Determining Hydrological Variability Using a Multi-Catchment Model Approach for the Western Cape, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Setting
2.1.1. Climate
2.1.2. Hydrology and Water Management
2.1.3. Geology and Hydrogeology
2.1.4. Vegetation and Land Use
2.2. The JAMS/J2000 Rainfall–Runoff Model
2.2.1. Climate Inputs
2.2.2. Streamflow Gauges
2.2.3. Hydrogeology Data
2.2.4. Soil Data
2.2.5. Land Use Data
2.3. Model Structure and Process Simulation
2.4. Model Calibration and Validation
2.5. Sensitivity Analysis
3. Results
3.1. Observed Precipitation
3.2. Observed Streamflow
3.3. Simulated Streamflow
3.4. Simulated Flow Components and Water Balances
3.5. Model Parameter Sensitivity
4. Discussion
4.1. Hydrological Heterogeneity in WC and Implications for Sustainability
4.2. Effect of Streamflow Characteristics on Regional Hydrological Modelling
4.3. Uncertainties in Modelling Hydrological Change
4.4. Importance of Sustainable Groundwater Use in the WC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Döll, P.; Fiedler, K.; Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 2009, 13, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Beven, K. Interflow. In Unsaturated Flow in Hydrologic Modeling; Springer: Berlin/Heidelberg, Germany, 1989; pp. 191–219. [Google Scholar]
- Hall, F.R. Base-flow recessions—A review. Water Resour. Res. 1968, 4, 973–983. [Google Scholar] [CrossRef]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. River Hydrology, Flow Alteration, and Environmental Flow. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 67–89. ISBN 978-3-319-73250-3. [Google Scholar]
- Haddeland, I.; Lettenmaier, D.P.; Skaugen, T. Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol. 2006, 324, 210–223. [Google Scholar] [CrossRef]
- Marston, R.A. Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- Markovich, K.H.; Manning, A.H.; Condon, L.E.; McIntosh, J.C. Mountain-block recharge: A review of current understanding. Water Resour. Res. 2019, 55, 8278–8304. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.L.; Guan, H. Mountain-Block Hydrology and Mountain-Front Recharge; Wiley: Hoboken, NJ, USA, 2004; Volume 9. [Google Scholar]
- Mokua, R.A.; Glenday, J.; Nel, J.; Butler, M. Combined use of stable isotopes and hydrochemical characteristics to determine streamflow sources in the Jonkershoek catchment, South Africa. Isot. Environ. Health Stud. 2020, 56, 238–259. [Google Scholar] [CrossRef] [PubMed]
- Tetzlaff, D.; Soulsby, C. Sources of baseflow in larger catchments—Using tracers to develop a holistic understanding of runoff generation. J. Hydrol. 2008, 359, 287–302. [Google Scholar] [CrossRef]
- Benito, G.; Thorndycraft, V.R.; Rico, M.T.; Sánchez-Moya, Y.; Sopeña, A.; Botero, B.A.; Machado, M.J.; Davis, M.; Pérez-González, A. Hydrological response of a dryland ephemeral river to southern African climatic variability during the last millennium. Quat. Res. 2011, 75, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Flugel, W.A. Hierarchically structured hydrological process studies to regionalize interflow in a loess covered catchment near Heidelberg, Germany. Exchange Processes at the Land Surface for a Range Space and Time Scales. In Proceedings of the International Symposium, Yokohama, Japan, 20–23 July 1993; pp. 215–223. [Google Scholar]
- Lange, J. Dynamics of transmission losses in a large arid stream channel. J. Hydrol. 2005, 306, 112–126. [Google Scholar] [CrossRef]
- De Clercq, W.P.; Jovanovic, N.; Fey, M.V. Land Use Impacts on Salinity in Berg River Water: Research on Berg River Water Management; Water Research Commission: Gezina, South Africa, 2010; ISBN 9781770059719. [Google Scholar]
- Ujeneza, E.L.; Abiodun, B.J. Drought regimes in Southern Africa and how well GCMs simulate them. Clim. Dyn. 2015, 44, 1595–1609. [Google Scholar] [CrossRef]
- Watson, A.; Kralisch, S.; Künne, A.; Fink, M.; Miller, J. Impact of precipitation data density and duration on simulated flow dynamics and implications for ecohydrological modelling in semi-arid catchments in Southern Africa. J. Hydrol. 2020, 590, 125280. [Google Scholar] [CrossRef]
- DWS Department of Water and Sanitation. 2018. Available online: http://www.dwa.gov.za/Hydrology/Weekly/Province.aspx (accessed on 15 November 2021).
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa. Sci. Total Environ. 2021. [Google Scholar] [CrossRef]
- Zander, F.; Kralisch, S. River basin information system: Open environmental data management for research and decision making. ISPRS Int. J. Geo-Inf. 2016, 5, 123. [Google Scholar] [CrossRef]
- Helmschrot, J.; Thompson, S.; Kralisch, S.; Zander, F. The SASSCAL Data and Information Portal. Biodivers. Ecol. 2018, 6, 112–113. [Google Scholar] [CrossRef]
- NOA. Global Surface Summary of Day (GSOD); National Centers for Environmental Information: Asheville, NC, USA, 2016.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Krause, P. Das hydrologische Modellsystem J2000. Beschreibung und Anwendung in großen Flussgebieten. In Umwelt/Environment; Research Centre: Jülich, Germany, 2001; Volume 29. [Google Scholar]
- Schulze, R.E.; Maharaj, M.; Warburton, M.L.; Gers, C.J.; Horan, M.J.C.; Kunz, R.P.; Clark, D.J. South African Atlas of Climatology and Agrohydrology: WRC Report 1489/1/06; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- GeoTerraImage. Carbon Sinks Atlas for South Africa; GTI 2013-14 SA Landcover Report; GeoTerraImage: Pretoria, South Africa, 2015. [Google Scholar]
- Van Niekerk, A.; Jarmain, C.; Goudriaan, R.; Muller, S.; Ferrerira, F.; Münch, Z.; Pauw, T.; Stephenson, G.; Gibson, L. An Earth Observation Approach Towards Mapping Irrigated Areas and Quantifying Water Use By Irrigated Crops in South Africa; Report No. TT 745/17; Water Research Commission: Pretoria, South Africa, 2018; ISBN 9781431209644. [Google Scholar]
- Roffe, S.J.; Fitchett, J.M.; Curtis, C.J. Classifying and mapping rainfall seasonality in South Africa: A review. S. Afr. Geogr. J. 2019, 101, 158–174. [Google Scholar] [CrossRef]
- Lynch, S. Development of a Raster Database of Annula, Monthly and Daily Rainfall for Southern Africa; WRC Report No. 1156/1/04; Water Research Commission: Pietermaritzburg, South Africa, 2004. [Google Scholar]
- Sinclair, S.A.; Lane, S.B.; Grindley, J.R. Estuaries of the Cape: Part II: Synopses of avaiable information on individual systems. In National Research Institue for Oceanology; Heydorn, A.E.F., Morant, P.D., Eds.; Printing & Publishing Co. (Pty): Cape Town, South Africa, 1986. [Google Scholar]
- Johnson, M.R.; Anhauesser, C.R.; Thomas, R.J. The Geology of South Africa; Geological Society of South Africa: Johannesburg, South Africa, 2006. [Google Scholar]
- Rozendaal, A.; Scheepers, R. Magmatic and related mineral deposits of the Pan-African Saldania belt in the Western Cape Province, South Africa. J. Afr. Earth Sci. 1995, 21, 107–126. [Google Scholar] [CrossRef]
- Conrad, J.; Nel, J.; Wentzel, J. The challenges and implications of assessing groundwater recharge: A case study-northern Sandveld, Western Cape, South Africa. Water SA 2004, 30, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Goldblatt, P.; Manning, J.C. Plant diversity of the Cape region of southern Africa. Ann. Mo. Bot. Gard. 2002, 89, 281–302. [Google Scholar] [CrossRef]
- Midgley, G.F.; Hannah, L.; Millar, D.; Thuiller, W.; Booth, A. Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol. Conserv. 2003, 112, 87–97. [Google Scholar] [CrossRef]
- Olivier, G.; Helmschrot, J.; de Clercq, W.P. Are large classical gully systems inactive remnants of the past? A field-based case study investigating sediment movement. Biodivers. Ecol. 2018, 6, 146–154. [Google Scholar] [CrossRef]
- De Clercq, W.; Jovanovic, N.; Bugan, R.; Mashimbye, E.; Toit, T.; Van Niekerk, A.; Ellis, F.; Wasserfall, N.; Botha, P.; Steudels, T.; et al. Management of Human-Induced Salinisation in the Berg River Catchment and Development of Criteria for Regulating Agricultural Land Use in Terms of Salt Generating Capacity; Research Report: 1849/1/13; Water Research Commission: Pretoria, South Africa, 2013; ISBN 9781431204021. [Google Scholar]
- Kralisch, S.; Krause, P.; Fink, M.; Fischer, C.; Flügel, W.A. Component based environmental modelling using the JAMS framework. In Proceedings of the MODSIM07—Land, Water Enviromental Management: Integrated System for Sustainability, Christchurch, New Zealand, 10–13 December 2007; pp. 812–818. [Google Scholar]
- Krause, P. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Phys. Chem. Earth Parts A/B/C 2002, 27, 663–673. [Google Scholar] [CrossRef]
- Flügel, W.-A. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol. Process. 1995, 9, 423–436. [Google Scholar] [CrossRef]
- Pfennig, B.; Kipka, H.; Fink, M.; Wolf, M.; Krause, P.; Flügel, W.-A. Development of an extended routing scheme in reference to consideration of multi-dimensional flow relations between hydrological model entities. In Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009; pp. 37–43. [Google Scholar]
- Ly, S.; Charles, C.; Degré, A. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review. Biotechnol. Agron. Soc. Environ. 2013, 17, 392–406. [Google Scholar]
- Dirks, K.; Hay, J.; Stow, C.; Harris, D. High-resolution studies of rainfall on Norfolk Island. Part IV: Observations of fractional time raining. J. Hydrol. 1998, 208, 187–193. [Google Scholar] [CrossRef]
- Slingsby, J.A.; de Buys, A.; Simmers, A.D.A.; Prinsloo, E.; Forsyth, G.G.; Glenday, J.; Allsopp, N. Jonkershoek: Africa’s oldest catchment experiment-80 years and counting. Hydrol. Process. 2021, 35, e14101. [Google Scholar] [CrossRef]
- Bugan, R.D.H. Modeling and Regulating Hydrosalinity Dynamics in the Sandspruit River Catchment (Western Cape). Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Miller, J.; Watson, A.P.; Fleischer, M.; Eilers, A.; Sigidi, N.T.; Van Gend, J.; Van Rooyen, J.D.; Clarke, C.E.; de Clercq, W. Groundwater quality, quantity, and recharge estimation on the West Coast of South Africa. In Biodiversity & Ecology; Revermann, R., Krewenka, K., Schmiedel, U., Olwoch, J., Helmschrot, J., Jürgens, N., Eds.; Klaus Hess Publishers: Göttingen, Germany; Windhoek, Namibia, 2018; Volume 6, pp. 86–96. ISBN 9783933117953. [Google Scholar]
- Watson, A.; Miller, J.; Fleischer, M.; de Clercq, W. Estimation of groundwater recharge via percolation outputs from a rainfall/runoff model for the Verlorenvlei estuarine system, west coast, South Africa. J. Hydrol. 2018, 558, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Miller, J.; Fink, M.; Kralisch, S.; Fleischer, M.; De Clercq, W. Distributive rainfall-runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa. Hydrol. Earth Syst. Sci. 2019, 23, 2679–2697. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.P.; Kralisch, S.; Van Rooyen, J.D.; Miller, J. Quantifying and understanding the source of recharge for alluvial systems in arid environments through the development of a seepage model. J. Hydrol. 2021, 601, 126650. [Google Scholar] [CrossRef]
- Bangira, T.; Maathuis, B.H.P.; Dube, T.; Gara, T.W. Investigating flash floods potential areas using ASCAT and TRMM satellites in the Western Cape Province, South Africa. Geocarto Int. 2015, 30, 737–754. [Google Scholar] [CrossRef]
- Gresse, P.G. Geological Map 3319 Worcester 1:250,000 Scale; Council for Geosciences: Pretoria, South Africa, 1997. [Google Scholar]
- Theron, J.N. Geological Map 3318 Cape Town 1:250,000 Scale; Council for Geosciences: Pretoria, South Africa, 1990. [Google Scholar]
- Visser, H.; Theron, J.N. Geological Map 3218 Clanwilliam 1:250,000 Scale; Government Printer: Pretoria, South Africa, 1973.
- Greenmined Environmental Unit MO1. SRK Preliminary Assessment of Impact of the Proposed Riviera Tungsten Mine on Groundwater Resources Preliminary Assessment of Impact of the Proposed Riviera Tungsten Mine on Groundwater Resources; SRK Consulting: Rondebosch, South Africa, 2009. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology—Hydraulic Testing: Models, Methods, and Applications 1990; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Tankard, A.J.; Martin, M.; Eriksson, K.A.; Hobday, D.K.; Hunter, D.R.; Minter, W.E.L. Crustal Evolution of Southern Africa: 3.8 Billion Years of Earth History; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 1461381479. [Google Scholar]
- Batjes, N.; Dijkshoorn, K.; Van Engelen, V.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M.; Prieler, S.; Teixeira, E.; Wiberg, D. Harmonized World Soil Database (Version 1.2); Technical Report; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Šimůnek, J.; van Genuchten, M.T.; Sejna, M. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media; Technical Manual Version 1.0; PC Progress: Prague, Czech Republic, 2006; p. 230. [Google Scholar]
- Amer, K.H.; Hatfield, J.L. Canopy resistance as affected by soil and meteorological factors in potato. Agron. J. 2004, 96, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Crain, J. Modelling Evaporation from Plant Canopies; Insititue of Hydrology: Oxfordshire, UK, 1998. [Google Scholar]
- Johnson, P.A. Variations in Albedo among Natural and Disturbed South Western Cape Veld Types. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 1983. [Google Scholar]
- Munitz, S.; Netzer, Y.; Schwartz, A. Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Aust. J. Grape Wine Res. 2017, 23, 87–94. [Google Scholar] [CrossRef]
- Kralisch, S.; Krause, P. JAMS—A framework for natural resource model development and application. In Proceedings of the Proceedings of the {iEMSs} Third Biannual Meeting, International Environmental Modelling and Software Society, Burlington, VT, USA, 9–12 July 2006; Voinov, A., Jakeman, A., Rizzoli, A.E., Eds.; pp. 6–11. [Google Scholar]
- Nash, J.E. River flow forecasting through conceptual models, I: A discussion of principles. J. Hydrol. 1970, 10, 398–409. [Google Scholar] [CrossRef]
- Boyle, D.P.; Gupta, H.V.; Sorooshian, S. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 2000, 36, 3663–3674. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Rooyen, J.D.; Watson, A.P.; Palcsu, L.; Miller, J.A. Constraining the Spatial Distribution of Tritium in Groundwater across South Africa. Water Resour. Res. 2021, 57. [Google Scholar] [CrossRef]
- Treumer, L. Bachelor Thesis Application of MODIS Global Terrestrial Evapotranspiration Data for hydrological modelling in the Western Cape Region, South Africa. Bachelor’s Thesis, Friedrich-Schiller-University, Jena, Germany, 2016. [Google Scholar]
- Guo, D.; Zheng, F.; Gupta, H.; Maier, H.R. On the Robustness of Conceptual Rainfall-Runoff Models to Calibration and Evaluation Data Set Splits Selection: A Large Sample Investigation. Water Resour. Res. 2020, 56, e2019WR026752. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, Ø.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Waters, D. Modelling Reductions of Pollutant Loads Due to Improved Management Practices in the Great Barrier Reef Catchments; Whole of GBR, Technical Report; Australian Government: Canberra, Australia, 2014; Volume 1, pp. 1–120.
- Hornberger, G.M.; Spear, R.C. Approach to the preliminary analysis of environmental systems. J. Environ. Manag. 1981, 12, 7–18. [Google Scholar]
- Kralisch, S.; Fischer, C. Model Representation, Parameter Calibration and Parallel Computing—The JAMS Approach. Available online: https://www.researchgate.net/publication/234081091_Model_representation_parameter_calibration_and_parallel_computing_-_the_JAMS_approach (accessed on 15 November 2021).
- Fischer, C.; Kralisch, S.; Krause, P.; Flügel, W.A. An Integrated, Fast and Easily Useable Software Toolbox Allowing Comparative and Complementary Application of Various Parameter Sensitivity Analysis Methods. Available online: https://www.researchgate.net/publication/234081121_An_integrated_fast_and_easily_useable_software_toolbox_which_allows_comparative_and_complementary_application_of_various_parameter_sensitivity_analysis_methods (accessed on 15 November 2021).
- Miller, J.A.; Dunford, A.J.; Swana, K.A.; Palcsu, L.; Butler, M.; Clarke, C.E. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction. J. Hydrol. 2017, 551, 100–115. [Google Scholar] [CrossRef]
- Wu, Y. Groundwater Recharge Estimation in Table Mountain Group Aquifer Systems with a Case Study of Kammanassie Area. Ph.D. Thesis, University of the Western Cape, Cape Town, South Africa, 2005. [Google Scholar]
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An integrated framework for assessment of hybrid water supply systems. Water 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Archer, E.; Landman, W.; Malherbe, J.; Tadross, M.; Pretorius, S. South Africa’s winter rainfall region drought: A region in transition? Clim. Risk Manag. 2019, 25, 100188. [Google Scholar] [CrossRef]
- Arnell, N.W.; Hudson, D.A.; Jones, R.G. Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Fatichi, S.; Or, D.; Walko, R.; Vereecken, H.; Young, M.H.; Ghezzehei, T.A.; Hengl, T.; Kollet, S.; Agam, N.; Avissar, R. Soil structure is an important omission in Earth System Models. Nat. Commun. 2020, 11, 522. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Charonko, J.J.; Vlachos, P.P. Signal-to-noise ratio, error and uncertainty of PIV measurement. In Proceedings of the PIV13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands, 1–3 July 2013. [Google Scholar]
- Kim, J.; Habimana, J.D.D.; Kim, S. Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs. Sustainability 2021, 13, 12037. [Google Scholar] [CrossRef]
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R. Assessment of future climate change impacts on water resources of Upper Sind River Basin, India using SWAT model. Water Resour. Manag. 2013, 27, 3647–3662. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Schulze, R.E. A 2011 Perspective on Climate Change And The South African Water Sector; WRC Report No. TT 518/12; Water Research Commission: Pretoria, South Africa, 2012; ISBN 9781431202706. [Google Scholar]
- Her, Y.; Yoo, S.H.; Cho, J.; Hwang, S.; Jeong, J.; Seong, C. Uncertainty in hydrological analysis of climate change: Multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep. 2019, 9, 4974. [Google Scholar] [CrossRef] [Green Version]
- Fowler, K.; Knoben, W.; Peel, M.; Peterson, T.; Ryu, D.; Saft, M.; Seo, K.W.; Western, A. Many Commonly Used Rainfall-Runoff Models Lack Long, Slow Dynamics: Implications for Runoff Projections. Water Resour. Res. 2020, 56, e2019WR025286. [Google Scholar] [CrossRef]
- Stadnyk, T.A.; Delavau, C.; Kouwen, N.; Edwards, T.W.D. Towards hydrological model calibration and validation: Simulation of stable water isotopes using the isoWATFLOOD model. Hydrol. Process. 2013, 27, 3791–3810. [Google Scholar] [CrossRef]
- Cooper, D.J.; Wolf, E.C.; Ronayne, M.J.; Roche, J.W. Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California. J. Hydrol. Reg. Stud. 2015, 3, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Daily Maverick West Coast’s Verlorenvlei: What’s Lost When a Wetland Dries up? 2021. Available online: https://www.dailymaverick.co.za/article/2021-03-13-west-coasts-verlorenvlei-whats-lost-when-a-wetland-dries-up/ (accessed on 15 November 2021).
- Hughes, D.A.; Hannart, P. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. J. Hydrol. 2003, 270, 167–181. [Google Scholar] [CrossRef]
- Van Wyk, E.; Sherwill, T. The Ecological Reserve: Towards a common understanding for river management in South Africa. Water SA 2006, 32, 403–409. [Google Scholar] [CrossRef] [Green Version]
Elevation (m a.s.l) | Precipitation (mm/yr) | Potential ET (mm/yr) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catchment Name | Location | Anthropogenic Impacts | Basin Area | Max | Mean | Max | Mean | Min | Max | Mean | Min | Dominant Formation | Dominant Landcover | Cultivated Area | Irrigation Area |
Verlorenvlei | West Coast | Irrigation/small dams | 1832 | 1446 | 223 | 566 | 334 | 211 | 2450 | 2313 | 1800 | MS | Shrubland fynbos | 849 | 52 |
Berg | West Coast | Irrigation/reservoirs | 7704 | 2062 | 201 | 3198 | 487 | 206 | 2443 | 2200 | 593 | MS | Cultivated fields | 4223 | 350 |
Eerste | East Coast | Irrigation/reservoirs | 620 | 1511 | 201 | 2067 | 694 | 463 | 2053 | 1893 | 654 | CGS | Cultivated vines | 185 | 144 |
Bot | East Coast | Irrigation | 864 | 1187 | 275 | 1143 | 552 | 395 | 1955 | 1806 | 1119 | CSG | Shrubland fynbos | 349 | 23 |
Breede | East Coast | Irrigation/reservoirs | 12,526 | 2232 | 495 | 3053 | 429 | 150 | 2305 | 1915 | 444 | TMG | Shrubland fynbos | 3844 | 947 |
Total area | 23,546 | Total area | 9450 | 1516 |
Climate Station Measurements | |||||
---|---|---|---|---|---|
Catchment Name | Precipitation | Temperature | Relative Humidity | Windspeed | Solar Radiation |
Verlorenvlei | 21 | 6 | 2 | 5 | 2 |
Berg | 38 | 10 | 7 | 8 | 5 |
Eerste | 23 | 13 | 6 | 8 | 5 |
Bot | 7 | 3 | 3 | 3 | 3 |
Breede | 34 | 13 | 6 | 9 | 5 |
Total | 127 | 24 | 12 | 15 | 7 |
Storage Capacity | Storage Coefficient | |||||
---|---|---|---|---|---|---|
Aquifer | Formation | Type | RG1_Max (mm) | RG2_Max (mm) | RG1_k (d) | RG2_k (d) |
Primary | Quaternary Sediments | Sediments | 50 | 100 | 1000 | 10 |
Secondary/MG | Moorreesberg | Shale Greywacke | 90 | 580 | 0 | 350 |
Secondary/MG | Porterville | Shale Greywacke | 90 | 560 | 0 | 335 |
Secondary/MG | Piketberg | Shale Greywacke | 90 | 1000 | 0 | 600 |
Secondary/MG | Klipheuwel Group | Shale Greywacke | 90 | 500 | 0 | 300 |
Secondary/TMG | Peninsula | Sandstone | 50 | 1000 | 0 | 600 |
Secondary/TMG | Piekenierskloof | Sandstone | 50 | 600 | 0 | 400 |
Secondary/CG | Cape Granite | Granite | 40 | 500 | 100 | 650 |
Name of Parameter | Type | Description of Parameter | Calibration Range | Verlorenvlei | Berg | Eerste | Bot | Breede |
---|---|---|---|---|---|---|---|---|
AC_Adaptation | Soil Water | Multiplier for Soil Large Pore Storage | 0.8–1.5 | 1.5 | 1.3 | 1.2 | 1.2 | 1.4 |
FC_Adaptation | Soil water | Multiplies for soil middle pore storage | 0.8–1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.7 |
soilLinRed | ET | Simulated ET parameter, reduction of potential ET according to soil moisture | 0–10 | 0.2 | 0.9 | 0.5 | 0.1 | 0.8 |
soilDiffMPSLPS | Soil water | MPS/LPS diffusion coefficient | 0–10 | 4.9 | 8.4 | 1.2 | 9.5 | 3.6 |
soilDistMPSLPS | Soil water | MPS/LPS distribution coefficient for inflow | 0–10 | 8.2 | 5.7 | 0.3 | 3.3 | 4.4 |
soilMaxInfSummer | Soil water | Maximum infiltration capacity of soil in the summer period | 0–200 | 113.9 | 197.0 | 55.0 | 95.0 | 199.0 |
soilMaxinfWinter | Soil water | Maximum infiltration capacity of soil in the winter period | 0–200 | 154.2 | 119.0 | 150.0 | 50.0 | 148.0 |
soilConcRD1 | Soil water | Surface runoff delay parameter | 0.5–5 | 2.5 | 1.5 | 2.4 | 2.4 | 1.4 |
soilConcRD2 | Soil water | Interflow delay parameter | 0.5–5 | 4.0 | 4.8 | 3.0 | 5.0 | 1.8 |
soilOutLPS | Soil water | Outflow parameter of the large pore storage | 0–10 | 2.9 | 6.9 | 1.3 | 8.6 | 2.7 |
soilMaxPerc | Soil water | Conductivity adaption parameter, percolation to groundwater storage | 0–20 | 23.0 | 13.6 | 20.0 | 20.0 | 19.7 |
soilLatVert | Soil water | Distribution coefficient for LPS outflow to lateral and vertical flow path | 0.1–10 | 9.8 | 0.1 | 0.7 | 9.0 | |
gwRG1RG2dist | Groundwater | Distribution parameter for the slow and fast baseflow | 0–1 | 1.0 | 0.6 | 0.6 | 1.0 | 0.7 |
gwRG1Fact | Groundwater | Fast groundwater delay | 0–10 | 0.0 | 9.0 | 0.1 | 0.3 | 10.0 |
gwRG2Fact | Groundwater | Base flow delay | 0–10 | 3.1 | 0.0 | 9.9 | 3.9 | 0.0 |
flowrouteTA | Flow routing | Stream routing parameter (overall dampening of the hydrograph) | 0–20 | 3.0 | 10.5 | 9.5 | 2.0 | 9.6 |
Efficiencies | E2 | 0–1 | 0.23 | 0.79 | 0.88 | 0.39 | 0.61 | |
LogE2 | 0–1 | 0.54 | 0.87 | 0.82 | 0.61 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, A.; Midgley, G.; Künne, A.; Kralisch, S.; Helmschrot, J. Determining Hydrological Variability Using a Multi-Catchment Model Approach for the Western Cape, South Africa. Sustainability 2021, 13, 14058. https://doi.org/10.3390/su132414058
Watson A, Midgley G, Künne A, Kralisch S, Helmschrot J. Determining Hydrological Variability Using a Multi-Catchment Model Approach for the Western Cape, South Africa. Sustainability. 2021; 13(24):14058. https://doi.org/10.3390/su132414058
Chicago/Turabian StyleWatson, Andrew, Guy Midgley, Annika Künne, Sven Kralisch, and Jörg Helmschrot. 2021. "Determining Hydrological Variability Using a Multi-Catchment Model Approach for the Western Cape, South Africa" Sustainability 13, no. 24: 14058. https://doi.org/10.3390/su132414058
APA StyleWatson, A., Midgley, G., Künne, A., Kralisch, S., & Helmschrot, J. (2021). Determining Hydrological Variability Using a Multi-Catchment Model Approach for the Western Cape, South Africa. Sustainability, 13(24), 14058. https://doi.org/10.3390/su132414058