Green Growth and Agriculture in Brazil
Abstract
:1. Introduction
2. Theoretical Background
Green Growth and Agriculture
3. Materials and Method
4. Empirical Study: The Brazilian Low Carbon Agriculture Plan (ABC Plan)
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cooper, A.; Mukonza, C.; Fisher, E.; Mulugetta, Y.; Gebreeyesus, M.; Onuoha, M.; Massaquoi, A.-B.; Ahanotu, K.C.; Okereke, C. Mapping Academic Literature on Governing Inclusive Green Growth in Africa: Geographical Biases and Topical Gaps. Sustainability 2020, 12, 1956. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, E. Green Growth—Magic Bullet or Damp Squib? Sustainability 2017, 9, 1092. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C. Agriculture and Green Growth. Rep. OECD 2011, 40, 40. [Google Scholar]
- Vazquez-Brust, D.; Smith, A.M.; Sarkis, J. Managing the transition to critical green growth: The ‘Green Growth State’. Futures 2014, 64, 38–50. [Google Scholar] [CrossRef]
- Hallegatte, S.; Heal, G.; Fay, M.; Treguer, D.; Stephane, H.; Geoffrey, H.; David, T. From Growth to Green Growth—A Framework; National Bureau of Economic Research: Washington, DC, USA, 2012. [Google Scholar]
- OECD–The Organization for Economic Co-operation and Development. Towards Green Growth; OECD: Paris, France, 2011. [Google Scholar]
- Capozza, I.; Samson, R. Towards Green Growth in Emerging Market Economies: Evidence from Environmental Performance Reviews; OECD Green Growth Papers, 2019-01; OECD Publishing: Paris, France, 2019. [Google Scholar]
- Vinholis, M.M.B.; Saes, M.S.M.; Carrer, M.J.; Souza Filho, H.M. The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian Low Carbon Agriculture Plan. J. Clean. Prod. 2021, 280, 124334. [Google Scholar] [CrossRef]
- Vazquez-Brust, D.; Nava-Fischer, E. Green Growth, Social Agency and the Regulation of Agricultural Production in India and Brazil; UNRISD Viewpoint Series; Social Dimensions of Green Economy, UNRISD: Geneva, Switzerland, 2012. [Google Scholar]
- Fay, M. Inclusive Green Growth: The Pathway to Sustainable Development; World Bank Publications; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Article Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef] [Green Version]
- Dercon, S. Is Green Growth Good for the Poor? In The World Bank Research Observer; Oxford University Press: New York, NY, USA, 2014; Volume 29, pp. 163–185. [Google Scholar]
- Grubor, A.; Milicevic, N.; Djokic, N. Serbian organic food consumer research and bioeconomy development. Sustainability 2018, 10, 4820. [Google Scholar] [CrossRef] [Green Version]
- Rodino, S.; Butu, A.; Dragomir, V.; Butu, M. Analysis regarding the biomass production sector in romania-a bioeconomy point of view. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 497–502. [Google Scholar]
- Pancino, B.; Blasi, E.; Rappoldt, A.; Pascucci, S.; Ruini, L.; Ronchi, C. Partnering for sustainability in agri-food supply chains: The case of Barilla Sustainable Farming in the Po Valley. Agric. Food Econ. 2019, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Honigmann, S. Plano ABC: Fim da Vigência de 10 Anos e Seus Resultados. 2020. Available online: https://www.scotconsultoria.com.br/imprimir/noticias/53262 (accessed on 28 October 2020).
- Hatt, S.; Osawa, N. Beyond “greening”: Which paradigms shape sustainable pest management strategies in the European Union? BioControl 2019, 64, 343–355. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.; Doelman, J.C.; Van den Berg, M.; Harmsen, M.; de Boer, H.S.; Bouwman, L.F.; Daioglou, V.; Edelenbosch, O.Y.; et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Chang. 2017, 42, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Khurshid, A.; Deng, X. Innovation for carbon mitigation: A hoax or road toward green growth? Evidence from newly industrialized economies. Environ. Sci. Pollut. Res. 2020, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sohag, K.; Ara, R.; Mastura, S.; Abdullah, S. Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia. Energy 2015. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q. Energy technological progress, energy consumption, and CO2 emissions: Empirical evidence from China. J. Clean. Prod. 2019, 236, 117666. [Google Scholar] [CrossRef]
- Biber-Freudenberger, L.; Ergeneman, C.; Förster, J.J.; Dietz, T.; Börner, J. Bioeconomy futures: Expectation patterns of scientists and practitioners on the sustainability of bio-based transformation. Sustain. Dev. 2020, 28, 1220–1235. [Google Scholar] [CrossRef]
- Ulucak, R. How do environmental technologies affect green growth? Evidence from BRICS economies. Sci. Total Environ. 2020, 712, 136504. [Google Scholar]
- Berkhout, E.; Bouma, J.; Terzidis, N.; Voors, M. Supporting local institutions for inclusive green growth: Developing an Evidence Gap Map. NJAS-Wagening. J. Life Sci. 2018, 84, 51–71. [Google Scholar] [CrossRef]
- Schoneveld, G.; Zoomers, A. Natural resource privatisation in Sub-Saharan Africa and the challenges for inclusive green growth. Int. Dev. Plan. Rev. 2015, 37, 95–119. [Google Scholar] [CrossRef]
- Kallio, M.H.; Hogarth, N.J.; Moeliono, M.; Brockhaus, M.; Cole, R.; Bong, I.W.; Wong, G.Y. The colour of maize: Visions of green growth and farmers perceptions in northern Laos. Land Use Policy 2019, 80, 185–194. [Google Scholar] [CrossRef]
- Schoneveld, G.; Di Matteo, F.; Brandao, F.; Pacheco, P.; Jelsma, I.; Jarnholt, E.D. A systematic mapping protocol: What are the impacts of different upstream business models in the agriculture and forestry sector on sustainable development in tropical developing countries? Environ. Evid. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- de Gennaro, B.C.; Forleo, M.B. Sustainability perspectives in agricultural economics research and policy agenda. Agric. Food Econ. 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, J.; Schmitz, H. Chain governance and upgrading: Taking stock. In Local Enterprises in the Global Economy Schmitz; Schmitz, H., Ed.; Edward Elgar: Cheltenham, UK, 2004; pp. 349–382. [Google Scholar]
- Herrigel, G.; Wittke, V.; Voskamp, U. The Process of Chinese Manufacturing Upgrading: Transitioning from Unilateral to Recursive Mutual Learning Relations. Glob. Strategy J. 2013, 3, 109–125. [Google Scholar] [CrossRef]
- Piao, R.S.; Fonseca, L.; de Carvalho Januário, E.; Saes, M.S.M.; de Almeida, L.F. The adoption of Voluntary Sustainability Standards (VSS) and value chain upgrading in the Brazilian coffee production context. J. Rural Stud. 2019, 71, 13–22. [Google Scholar] [CrossRef]
- Kano, L. Global value chain governance: A relational perspective. J. Int. Bus. Stud. 2018, 49, 684–705. [Google Scholar] [CrossRef]
- Samper, L.F.; Quiñones-Ruiz, X.F. Towards a balanced sustainability vision for the coffee industry. Resources 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A. Does economic upgrading lead to social upgrading in global production networks? Evidence from Morocco. World Dev. 2013, 46, 223–233. [Google Scholar] [CrossRef]
- Barrientos, S.; Geref, G.; Rossi, A. Economic and social upgrading in global production networks: A new paradigm for a changing world. Int. Labor Rev. 2011, 150, 319–340. [Google Scholar] [CrossRef]
- Barham, B.L.; Weber, J.G. The economic sustainability of certifed coffee: Recent evidence from Mexico and Peru. World Dev. 2012, 40, 1269–1279. [Google Scholar] [CrossRef]
- Achabou, M.A.; Dekhili, S.; Hamdoun, M. Environmental upgrading of developing country frms in global value chains. Bus. Strateg. Environ. 2017, 26, 224–238. [Google Scholar] [CrossRef]
- Marchetti, L.; Cattivelli, V.; Cocozza, C.; Salbitano, F.; Marchetti, M. Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation. Sustainability 2020, 12, 7524. [Google Scholar] [CrossRef]
- Pólvora, A.; Nascimento, S.; Lourenço, J.S.; Scapolo, F. Blockchain for industrial transformations: A forward-looking approach with multi-stakeholder engagement for policy advice. Technol. Forecast. Soc. Chang. 2020, 157, 120091. [Google Scholar] [CrossRef]
- The Nature Conservancy. Available online: https:nature.org (accessed on 20 December 2020).
- CGIAR-Consultative Group on International Agricultural Research. Available online: https://ccafs.cgiar.org/bigfacts/#theme=evidence-ofsuccess&subtheme=policiesprograms&casestudy=policiesprogramsCs1 (accessed on 1 November 2020).
- Fearnside, P. Challenges for sustainable development in Brazilian Amazonia. Sustain. Dev. 2018, 26, 141–149. [Google Scholar] [CrossRef]
- MAPA-Ministry of Agriculture, Livestock and Food Supply. Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura: Plano ABC (Agricultura de Baixa Emissão de Carbono). 2012. Available online: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/download.pdf (accessed on 28 October 2020).
- Cooper, P.J.M.; Cappiello, S.; Vermeulen, S.J.; Campbell, B.M.; Zougmoré, R.; Kinyangi, J. Large-Scale Implementation of Adaptation and Mitigation Actions in Agriculture. CCAFS Working Paper No. 50; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2013. [Google Scholar]
- Gurgel, A.C.; Costa, C.F.; Serigati, F.C. Agricultura de Baixa Emissão de Carbono: A Evolução de um novo Paradigma; Observatório ABC. Fundação Getúlio Vargas/Centro de Agronegócio da Escola de Economia de São Paulo: São Paulo, Brazil, 2013; p. 192. [Google Scholar]
- Brazilian Ministry of the Environment. Dados de 2018 Sobre Reduções de Emissões de Gases de Efeito Estufa da Agricultura 2019. Available online: http://educaclima.mma.gov.br/dados-de-2018-para-as-reducoes-de-emissoes-de-gases-de-efeito-estufa-da-agricultura/ (accessed on 20 December 2020).
- Observatório ABC. Proposta para revisão do Plano ABC. 2015. Available online: https://pastagem.org/index.php/pt-br/tools/documents/category/11-observatorio-abceacessada; https://www.observatorioabc.com.br (accessed on 18 December 2020).
- Amazon Environmental Research Institute. Brazil’s “Low-Carbon Agricultural Programme: Barriers to Implementation”. Available online: https://ipam.org.br/wp-content/uploads/2012/08/brazils_-low-carbon_agriculture-_progra.pdf (accessed on 20 December 2020).
- Newton, P.; Gomez, A.E.A.; Jung, S.; Kelly, T.; de Araujo Mendes, T.; Rasmussen, L.V.; dos Reis, J.C.; de Aragão Ribeiro Rodrigues, R.; Tipper, R.; van der Horst, D.; et al. Overcoming barriers to low carbon agriculture and forest restoration in Brazil: The Rural Sustentável project. World Dev. Perspect. 2016, 4, 5–7. [Google Scholar] [CrossRef]
- BNDES–The Brazilian Development Bank. BNDES Assina Acordo para Estimular Agricultura de Baixo Carbono 2014. Available online: https://www.bndes.gov.br/wps/portal/site/home/imprensa/noticias/conteudo/20140821_economiaverde (accessed on 28 October 2020).
- Rural Credit in Brazil. Challenges and Opportunities for Promoting Sustainable Agriculture. Available online: https://www.forest-trends.org/publications/rural-credit-in-brazil/ (accessed on 20 December 2020).
- Gil, J.; Siebold, M.; Berger, T. Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agric. Ecosyst. Environ. 2015, 199, 394–406. [Google Scholar] [CrossRef]
- Stabile, M.C.C.; Azevedo, A.; Nepstad, D. Programa Agricultura de Baixo Carbono do Brasil: Barreiras Para Sua Implementação; IPAM: Brasília, Brazil, 2012; p. 6. [Google Scholar]
- Manzatto, C.V.; Araujo, L.S.; Vicente, L.E.; Vicente, A.K.; Perosa, B.B. Monitoramento da mitigação das emissões de carbono na agropecuária. Agroanalysis 2019, 38, 25–28. [Google Scholar]
- Perosa, B.; Manzatto, C.; Vicente, L.E.; Koga-Vicente, A.; de Araujo, L.S.; Assad, E.; Gurgel, A.D.C. Emissões de Gases do Efeito Estufa Pela Agricultura de Baixa Emissão de Carbono. Embrapa Meio Ambiente-Artigo em periódico indexado (ALICE) 2020, 40, 29–31. [Google Scholar]
Components | References |
---|---|
Multiple stakeholders and partnerships | [3,15,28] |
Innovation/eco-innovation/technologies | [7,20,21,22,23] |
Resources (human and financial) | [7] |
Access to knowledge and knowledge dissemination | [7,24] |
Local institutions and social relations embedded | [9,24] |
Access to finance | [24] |
Long-run aims | [3] |
Different institutional levels | [7,8] |
Data Sources | |
---|---|
Reports and Documents from government institutions | Ministry of Agriculture, Livestock and Food Supply—MAPA; Brazilian government and the Brazilian Agricultural Research Corporation—EMBRAPA; The Brazilian Development Bank—BNDES Brazilian Ministry of the Environment The National Rural Learning Service—Senar |
Reports and papers | Organisations for Economic Co-operation and Development (OECD); World Bank; Consultative Group on International Agricultural Research—CGIAR Natural Bureau of Economic Research Observatório ABC The Amazon Environmental Research Institute—IPAM The Nature Conservancy World Resources Institute—WRI Brasil United Nations Research Institute for Social Development |
Papers from Scientific journals | Journal of Cleaner Production, Resources, AgroANALYSIS and Sustainable Development |
Components of Green Growth Policies (from the Literature) | Codes |
---|---|
Multiple stakeholders | Mult_Stak_ |
Innovation | In_ |
Human resources | Hu_Res_ |
Access to knowledge and knowledge dissemination | Ac_and Know_ diss_ |
Local institution and local context | Loc_inst Loc_cont |
Access to finance | Acc_fin |
Long run aims | Lon_run_out |
Economic upgrading | Price: pr_ Productivity: prod_ Efficiency: eff_ Employment generation: empl_gener_ Market articulation: mar_art |
Environmental upgrading | Agrochemicals control: agr_cont Water management: wat_man Soil management: so_man Land degradation: lan_deg Greenhouse gas emissions: gre_em Pollution: pol_ Land rehabilitation: lan_reab |
Social upgrading | Safety-health and working conditions: heal_work_cond food security: food_sec income security: inc_sec health and education: heal_ed |
Rehabilitating 15 million ha of degraded pastures |
4 million ha of integrated crop-livestock-forest |
8 million ha no-tillage system |
Planting 3 million ha commercial trees |
Treating 4.4 million cubic metres of animal waste |
Training of 19,940 technicians and 935 thousand producers |
Reducing greenhouse gas emissions between 133.9 million and 162.9 million tons) |
ABC Plan Targets | Technologies Adopted |
---|---|
4 million ha of integrated crop-livestock-forest | 5.83 million ha (to 2018) |
8 million ha no-tillage system | 9.97 million ha (to 2018) |
Planting 3 million ha commercial trees | 1.10 million ha (to 2018) |
Treating 4.4 million cubic metres of animal waste | 4.51 million of animal waste (to 2018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza Piao, R.; Silva, V.L.; Navarro del Aguila, I.; de Burgos Jiménez, J. Green Growth and Agriculture in Brazil. Sustainability 2021, 13, 1162. https://doi.org/10.3390/su13031162
Souza Piao R, Silva VL, Navarro del Aguila I, de Burgos Jiménez J. Green Growth and Agriculture in Brazil. Sustainability. 2021; 13(3):1162. https://doi.org/10.3390/su13031162
Chicago/Turabian StyleSouza Piao, Roberta, Vivian Lara Silva, Irene Navarro del Aguila, and Jerónimo de Burgos Jiménez. 2021. "Green Growth and Agriculture in Brazil" Sustainability 13, no. 3: 1162. https://doi.org/10.3390/su13031162
APA StyleSouza Piao, R., Silva, V. L., Navarro del Aguila, I., & de Burgos Jiménez, J. (2021). Green Growth and Agriculture in Brazil. Sustainability, 13(3), 1162. https://doi.org/10.3390/su13031162