholar] [CrossRef] [Green Version]
- Abson, D.J.; Fischer, J.; Leventon, J.; Newig, J.; Schomerus, T.; Vilsmaier, U.; von Wehrden, H.; Abernethy, P.; Ives, C.D.; Jager, N.W. Leverage Points for Sustainability Transformation. AMBIO 2017, 46, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Derrible, S. Urban Infrastructure Is Not a Tree: Integrating and Decentralizing Urban Infrastructure Systems. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 553–569. [Google Scholar] [CrossRef]
- Kati, V.; Jari, N. Bottom-up Thinking—Identifying Socio-Cultural Values of Ecosystem Services in Local Blue–Green Infrastructure Planning in Helsinki, Finland. Land Use Policy 2016, 50, 537–547. [Google Scholar] [CrossRef]
- Marissa Matsler, A. Making ‘Green’ Fit in a ‘Grey’ Accounting System: The Institutional Knowledge System Challenges of Valuing Urban Nature as Infrastructural Assets. Environ. Sci. Policy 2019, 99, 160–168. [Google Scholar] [CrossRef]
- Musacchio, L.R.; Wu, J. Collaborative Landscape-Scale Ecological Research: Emerging Trends in Urban and Regional Ecology. Urban Ecosyst. 2004, 7, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Tidball, K.G.; Krasny, M.E. From Risk to Resilience: What Role for Community Greening and Civic Ecology in Cities. In Social Learning towards a Sustainable World; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 149–164. ISBN 9789086865949. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, M.; Frantzeskaki, N.; Maschmeyer, S. Cities, Systems and Sustainability: Status and Perspectives of Research on Urban Transformations. Curr. Opin. Environ. Sustain. 2016, 22, 18–25. [Google Scholar] [CrossRef]
- Schewenius, M.; McPhearson, T.; Elmqvist, T. Opportunities for Increasing Resilience and Sustainability of Urban Social–Ecological Systems: Insights from the URBES and the Cities and Biodiversity Outlook Projects. AMBIO 2014, 43, 434–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban Forests, Ecosystem Services, Green Infrastructure and Nature-Based Solutions: Nexus or Evolving Metaphors. Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; Notte, A.L.; Zulian, G.; et al. Mapping Ecosystem Services for Policy Support and Decision Making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Maes, M.J.A.; Jones, K.E.; Toledano, M.B.; Milligan, B. Mapping Synergies and Trade-Offs between Urban Ecosystems and the Sustainable Development Goals. Environ. Sci. Policy 2019, 93, 181–188. [Google Scholar] [CrossRef]
- Sørup, H.J.D.; Fryd, O.; Liu, L.; Arnbjerg-Nielsen, K.; Jensen, M.B. An SDG-Based Framework for Assessing Urban Stormwater Management Systems. Blue-Green Syst. 2019, 1, 102–118. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, C.; Oppio, A.; Baldassarre, R.; Grassi, R.; Dell’Ovo, M. A Multidimensional Assessment of Ecosystem Services: From Grey to Green Infrastructure. In Computational Science and Its Applications—ICCSA 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 569–581. [Google Scholar]
- Tan, P.Y.; Zhang, J.; Masoudi, M.; Alemu, J.B.; Edwards, P.J.; Grêt-Regamey, A.; Richards, D.R.; Saunders, J.; Song, X.P.; Wong, L.W. A Conceptual Framework to Untangle the Concept of Urban Ecosystem Services. Landsc. Urban Plan. 2020, 200, 103837. [Google Scholar] [CrossRef]
- Yuan, M.-H.; Lo, S.-L. Ecosystem Services and Sustainable Development: Perspectives F1 Rom the Food-Energy-Water Nexus. Ecosyst. Serv. 2020, 46, 101217. [Google Scholar] [CrossRef]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; Harper Perennial: New York, NY, USA, 2002; ISBN 0-06-053322-6. [Google Scholar]
- Buck, N.T. The Art of Imitating Life: The Potential Contribution of Biomimicry in Shaping the Future of Our Cities. Environ. Plan. B Plan. Des. 2017, 44, 120–140. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Ecosystem Processes for Biomimetic Architectural and Urban Design. Archit. Sci. Rev. 2015, 58, 106–119. [Google Scholar] [CrossRef]
- Johnson, J.A.; Jones, S.K.; Wood, S.L.; Chaplin-Kramer, R.; Hawthorne, P.L.; Mulligan, M.; Pennington, D.; DeClerck, F.A. Mapping Ecosystem Services to Human Well-Being: A Toolkit to Support Integrated Landscape Management for the SDGs. Ecol. Appl. 2019, 29, e01985. [Google Scholar] [CrossRef] [PubMed]
- Adeoti, O.; Fati, B.O. Barriers to Extending Piped Water Distribution Networks: The Case of Ekiti State, Nigeria. Util. Policy 2020, 63, 100983. [Google Scholar] [CrossRef]
- Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Pahl-Wostl, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, S.; et al. Achieving Sustainable Development Goals from a Water Perspective. Front. Environ. Sci. 2016, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Hawken, S.; Avazpour, B.; Harris, M.S.; Marzban, A.; Munro, P.G. Urban Megaprojects and Water Justice in Southeast Asia: Between Global Economies and Community Transitions. Cities 2021, 113, 103068. [Google Scholar] [CrossRef]
- Hawken, S.; Sepasgozar, S.M.E.; Prodanovic, V.; Jing, J.; Bakelmun, A.; Avazpour, B.; Che, S.; Zhang, K. What Makes a Successful Sponge City Project? Expert Perceptions of Critical Factors in Integrated Urban Water Management in the Asia-Pacific. Sustain. Cities Soc. 2021, 75, 103317. [Google Scholar] [CrossRef]
- Chung, M.G.; Frank, K.A.; Pokhrel, Y.; Dietz, T.; Liu, J. Natural Infrastructure in Sustaining Global Urban Freshwater Ecosystem Services. Nat. Sustain. 2021, 4, 1068–1075. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Osuna, V.R.; Cak, A.D.; Bhaduri, A.; Bunn, S.E.; Corsi, F.; Gastelumendi, J.; Green, P.; Harrison, I.; Lawford, R. Ecosystem-Based Water Security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 2018, 18, 317–333. [Google Scholar] [CrossRef]
- Picchi, P.; van Lierop, M.; Geneletti, D.; Stremke, S. Advancing the Relationship between Renewable Energy and Ecosystem Services for Landscape Planning and Design: A Literature Review. Ecosyst. Serv. 2019, 35, 241–259. [Google Scholar] [CrossRef]
- Van den Heuvel, L.; Blicharska, M.; Masia, S.; Sušnik, J.; Teutschbein, C. Ecosystem Services in the Swedish Water-Energy-Food-Land-Climate Nexus: Anthropogenic Pressures and Physical Interactions. Ecosyst. Serv. 2020, 44, 101141. [Google Scholar] [CrossRef]
- Messerli, P.; Kim, E.M.; Lutz, W.; Moatti, J.-P.; Richardson, K.; Saidam, M.; Smith, D.; Eloundou-Enyegue, P.; Foli, E.; Glassman, A.; et al. Expansion of Sustainability Science Needed for the SDGs. Nat. Sustain. 2019, 2, 892–894. [Google Scholar] [CrossRef]
- Morales-Zapata, D.; Valencia-Arias, A.; Garcés-Giraldo, L.F.; Toro-Vanegas, E.; Quiroz-Fabra, J. Trends in Research Around the Sustainable Development Objectives: A Bibliometric Analysis. In Sustainable Development Goals for Society Vol. 1: Selected Topics of Global Relevance; Nhamo, G., Togo, M., Dube, K., Eds.; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2021; pp. 247–260. ISBN 978-3-030-70948-8. [Google Scholar]
- Sweileh, W.M. Bibliometric Analysis of Scientific Publications on “Sustainable Development Goals” with Emphasis on “Good Health and Well-Being” Goal (2015–2019). Glob. Health 2020, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-H.; Ho, Y.-S.; Fu, H.-Z. Global Performance and Development on Sustainable City Based on Natural Science and Social Science Research: A Bibliometric Analysis. Sci. Total Environ. 2019, 666, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Resilience and Complexity: A Bibliometric Review and Prospects for Industrial Ecology—Meerow—2015—Journal of Industrial Ecology—Wiley Online Library. Available online: http://onlinelibrary.wiley.com/doi/10.1111/jiec.12252/full (accessed on 15 August 2016).
- Droste, N.; D’Amato, D.; Goddard, J.J. Where Communities Intermingle, Diversity Grows—The Evolution of Topics in Ecosystem Service Research. PLoS ONE 2018, 13, e0204749. [Google Scholar] [CrossRef]
- Meuleman, L.; Niestroy, I. Common but Differentiated Governance: A Metagovernance Approach to Make the SDGs Work. Sustainability 2015, 7, 12295–12321. [Google Scholar] [CrossRef] [Green Version]
- Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Meschede, C. The Sustainable Development Goals in Scientific Literature: A Bibliometric Overview at the Meta-Level. Sustainability 2020, 12, 4461. [Google Scholar] [CrossRef]
- Herrera-Calderon, O.; Yuli-Posadas, R.Á.; Peña-Rojas, G.; Andía-Ayme, V.; Hañari-Quispe, R.D.; Gregorio-Chaviano, O. A Bibliometric Analysis of the Scientific Production Related to “Zero Hunger” as a Sustainable Development Goal: Trends of the Pacific Alliance towards 2030. Agric. Food Secur. 2021, 10, 34. [Google Scholar] [CrossRef]
- Web of Science Core Collection. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science-core-collection/ (accessed on 4 December 2019).
- Broadus, R.N. Toward a Definition of “Bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Barabási, A.-L. Linked: The New Science of Networks; Perseus: Cambridge, MA, USA, 2002; ISBN 978-0-7382-0667-7. [Google Scholar]
- Capra, F.; Luisi, P.L. The Systems View of Life: A Unifying Vision; Cambridge University Press: Cambridge, MA, USA, 2014; ISBN 978-1-107-01136-6. [Google Scholar]
- Chen, C. The CiteSpace Manual Version 0.65; College of Computing and Informatics, Drexel University: Philadelphia, PA, USA, 2014. [Google Scholar]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Kessler, M.M. Bibliographic Coupling between Scientific Papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. ICWSM 2009, 8, 361–362. [Google Scholar]
- Fortunato, S. Community Detection in Graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Satterthwaite, D. Sustainable Cities or Cities That Contribute to Sustainable Development? Urban Stud. 1997, 34, 1667–1691. [Google Scholar] [CrossRef]
- Andersson, K.; Dickin, S.; Rosemarin, A. Towards “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas. Sustainability 2016, 8, 1289. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.H.; Wang, Z.M.; Wu, J.G.; Wu, B.F.; Zeng, Y.; Song, K.S.; Yi, K.P.; Luo, L. China’s Wetlands Loss to Urban Expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Sotoudeh, A.; Parivar, P. Applying Resilience Thinking to Select More Sustainable Urban Development Scenarios in Shiraz, Iran. Sci. Iran. 2016, 23, 1975–1983. [Google Scholar] [CrossRef] [Green Version]
- Andrewin, A.N.; Rodriguez-Llanes, J.M.; Guha-Sapir, D. Determinants of the Lethality of Climate-Related Disasters in the Caribbean Community (CARICOM): A Cross-Country Analysis. Sci. Rep. 2015, 5, 11972. [Google Scholar] [CrossRef] [Green Version]
- Beatriz, E.D.; Molnar, B.E.; Griffith, J.L.; Salhi, C. Urban-Rural Disparity and Urban Population Growth: A Multilevel Analysis of under-5 Mortality in 30 Sub-Saharan African Countries. Health Place 2018, 52, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.; IEEE. The TripleRM Global Health Management Model (GHMM): Strategic Risk Management of Vector Borne Infectious Diseases to Build Healthy, Sustainable, Adaptable and Resilient Communities (Strategic Global Health Security Risk Assessment, Resilience Planning And Resource Management in Urban and Rural Environments). In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability, Phoenix, AZ, USA, 12–14 November 2017; pp. 310–316, ISBN 978-1-5386-0452-6. [Google Scholar]
- Kharazian, P. Assessment of Geo-Tourism Structure in Bojnoord City Sustainable Tourism Development. Eur. J. Sustain. Dev. 2015, 4, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Musa, H.D.; Yacob, M.R.; Abdullah, A.M.; Ishak, M.Y. Enhancing Subjective Well-Being through Strategic Urban Planning: Development and Application of Community Happiness Index. Sustain. Cities Soc. 2018, 38, 184–194. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart Sustainable Cities of the Future: An Extensive Interdisciplinary Literature Review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- McGranahan, G.; Satterthwaite, D. Urban Centers: An Assessment of Sustainability. Annu. Rev. Environ. Resour. 2003, 28, 243–274. [Google Scholar] [CrossRef] [Green Version]
- Kaika, M. ‘Don’t Call Me Resilient Again!’: The New Urban Agenda as Immunology… or… What Happens When Communities Refuse to Be Vaccinated with ‘smart Cities’ and Indicators. Environ. Urban 2017, 29, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Deletic, A.; Bach, P.M. Evaluating the Reliability of Stormwater Treatment Systems under Various Future Climate Conditions. J. Hydrol. 2019, 568, 57–66. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Mitchell, V.G.; Deletic, A.; Ladson, T.R.; Seven, A. Is Stormwater Harvesting Beneficial to Urban Waterway Environmental Flows? Water Sci. Technol. 2007, 55, 265–272. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Allen, R.A.; Brown, R.R.; Deletic, A.; Gangadharan, L.; Gernjak, W.; Jakob, C.; Reeder, M.J.; Tapper, N.J.; Walsh, C.J. Stormwater Management in a Water Sensitive City: Blueprint 2013; Cooperative Research Centre for Water Sensitive Cities: Clayton, Melbourne, VIC, Australia, 2013. [Google Scholar]
- Polyakov, M.; Iftekhar, S.; Zhang, F.; Fogarty, J. The Amenity Value of Water Sensitive Urban Infrastructure: A Case Study on Rain Gardens. In Proceedings of the 59th Annual Conference of the Australian Agricultural and Resource Economics Society, Rotorua, NZ, USA, 10–13 February 2015. [Google Scholar]
- Du Toit, M.J.; Cilliers, S.S.; Dallimer, M.; Goddard, M.; Guenat, S.; Cornelius, S.F. Urban Green Infrastructure and Ecosystem Services in Sub-Saharan Africa. Landsc. Urban Plan. 2018, 180, 249–261. [Google Scholar] [CrossRef]
- Haruna, A.I.; Oppong, R.A.; Marful, A.B. Exploring Eco-Aesthetics for Urban Green Infrastructure Development and Building Resilient Cities: A Theoretical Overview. Cogent Soc. Sci. 2018, 4, 1478492. [Google Scholar] [CrossRef]
- Boelee, E.; Janse, J.; Le Gal, A.; Kok, M.; Alkemade, R.; Ligtvoet, W. Overcoming Water Challenges through Nature-Based Solutions. Water Policy 2017, 19, 820–836. [Google Scholar] [CrossRef] [Green Version]
- Wendling, L.A.; Huovila, A.; zu Castell-Rüdenhausen, M.; Hukkalainen, M.; Airaksinen, M. Benchmarking Nature-Based Solution and Smart City Assessment Schemes Against the Sustainable Development Goal Indicator Framework. Front. Environ. Sci. 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J.; Cilliers, S.; Niemelä, J. The Concept of Ecosystem Services in Adaptive Urban Planning and Design: A Framework for Supporting Innovation. Landsc. Urban Plan. 2014, 125, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.; Pauleit, S. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. AMBIO 2014, 43, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Bush, J.; Doyon, A. Building Urban Resilience with Nature-Based Solutions: How Can Urban Planning Contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Adger, W.N.; Safra de Campos, R.; Siddiqui, T.; Szaboova, L. Commentary: Inequality, Precarity and Sustainable Ecosystems as Elements of Urban Resilience. Urban Stud. 2020, 57, 1588–1595. [Google Scholar] [CrossRef]
- Hansen, T.; Coenen, L. The Geography of Sustainability Transitions: Review, Synthesis and Reflections on an Emergent Research Field. Environ. Innov. Soc. Transit. 2015, 17, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Kourdounouli, C.; Jonsson, A.M. Urban Ecosystem Conditions and Ecosystem Services—A Comparison between Large Urban Zones and City Cores in the EU. J. Environ. Plan. Manag. 2020, 63, 798–817. [Google Scholar] [CrossRef]
- Zhang, S.N.; Ramirez, F.M. Assessing and Mapping Ecosystem Services to Support Urban Green Infrastructure: The Case of Barcelona, Spain. Cities 2019, 92, 59–70. [Google Scholar] [CrossRef]
- Abdalla, H.; Rahmat-Ullah, Z.; Abdallah, M.; Alsmadi, S.; Elashwah, N. Eco-Efficiency Analysis of Integrated Grey and Black Water Management Systems. Resour. Conserv. Recycl. 2021, 172, 105681. [Google Scholar] [CrossRef]
- Mercedes Garcia, A.V.; López-Jiménez, P.A.; Sánchez-Romero, F.-J.; Pérez-Sánchez, M. Objectives, Keys and Results in the Water Networks to Reach the Sustainable Development Goals. Water 2021, 13, 1268. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Regelsberger, M. The Role of Constructed Wetlands in a New Circular Economy, Resource Oriented, and Ecosystem Services Paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Cetrulo, T.B.; Marques, R.; Malheiros, T.; Cetrulo, N.M. Monitoring Inequality in Water Access: Challenges for the 2030 Agenda for Sustainable Development. Sci. Total Environ. 2020, 727, 138746. [Google Scholar] [CrossRef] [PubMed]
- Olsson, E.G.A. Urban Food Systems as Vehicles for Sustainability Transitions. Bull. Geogr. Socio-Econ. Ser. 2018, 40, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Pascual, U.; Balvanera, P.; Díaz, S.; Pataki, G.; Roth, E.; Stenseke, M.; Watson, R.T.; Dessane, E.B.; Islar, M.; Kelemen, E. Valuing Nature’s Contributions to People: The IPBES Approach. Curr. Opin. Environ. Sustain. 2017, 26, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Zinkernagel, R.; Evans, J.; Neij, L. Applying the SDGs to Cities: Business as Usual or a New Dawn? Sustainability 2018, 10, 3201. [Google Scholar] [CrossRef] [Green Version]
- GANSW. Greener Places: Establishing an Urban Green Infrastructure Policy for New South Wales; GANSW: Sydney, NSW, Australia, 2017. [Google Scholar]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. The Value of Urban Ecosystem Services in New York City: A Spatially Explicit Multicriteria Analysis of Landscape Scale Valuation Scenarios. Environ. Sci. Policy 2016, 62, 57–68. [Google Scholar] [CrossRef]
- Department of Environmental Protection New York City Green Infrastructure. Available online: https://www1.nyc.gov/site/dep/water/green-infrastructure.page (accessed on 9 December 2021).
- Lin, Z. Ecological Urbanism in East Asia: A Comparative Assessment of Two Eco-Cities in Japan and China. Landsc. Urban Plan. 2018, 179, 90–102. [Google Scholar] [CrossRef]
- Miao, B.; Lang, G. A Tale of Two Eco-Cities: Experimentation under Hierarchy in Shanghai and Tianjin. Urban Policy Res. 2015, 33, 247–263. [Google Scholar] [CrossRef]
- Chang, I.-C.C.; Sheppard, E. China’s Eco-Cities as Variegated1 Urban Sustainability: Dongtan Eco-City and Chongming Eco-Island. J. Urban Technol. 2013, 20, 57–75. [Google Scholar] [CrossRef]
- Friess, D.A. Singapore as a Long-Term Case Study for Tropical Urban Ecosystem Services. Urban Ecosyst. 2017, 20, 277–291. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Urban Ecosystem Services: New Findings for Landscape Architects, Urban Planners, and Policymakers. Land 2021, 10, 88. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. Cities and Biodiversity Outlook: Action and Policy: A Global Assessment of the Links between Urbanization, Biodiversity, and Ecosystem Services; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2000; ISBN 978-92-9225-432-2. [Google Scholar]
- Xie, L.; Bulkeley, H. Nature-Based Solutions for Urban Biodiversity Governance. Environ. Sci. Policy 2020, 110, 77–87. [Google Scholar] [CrossRef]
- Frost, P. Intergovernmental Bodies and the Greening of Cities: Roles of UN Bodies and International Conventions. In The Routledge Handbook of Urban Ecology; Routledge: Abingdon, UK; New York, NY, USA, 2020; pp. 897–906. [Google Scholar]
- Lafortune, G.; Fuller, G.; Schmidt-Traub, G.; Kroll, C. How Is Progress towards the Sustainable Development Goals Measured? Comparing Four Approaches for the EU. Sustainability 2020, 12, 7675. [Google Scholar] [CrossRef]
- Lucchitta, B.; Croci, E. An Evaluation Framework to Assess Multiple Benefits of NBS: Innovative Approaches and KPIs. Nat.-Based Solut. More Sustain. Cities Framew. Approach Plan. Eval. 2021, 153, 153. [Google Scholar]
- Thomas, R.; Hsu, A.; Weinfurter, A. Sustainable and Inclusive—Evaluating Urban Sustainability Indicators’ Suitability for Measuring Progress towards SDG-11. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2346–2362. [Google Scholar] [CrossRef]
- Hawken, S.; Han, H.; Pettit, C. Introduction: Open Data and the Generation of Urban Value. In Open Cities | Open Data: Collaborative Cities in the Information Era; Hawken, S., Han, H., Pettit, C., Eds.; Palgrave Macmillan: Singapore, 2020; pp. 1–25. ISBN 9789811366055. [Google Scholar]
- Hawken, S.; Han, H.; Pettit, C. Open Cities | Open Data: Collaborative Cities in the Information Era; Palgrave Macmillan: Singapore, 2020; ISBN 9789811366048. [Google Scholar]
- Khoshkar, S.; Hammer, M.; Borgström, S.; Dinnétz, P.; Balfors, B. Moving from Vision to Action-Integrating Ecosystem Services in the Swedish Local Planning Context. Land Use Policy 2020, 97, 104791. [Google Scholar] [CrossRef]
- Khoshkar, S.; Hammer, M.; Borgström, S.; Balfors, B. Ways Forward for Advancing Ecosystem Services in Municipal Planning—Experiences from Stockholm County. Land 2020, 9, 296. [Google Scholar] [CrossRef]
- Enssle, F.; Kabisch, N. Urban Green Spaces for the Social Interaction, Health and Well-Being of Older People—An Integrated View of Urban Ecosystem Services and Socio-Environmental Justice. Environ. Sci. Policy 2020, 109, 36–44. [Google Scholar] [CrossRef]
- Bai, X.M.; Surveyer, A.; Elmqvist, T.; Gatzweiler, F.W.; Guneralp, B.; Parnell, S.; Prieur-Richard, A.H.; Shrivastava, P.; Siri, J.G.; Stafford-Smith, M.; et al. Defining and Advancing a Systems Approach for Sustainable Cities. Curr. Opin. Environ. Sustain. 2016, 23, 69–78. [Google Scholar] [CrossRef]
- Childers, D.L.; Pickett, S.T.A.; Grove, J.M.; Ogden, L.; Whitmer, A. Advancing Urban Sustainability Theory and Action: Challenges and Opportunities. Landsc. Urban Plan. 2014, 125, 320–328. [Google Scholar] [CrossRef]
- Evans, T.L. Transdisciplinary Collaborations for Sustainability Education: Institutional and Intragroup Challenges and Opportunities. Policy Futur. Educ. 2015, 13, 70–96. [Google Scholar] [CrossRef] [Green Version]
- Bina, O.; Balula, L.; Varanda, M.; Fokdal, J. Urban Studies and the Challenge of Embedding Sustainability: A Review of International Master Programmes. J. Clean. Prod. 2016, 137, 330–346. [Google Scholar] [CrossRef]
- Woodruff, S.C.; BenDor, T.K. Ecosystem Services in Urban Planning: Comparative Paradigms and Guidelines for High Quality Plans. Landsc. Urban Plan. 2016, 152, 90–100. [Google Scholar] [CrossRef]
- Cross, N. Designerly Ways of Knowing: Design Discipline Versus Design Science. Des. Issues 2001, 17, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Pohl, C.; Krütli, P.; Stauffacher, M. Ten Reflective Steps for Rendering Research Societally Relevant. GAIA-Ecol. Perspect. Sci. Soc. 2017, 26, 43–51. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, M.; Crowley, S.; Laursen, B.; Robinson, B.; Vasko, S.E. Disciplinary Diversity in Teams: Integrative Approaches from Unidisciplinarity to Transdisciplinarity. In Strategies for Team Science Success; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–46. [Google Scholar]
- Klein, J.T. Sustainability and Collaboration: Crossdisciplinary and Cross-Sector Horizons. Sustainability 2020, 12, 1515. [Google Scholar] [CrossRef] [Green Version]
- United Nations World Commission on Environment and Development. Our Common Future: The World Commission on Environment and Development; Oxford University Press: Suffolk, UK, 1987; ISBN 978-0-19-282080-8. [Google Scholar]
- Mann, C.; Garcia-Martin, M.; Raymond, C.M.; Shaw, B.J.; Plieninger, T. The Potential for Integrated Landscape Management to Fulfil Europe’s Commitments to the Sustainable Development Goals. Landsc. Urban Plan. 2018, 177, 75–82. [Google Scholar] [CrossRef]
- Ricciardelli, A.; Manfredi, F.; Antonicelli, M. Impacts for Implementing SDGs: Sustainable Collaborative Communities after Disasters. The City of Macerata at the Aftermath of the Earthquake. Corp. Gov.-Int. J. Bus. Soc. 2018, 18, 594–623. [Google Scholar] [CrossRef]
- Albert, C.; Schröter, B.; Haase, D.; Brillinger, M.; Henze, J.; Herrmann, S.; Gottwald, S.; Guerrero, P.; Nicolas, C.; Matzdorf, B. Addressing Societal Challenges through Nature-Based Solutions: How Can Landscape Planning and Governance Research Contribute? Landsc. Urban Plan. 2019, 182, 12–21. [Google Scholar] [CrossRef]
- Kirby, A. Transdisciplinarity and Sustainability Science: A Response to Sakao and Brambila-Macias in the Context of Sustainable Cities Research. J. Clean. Prod. 2019, 210, 238–245. [Google Scholar] [CrossRef]
- Wamsler, C. Stakeholder Involvement in Strategic Adaptation Planning: Transdisciplinarity and Co-Production at Stake? Environ. Sci. Policy 2017, 75, 148–157. [Google Scholar] [CrossRef]
- Bernstein, J.H. Transdisciplinarity: A Review of Its Origins, Development, and Current Issues. J. Res. Pract. 2015, 11, 1–20. [Google Scholar]
- Wickson, F.; Carew, A.L. Quality Criteria and Indicators for Responsible Research and Innovation: Learning from Transdisciplinarity. J. Responsible Innov. 2014, 1, 254–273. [Google Scholar] [CrossRef]
- Norris, P.E.; O’Rourke, M.; Mayer, A.S.; Halvorsen, K.E. Managing the Wicked Problem of Transdisciplinary Team Formation in Socio-Ecological Systems. Landsc. Urban Plan. 2016, 154, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, S.; Thompson Klein, J.; Pohl, C. Linking Transdisciplinary Research Projects with Science and Practice at Large: Introducing Insights from Knowledge Utilization. Environ. Sci. Policy 2019, 102, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Swilling, M.; Thomas, C.J. Transdisciplinary Research in Sustainability Science: Practice, Principles, and Challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Hole, D.G.; Brooks, T.M.; Burke, S.; Hutton, J. Mapping Nature’s Contribution to SDG 6 and Implications for Other SDGs at Policy Relevant Scales. Remote Sens. Environ. 2020, 239, 111671. [Google Scholar] [CrossRef]
- Pohl, C.; Truffer, B.; Hirsch Hadorn, G. Addressing Wicked Problems through Transdisciplinary Research. Oxf. Handb. Interdiscip. 2017, 319–331. [Google Scholar] [CrossRef]
Term | Frequency | Betweenness Centrality |
---|---|---|
Cities | 38 | 127,629 |
Urban area | 36 | 45,207 |
Rapid urbanisation | 4 | 11,444 |
Multi-district urban region | 1 | 10,978 |
City-based consumers | 1 | 10,869 |
City brand concept | 1 | 8802 |
Sustainable cities | 30 | 6702 |
New urban agenda | 20 | 6615 |
Leon city | 1 | 5519 |
Important urban green area | 1 | 5146 |
Coastal urban area | 1 | 5139 |
Private urban green space | 1 | 4740 |
City-based production | 1 | 4657 |
City | 19 | 4010 |
Urban development pattern | 2 | 3509 |
City development | 2 | 3304 |
Tropical cities | 2 | 2436 |
Traditional Latin-American cities | 1 | 2337 |
Urban environmental system | 1 | 2330 |
Urban development | 19 | 2207 |
Northern cities | 1 | 2207 |
City branding | 1 | 2204 |
Urban centers | 3 | 2137 |
City operation | 1 | 1893 |
Urban center | 1 | 1872 |
Expanding multi-district urban area | 1 | 1872 |
Low-impact urban design | 1 | 1773 |
Urban change worldwide | 1 | 1593 |
Russian northern cities | 2 | 1343 |
City brand equity | 1 | 1104 |
City-port interface | 1 | 1101 |
Accelerating urban sprawl | 1 | 921 |
Fast-growing urban setting | 2 | 870 |
Accelerated urban sprawl | 1 | 497 |
Urban ethnography | 1 | 313 |
Urban population | 10 | 219 |
Connected cities | 1 | 7 |
Urban ecology | 1 | 5 |
Urbanization | 22 | 2 |
Consumer-based city brand equity | 1 | 2 |
Urban greenspaces | 1 | 1 |
Rapid urbanization | 15 | 0 |
Urban policy | 4 | 0 |
Urban air pollution | 2 | 0 |
Urban poor communities | 1 | 0 |
Network | Number of Edges | Number of Intra-Edges | Percentage of Inter-Edges |
---|---|---|---|
2010 (Figure 3a) | 518 | 33 | 6.4 |
2012 (Figure 3b) | 508 | 28 | 5.6 |
2014 (Figure 3c) | 398 | 118 | 30 |
2016 (Figure 3d) | 204 | 104 | 51 |
2018 (Figure 3e) | 52 | 31 | 60 |
No. of Nodes | No. of Edges | Cluster Density * | Main Themes | Specific Topics | |
---|---|---|---|---|---|
Cluster 1 (13 studies) | 13 | 29 | 0.372 | Ecosystem services that contribute to SDGs | General ecosystem services (Wood et al., 2018), social (Ramos et al., 2018; Yang et al., 2018), water (Fang et al., 2018; Nel et al., 2017), urban (Bibri and Krogstie, 2017; Juraschek et al., 2018), and landscape (Mann et al., 2018). |
Cluster 2 (17 studies) | 17 | 121 | 0.890 | Diverse topics beyond ecosystem services that contribute to SDG | Health (Bangert et al., 2017; Kaika, 2017), food (Landert et al., 2017), energy (Anne et al., 2018; Figueroa and Ribeiro, 2013), and sanitation (Andersson et al., 2016) |
Cluster 3 (11 studies) | 11 | 18 | 0.327 | The impact of urbanisation on ecosystem services | Land-use change (Acheampong et al., 2018; Garcia-Nieto et al., 2018), urban expansion (Mao et al., 2018), landscape variation (Abbas et al., 2018), GI implementation (du Toit et al., 2018) and climate change (Bourne et al., 2016; Onur & Tezer, 2015). |
Cluster 4 (14 studies) | 14 | 16 | 0.176 | Building resilience and sustainability to enhance ecosystem services and SDGs more broadly | Society (Tutu and Busingye, 2018), food (Dermody et al., 2018), water and GI (Boelee et al., 2017; Haruna et al., 2018), disaster (Ricciardelli et al., 2018), regional and urban development (Sotoudeh and Parivar, 2016), and quality of life (Prakash et al., 2016). |
Other clusters (11 studies) | 11 | 2 | N/A | Not-well-connected studies discussing various SDG topics | Health issues (Andrewin et al., 2015; Beatriz et al., 2018; Sheth and Ieee, 2017), tourism (Kharazian, 2015), and well-being (Musa et al., 2018) |
Cluster/Colour as Appears in Figure 5 | No. of Nodes (or Terms) | No. of Edges | Cluster Density | Dominant Term (Based on Betweenness Centrality) | Dominant Term (Based on Frequency) | Top Ten Terms (Based on Frequency) |
---|---|---|---|---|---|---|
1 | 71 | 158 | 0.064 | Sustainable cities | Sustainable development goals (17) | Sustainable development goals; sustainable cities; urbanization; resilience; urban area; china; urban; systems; vulnerability; urban population |
2 | 61 | 145 | 0.079 | Challenges | Framework; ecosystem services (6) | Framework; ecosystem services; land-use; challenges; impact; human well-being; governance; multiple ecosystem service; urban sprawl; urban expansion |
3 | 60 | 150 | 0.085 | Ecosystem service | ecosystem service (12) | Ecosystem service; climate-change; conservation; sustainability; indicators; health service; new urban agenda; urban sustainability; services; economic development |
4 | 45 | 125 | 0.126 | Sustainable development goal | Sustainable development goal (43) | Sustainable development goal; sustainable development; natural resources; sustainability goal; millennium development goals; millennium development goal; development; political ecology; public health; global health |
5 | 41 | 105 | 0.128 | City | Achieving sustainable development goal (4) | Achieving sustainable development goal; city; ecological footprint; human development index; poverty; sub-national level; environmental sustainability; environmental impacts; analytic hierarchy process; large proportion |
6 | 34 | 93 | 0.166 | Private propriety | Private property (1) | Private propriety; paved surfaces; patio component; management pattern; leon city; patio model; plant uses; multifunctional categorization; leon municipality; important urban green area |
7 | 32 | 71 | 0.143 | Cities | Public health (5) | public health; cities; developing countries; global sustainable development goal; 21st century; sanitation; critical issues; African cities; sustainable industrial development; global community |
8 | 29 | 81 | 0.200 | Sustainable tourism | Population growth (2) | Population growth; sustainable tourism; data-collection method; ecological conservation; educational level; external process; geo-tourism; ecotourism; different seasons; experimental research method |
9 | 25 | 65 | 0.217 | Climate change | Climate change (11) | Climate change; spatial planning; additional socio-ecological benefits; addressing carbon-emission management; aspirational investment model positions; climate-change scenario; beneficial way; areas; adaptive spatial policy development process; addressing UN sustainable development goal |
10 | 22 | 60 | 0.260 | Health | Health (5) | Health; evidence base; land use pattern; deaths; floods; decadal effect; investigating risk factor; odds ratio; climate-related disasters; climate-related hazards |
Authors | Year of Publication | Article Title | Journal/Book | Times Cited |
---|---|---|---|---|
Abbas, S. et al. | 2018 | SWOT analysis for socio-ecological landscape variation as a precursor to the management of the mountainous Kanshi watershed, Salt Range of Pakistan | International Journal of Sustainable Development and World Ecology | 2 |
Acheampong, M. et al. | 2018 | Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one—A remote sensing and GIS approach | Land Use Policy | 10 |
Amos, C. C. et al. | 2018 | A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus | Journal of Cleaner Production | 3 |
Andersson, K. et al. | 2016 | Towards “Sustainable” Sanitation: Challenges and Opportunities in Urban Areas | Sustainability | 12 |
Andrewin, A. N. et al. | 2015 | Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis | Scientific Reports | 1 |
Anne, O. et al. | 2018 | The water resources circularity and energy efficiency at the wastewater treatment plant of the seaport city | 2018 IEEE/Oes Baltic International Symposium | 0 |
Bai, X. M. et al. | 2016 | Defining and advancing a systems approach for sustainable cities | Current Opinion in Environmental Sustainability | 55 |
Balashova, E. Sharipova, S. | 2018 | Impact of ecosystem services on a sustainable business strategy in urban conditions | International Science Conference Spbwosce-2017 Business Technologies for Sustainable Urban Development | 0 |
Bangert, M. et al. | 2017 | The cross-cutting contribution of the end of neglected tropical diseases to the sustainable development goals | Infectious Diseases of Poverty | 40 |
Beatriz, E. D. et al. | 2018 | Urban-rural disparity and urban population growth: A multilevel analysis of under-5 mortality in 30 sub-Saharan African countries | Health & Place | 1 |
Bibri, S. E. Krogstie, J. | 2017 | Smart sustainable cities of the future: An extensive interdisciplinary literature review | Sustainable Cities and Society | 157 |
Boelee, E. et al. | 2017 | Overcoming water challenges through nature-based solutions | Water Policy | 3 |
Bourne, A. et al. | 2016 | A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level | Plos One | 11 |
Bridgewater, P. Arico, S. | 2016 | Turbo-charging the Ecohydrology paradigm for the Anthropocene | Ecohydrology & Hydrobiology | 2 |
Corbett, J. Mellouli, S. | 2017 | Winning the SDG battle in cities: how an integrated information ecosystem can contribute to the achievement of the 2030 sustainable development goals | Information Systems Journal | 9 |
Corburn, J. | 2017 | Urban Place and Health Equity: Critical Issues and Practices | International Journal of Environmental Research and Public Health | 13 |
Dermody, B. J. et al. | 2018 | A framework for modelling the complexities of food and water security under globalisation | Earth System Dynamics | 10 |
du Toit, M. J. et al. | 2018 | Urban green infrastructure and ecosystem services in sub-Saharan Africa | Landscape and Urban Planning | 17 |
ElMassah, S. | 2018 | Industrial symbiosis within eco-industrial parks: Sustainable development for Borg El-Arab in Egypt | Business Strategy and the Environment | 3 |
Everard, M. et al. | 2017 | Developed-developing world partnerships for sustainable development (2): An illustrative case for a payments for ecosystem services (PES) approach | Ecosystem Services | 1 |
Fang, K. et al. | 2018 | Sustainability of the use of natural capital in a city: Measuring the size and depth of urban ecological and water footprints | Science of the Total Environment | 12 |
Figueroa, M. J. Ribeiro, S. K. | 2013 | Energy for road passenger transport and sustainable development: assessing policies and goals interactions | Current Opinion in Environmental Sustainability | 11 |
Furley, T. H. et al. | 2018 | Toward sustainable environmental quality: Identifying priority research questions for Latin America | Integrated Environmental Assessment and Management | 19 |
Garcia-Nieto, A. P. et al. | 2018 | Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply | Ecological Indicators | 16 |
Guzman-Sanchez, S. et al. | 2018 | Assessment of the contributions of different flat roof types to achieving sustainable development | Building and Environment | 8 |
Haruna, A. I. et al. | 2018 | Exploring eco-aesthetics for urban green infrastructure development and building resilient cities: A theoretical overview | Cogent Social Sciences | 0 |
Helmer, E. H. et al. | 2018 | Tropical Deforestation and Recolonization by Exotic and Native Trees: Spatial Patterns of Tropical Forest Biomass, Functional Groups, and Species Counts and Links to Stand Age, Geoclimate, and Sustainability Goals | Remote Sensing | 4 |
Herrick, C. | 2014 | (Global) health geography and the post-2015 development agenda | Geographical Journal | 11 |
Honeck, E. et al. | 2018 | From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland | Isprs International Journal of Geo-Information | 4 |
Hong, R. et al. | 2017 | The unfinished health agenda: Neonatal mortality in Cambodia | Plos One | 3 |
Jawaid, M. F. et al. | 2018 | Environmental Responsive Urban Planning and Regulations in India: An Analysis | Urbanization Challenges in Emerging Economies: Energy and Water Infrastructure; Transportation Infrastructure; and Planning and Financing | 0 |
Jolliet, O. et al. | 2018 | Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use | International Journal of Life Cycle Assessment | 23 |
Juraschek, M. et al. | 2018 | Urban factories and their potential contribution to the sustainable development of cities | 25th Cirp Life Cycle Engineering | 4 |
Kaika, M. | 2017 | ‘Don’t call me resilient again!’: the New Urban Agenda as immunology… or… what happens when communities refuse to be vaccinated with ‘smart cities’ and indicators | Environment and Urbanization | 64 |
Kharazian, P. | 2015 | Assessment of Geo-Tourism Structure in Bojnoord City Sustainable Tourism Development | European Journal of Sustainable Development | 0 |
Kuhn, B. M. | 2018 | China’s Commitment to the Sustainable Development Goals: An Analysis of Push and Pull Factors and Implementation Challenges | Chinese Political Science Review | 0 |
Landert, J. et al. | 2017 | A Holistic Sustainability Assessment Method for Urban Food System Governance | Sustainability | 12 |
Lepeshev, A. et al. | 2018 | Ecological engineering of the sixth innovation wave in system of continuous training and Municipal Facilities Development | International Science Conference Spbwosce-2017 Business Technologies for Sustainable Urban Development | 0 |
Mann, C. et al. | 2018 | The potential for integrated landscape management to fulfil Europe’s commitments to the Sustainable Development Goals | Landscape and Urban Planning | 7 |
Mao, D. H. et al. | 2018 | China’s wetlands loss to urban expansion | Land Degradation & Development | 29 |
McGranahan, G. Satterthwaite, D. | 2003 | Urban centers: An assessment of sustainability | Annual Review of Environment and Resources | 80 |
Mihelcic, J. R. et al. | 2017 | The Grandest Challenge of All: The Role of Environmental Engineering to Achieve Sustainability in the World’s Developing Regions | Environmental Engineering Science | 16 |
Munasinghe, M. | 2012 | Millennium Consumption Goals (MCGs) for Rio+20 and beyond: A practical step towards global sustainability | Natural Resources Forum | 9 |
Musa, H. D. et al. | 2018 | Enhancing subjective well-being through strategic urban planning: Development and application of community happiness index | Sustainable Cities and Society | 4 |
Nel, J. L. et al. | 2017 | Strategic water source areas for urban water security: Making the connection between protecting ecosystems and benefiting from their services | Ecosystem Services | 12 |
Olsson, E. G. A. | 2018 | Urban food systems as vehicles for sustainability transitions | Bulletin of Geography-Socio-Economic Series | 2 |
Onur, A. C. Tezer, A. | 2015 | Ecosystem services based spatial planning decision making for adaptation to climate changes | Habitat International | 7 |
Prakash, M. et al. | 2016 | Multi-criteria approach to geographically visualize the quality of life in India | International Journal of Sustainable Development and World Ecology | 3 |
Ramos, S. B. et al. | 2018 | Prediction of Human Development from Environmental Indicators | Social Indicators Research | 2 |
Ricciardelli, A. et al. | 2018 | Impacts for implementing SDGs: sustainable collaborative communities after disasters. The city of Macerata at the aftermath of the earthquake | Corporate Governance-the International Journal of Business in Society | 1 |
Rodwell, D. | 2018 | The Historic Urban Landscape and the Geography of Urban Heritage | Historic Environment-Policy & Practice | 3 |
Sal, A. G. et al. | 2006 | Private patios, a valuable hidden heritage for tourism development in the city of Leon, Nicaragua | Sustainable Tourism II | 2 |
Sanwal, M. | 2015 | Global sustainable development goals are about the use and distribution, not scarcity of natural resources: will the middle class in the USA, China and India save the climate as its incomes grow? | Climate and Development | 0 |
Satterthwaite, D. | 2017 | Will Africa have most of the world’s largest cities in 2100? | Environment and Urbanization | 3 |
Schiappacasse, P. Muller, B. | 2018 | One fits all? Resilience as a Multipurpose Concept in Regional and Environmental Development | Raumforschung Und Raumordnung-Spatial Research and Planning | 0 |
Schwartza, K. et al. | 2018 | Editorial—Inclusive development and urban water services | Habitat International | 0 |
Sheth, S. | 2017 | The TripleRM Global Health Management Model (GHMM): Strategic Risk Management of Vector Borne Infectious Diseases to Build Healthy, Sustainable, Adaptable and Resilient Communities (Strategic Global Health Security Risk Assessment, Resilience Planning And Resource Management in Urban and Rural Environments) | 2017 IEEE Conference on Technologies for Sustainability | 0 |
Sotoudeh, A. Parivar, P. | 2016 | Applying resilience thinking to select more sustainable urban development scenarios in Shiraz, Iran | Scientia Iranica | 0 |
Tutu, R. Busingye, J. D. | 2018 | Building Resilient Societies in Africa for the Future: Conceptual Considerations and Possible Resilience Constituents | Journal of Futures Studies | 0 |
Wang, R. et al. | 2018 | Scenario-Based Simulation of Tianjin City Using a Cellular Automata-Markov Model | Sustainability | 3 |
Wood, S. L. R. et al. | 2018 | Distilling the role of ecosystem services in the Sustainable Development Goals | Ecosystem Services | 45 |
Xin, Z. H. et al. | 2018 | Evaluation of Temporal and Spatial Ecosystem Services in Dalian, China: Implications for Urban Planning | Sustainability | 2 |
Xing, L. et al. | 2018 | Spatial correction of ecosystem service value and the evaluation of eco-efficiency: A case for China’s provincial level | Ecological Indicators | 3 |
Yamamura, M. et al. | 2017 | Areas with evidence of equity and their progress on mortality from tuberculosis in an endemic municipality of southeast Brazil | Infectious Diseases of Poverty | 2 |
Yang, H. B. et al. | 2018 | Feedback of telecoupling: the case of a payments for ecosystem services program | Ecology and Society | 4 |
Yang, Y. C. E. | 2018 | Gendered perspectives of ecosystem services: A systematic review | Ecosystem Services | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawken, S.; Rahmat, H.; Sepasgozar, S.M.E.; Zhang, K. The SDGs, Ecosystem Services and Cities: A Network Analysis of Current Research Innovation for Implementing Urban Sustainability. Sustainability 2021, 13, 14057. https://doi.org/10.3390/su132414057
Hawken S, Rahmat H, Sepasgozar SME, Zhang K. The SDGs, Ecosystem Services and Cities: A Network Analysis of Current Research Innovation for Implementing Urban Sustainability. Sustainability. 2021; 13(24):14057. https://doi.org/10.3390/su132414057
Chicago/Turabian StyleHawken, Scott, Homa Rahmat, Samad M. E. Sepasgozar, and Kefeng Zhang. 2021. "The SDGs, Ecosystem Services and Cities: A Network Analysis of Current Research Innovation for Implementing Urban Sustainability" Sustainability 13, no. 24: 14057. https://doi.org/10.3390/su132414057
APA StyleHawken, S., Rahmat, H., Sepasgozar, S. M. E., & Zhang, K. (2021). The SDGs, Ecosystem Services and Cities: A Network Analysis of Current Research Innovation for Implementing Urban Sustainability. Sustainability, 13(24), 14057. https://doi.org/10.3390/su132414057