Co-Movement between Tourist Arrivals of Inbound Tourism Markets in South Korea: Applying the Dynamic Copula Method Using Secondary Time Series Data
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. Methods
3.2. Data
4. Results
4.1. Results for the Marginal Models
4.2. Results of the Static and Time-Varying Copulas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puarattanaarunkorn, O.; Sriboonchitta, S. Copula based GARCH dependence model of Chinese and Korean tourist arrivals to Thailand: Implications for risk management. In Modeling Dependence in Econometrics; Springer: New York, NY, USA, 2014; pp. 343–365. [Google Scholar]
- Lean, H.H.; Smyth, R. Asian financial crisis, avian flu and terrorist threats: Are shocks to Malaysian tourist arrivals permanent or transitory? Asia Pac. J. Tour. Res. 2009, 14, 301–321. [Google Scholar] [CrossRef]
- UNWTO. UNWTO Tourism Highlights 2015 Edition; World Tourism Organization: Madrid, Spain, 2015; Available online: https://www.e-unwto.org/doi/pdf/10.18111/9789284416899 (accessed on 25 January 2021).
- Zeng, B.; Carter, R.W.; de Lacy, T. Short-term perturbations and tourism effects: The case of SARS in China. Curr. Issues Tour. 2005, 8, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M. Japanese tourism and the SARS epidemic of 2003. J. Travel Tour. Mark. 2005, 19, 117–131. [Google Scholar] [CrossRef]
- Ministry of Culture, Sport and Tourism. 2018 Nyeon-Gijun Gwangwang-Donghyangegwanhanyeoncha-Bogoseo (2018 Annual Report on Tourism Trends); Ministry of Culture, Sports and Tourism: Seoul, Korea, 2019.
- Henderson, J.C. The Great East Japan earthquake and tourism: A preliminary case study. Tour. Recreat. Res. 2013, 38, 93–98. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, J.V.; Ledesma-Rodríguez, F.; Santana-Gallego, M. Testing dependence between GDP and tourism’s growth rates. Tour. Manag. 2015, 48, 268–282. [Google Scholar] [CrossRef]
- Conell, J.; Page, S.J.; Meyer, D. Visitor attractions and events: Responding to seasonality. Tour. Manag. 2015, 46, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Getz, D. Event tourism: Definition, evolution, and research. Tour. Manag. 2008, 29, 403–428. [Google Scholar] [CrossRef]
- Sainaghi, R.; Baggio, R. Destination events, stability, and turning points of development. J. Travel Res. 2019, 1–12. [Google Scholar] [CrossRef]
- Chan, F.; Lim, C.; McAleer, M. Modelling multivariate international tourism demand and volatility. Tour. Manag. 2005, 26, 459–471. [Google Scholar] [CrossRef]
- Hoti, S.; McAleer, M.; Shareef, R. Modelling international tourism and country risk spillovers for Cyprus and Malta. Tour. Manag. 2007, 28, 1472–1484. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, S.Y.; Yu, L. The analysis of the relationships of Korean outbound tourism demand: Jeju Island and three international destinations. Tour. Manag. 2009, 30, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Shareef, R.; McAleer, M. Modelling the uncertainty in monthly international tourist arrivals to the Maldives. Tour. Manag. 2007, 28, 23–45. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Y.-H.; Huang, S.-W. The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach. Int. Rev. Econ. Financ. 2011, 20, 654–664. [Google Scholar] [CrossRef]
- Silva Filho, O.C.; Ziegelmann, F.A.; Dueker, M.J. Assessing dependence between financial market indexes using conditional time-varying copulas: Applications to Value at Risk (VaR). Quant. Financ. 2014, 14, 2155–2170. [Google Scholar] [CrossRef]
- Tang, J.; Sriboonchitta, S.; Ramos, V.; Wong, W.-K. Modelling dependence between tourism demand and exchange rate using the copula-based GARCH model. Curr. Issues Tour. 2016, 19, 876–894. [Google Scholar] [CrossRef]
- Tang, J.; Ramos, V.; Cang, S.; Sriboonchitta, S. An empirical study of inbound tourism demand in China: A copula-GARCH approach. J. Travel Tour. Mark. 2017, 34, 1235–1246. [Google Scholar] [CrossRef]
- Zhu, L.; Lim, C.; Xie, W.; Wu, Y. Modelling tourist flow association for tourism demand forecasting. Curr. Issues Tour. 2018, 21, 902–916. [Google Scholar] [CrossRef]
- Tang, J.; Sriboondita, S.; Yuan, X.; Wu, B. Volatility co-movement of China outbound tourism: Dynamic copula based GARCH model. Int. J. Innov. Manag. Inf. Prod. 2013, 4, 51–64. [Google Scholar]
- Juan, Y.; Choi, Y.; An, S.; Lee, C.-K.; Lee, S.J. The constraints of Chinese tourists to visit Korea caused by THAAD using Q-methodology. Asia Pac. J. Tour. Res. 2017, 22, 1261–1273. [Google Scholar] [CrossRef]
- Korea Tourism Knowledge and Information System Statistics on Tourists. Available online: http://tour.go.kr (accessed on 23 December 2019).
- Song, H.; Qiu, R.T.R.; Park, J. A review of research on tourism demand forecasting: Launching the annals of tourism research curated collection on tourism demand forecasting. Ann. Tour. Res. 2019, 75, 338–362. [Google Scholar] [CrossRef]
- Moore, W.R. The impact of climate change on Caribbean tourism demand. Curr. Issues Tour. 2010, 13, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Song, H.; Crouch, G.I. A meta-analysis of international tourism demand forecasting and implications for practice. Tour. Manag. 2014, 45, 181–193. [Google Scholar] [CrossRef]
- Song, H.; Li, G. Tourism demand modelling and forecasting—A review of recent research. Tour. Manag. 2008, 29, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Akadiri, S.S.; Eluwole, K.K.; Akadiri, A.C.; Avci, T. Does causality between geopolitical risk, tourism and economic growth matter? Evidence from Turkey. J. Hosp. Tour. Manag. 2020, 43, 273–277. [Google Scholar] [CrossRef]
- Athanasopoulos, G.; de Silva, A. Multivariate exponential smoothing for forecasting tourist arrivals. J. Travel Res. 2012, 51, 640–652. [Google Scholar] [CrossRef]
- Coshall, J.T. A selection strategy for modelling UK tourism flows by air to European destinations. Tour. Econ. 2005, 11, 141–158. [Google Scholar] [CrossRef]
- Russell, R.; Faulkner, B. Entrepreneurship, chaos and the tourism area lifecycle. Ann. Tour. Res. 2004, 31, 556–579. [Google Scholar] [CrossRef]
- Mckercher, B. A chaos approach to tourism. Tour. Manag. 1999, 20, 425–434. [Google Scholar] [CrossRef]
- Sainaghi, R.; Baggio, R. Complexity traits and dynamics of tourism destinations. Tour. Manag. 2017, 63, 368–382. [Google Scholar] [CrossRef]
- Aloui, R.; Aïssa, M.S.B.; Nguyen, D.K. Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. J. Int. Money Financ. 2013, 32, 719–738. [Google Scholar] [CrossRef]
- Hanif, W.; Hernandez, J.A.; Sadorsky, P.; Yoon, S.-M. Are the interdependence characteristics of the US and Canadian energy equity sectors nonlinear and asymmetric? North Am. J. Econ. Financ. 2020, 51, 101065. [Google Scholar] [CrossRef]
- Hanif, W.; Arreola-Hernandez, J.; Hussain Shahzad, S.J.; Hoang, T.H.V.; Yoon, S.-M. Regional and copula estimation effects on EU and US energy equity portfolios. Appl. Econ. 2020, 52, 5311–5342. [Google Scholar] [CrossRef]
- Kang, S.H.; Uddin, G.S.; Ahmed, A.; Yoon, S.-M. Multi-scale causality and extreme tail inter-dependence among housing prices. Econ. Model. 2018, 70, 301–309. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chung, H.; Chang, Y.-H. The economic value of co-movement between oil price and exchange rate using copula-based GARCH models. Energy Econ. 2012, 34, 270–282. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de repartition and dimensions et leurs marges. Publications de l’ Institut de statistique de l’ Universite de Paris 1959, 8, 229–231. [Google Scholar]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Clayton, D.G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 1978, 65, 141–151. [Google Scholar] [CrossRef]
- Gumbel, E.J. Bivariate exponential distributions. J. Am. Stat. Assoc. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Joe, H. Parametric families of multivariate distributions with given margins. J. Multivar. Anal. 1993, 46, 262–282. [Google Scholar] [CrossRef] [Green Version]
- Joe, H.; Hu, T. Multivariate distributions from mixtures of max-infinitely divisible distributions. J. Multivar. Anal. 1996, 57, 240–265. [Google Scholar] [CrossRef] [Green Version]
- Cech, C. Copula-Based Top-Down Approaches in Financial Risk Aggregation. 2006. Available online: https://ssrn.com/abstract=953888 (accessed on 12 March 2020).
- Baum, T. Seasonality in tourism: Understanding the challenges: Introduction. Tour. Econ. 1999, 5, 5–8. [Google Scholar] [CrossRef]
- Baum, T.; Hagen, L. Responses to seasonality: The experiences of peripheral destinations. Int. J. Tour. Res. 1999, 1, 299–312. [Google Scholar] [CrossRef]
- Sainaghi, R.; Mauri, A.G.; Inanov, S.; d’Angella, F. Mega events and seasonality: The case of the Milan World Expo 2015. Int. J. Contemp. Hosp. Manag. 2019, 31, 61–86. [Google Scholar] [CrossRef]
China | Japan | Taiwan | Thailand | US | |
---|---|---|---|---|---|
Mean | 0.013 | 0.003 | 0.007 | 0.011 | 0.004 |
Maximum | 0.652 | 0.383 | 0.971 | 0.272 | 0.168 |
Minimum | −0.755 | −0.565 | −1.506 | −0.344 | −0.200 |
Std. Dev. | 0.130 | 0.092 | 0.176 | 0.094 | 0.044 |
Skewness | −1.376 | −1.158 | −2.551 | −0.262 | −0.541 |
Kurtosis | 14.821 | 12.951 | 39.138 | 5.353 | 6.803 |
Jarque–Bera | 1061.84 | 752.41 | 9601.38 | 41.89 | 112.68 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Observations | 173 | 173 | 173 | 173 | 173 |
China | Japan | Taiwan | Thailand | US | |
---|---|---|---|---|---|
China | 1.000 | ||||
Japan | 0.469 | 1.000 | |||
Taiwan | 0.628 | 0.582 | 1.000 | ||
Thailand | 0.203 | 0.413 | 0.245 | 1.000 | |
US | 0.170 | 0.215 | 0.328 | 0.150 | 1.000 |
China | Japan | Taiwan | Thailand | US | |
---|---|---|---|---|---|
Mean Equation | |||||
0.016 *** (0.004) | 0.002 (0.689) | 0.005 (0.404) | 0.008 (0.168) | 0.004 *** (0.000) | |
−0.140 (0.158) | −0.160 * (0.053) | −0.156 (0.133) | −0.505 ** (0.000) | ||
−0.075 (0.363) | −0.187 * (0.010) | 0.073 (0.546) | −0.284 ** (0.000) | ||
Variance Equation | |||||
0.004 (0.071) | 0.003 ** (0.000) | 0.004 (0.141) | 0.003 ** (0.001) | 0.000 (0.745) | |
0.450 * (0.057) | 0.474 ** (0.012) | 0.500 (0.499) | 0.512 ** (0.007) | 0.034 (0.236) | |
0.407 *** (0.005) | 0.240 *** (0.004) | 0.499 ** (0.0054) | 0.184 * (0.056) | 0.9649 *** (0.000) | |
Skewness | 0.790 *** (0.000) | 0.906 *** (0.000) | 0.855 ** (0.000) | 0.973 *** (0.000) | 0.986 *** (0.000) |
Shape | 3.2362 *** (0.0000) | 3.8202 *** (0.0000) | 2.5921 *** (0.0000) | 5.2730 *** (0.0023) | 3.0701 *** (0.0000) |
Pairs | Best Copula | Kendall’s Tau | Lower | Upper |
---|---|---|---|---|
China–Japan | Survival-Joe | 0.091 | 0.197 | - |
China–Taiwan | Gaussian | 0.223 | - | - |
China–Thailand | Survival-Joe | 0.049 | 0.111 | - |
China–US | Survival-Gumbel | 0.103 | 0.138 | - |
Japan–Taiwan | Student’s t | 0.124 | 0.178 | 0.178 |
Japan–Thailand | Survival-Joe | 0.124 | 0.257 | - |
Japan–US | Student’s t | 0.124 | 0.178 | 0.178 |
Taiwan–Thailand | Student’s t | 0.028 | 0.067 | 0.067 |
Taiwan–US | Student’s t | 0.069 | 0.150 | 0.150 |
Thailand–US | Student’s t | 0.080 | 0.125 | 0.125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.-H.; Kim, I. Co-Movement between Tourist Arrivals of Inbound Tourism Markets in South Korea: Applying the Dynamic Copula Method Using Secondary Time Series Data. Sustainability 2021, 13, 1283. https://doi.org/10.3390/su13031283
Choi K-H, Kim I. Co-Movement between Tourist Arrivals of Inbound Tourism Markets in South Korea: Applying the Dynamic Copula Method Using Secondary Time Series Data. Sustainability. 2021; 13(3):1283. https://doi.org/10.3390/su13031283
Chicago/Turabian StyleChoi, Ki-Hong, and Insin Kim. 2021. "Co-Movement between Tourist Arrivals of Inbound Tourism Markets in South Korea: Applying the Dynamic Copula Method Using Secondary Time Series Data" Sustainability 13, no. 3: 1283. https://doi.org/10.3390/su13031283
APA StyleChoi, K. -H., & Kim, I. (2021). Co-Movement between Tourist Arrivals of Inbound Tourism Markets in South Korea: Applying the Dynamic Copula Method Using Secondary Time Series Data. Sustainability, 13(3), 1283. https://doi.org/10.3390/su13031283