Crop Wild Relatives (CWR) Priority in Italy: Distribution, Ecology, In Situ and Ex Situ Conservation and Expected Actions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ex Situ and In Situ Conservation
3.1.1. Taxon Group CWR with High Priority (A) of Conservation
3.1.2. Relationship between In Situ and Ex Situ Conservation
3.1.3. The 14 Taxon Group CWRs in the Light of the Gene Pool Concept
4. Discussion
4.1. Aegilops biuncialis Vis., Aegilops uniaristata Vis. and Aegilops ventricosa Tausch
Expected Actions
- In situ and ex situ conservation to prevent the risk of extinction by increasing the number of individuals of existing wild populations.
- In situ translocation to the edge of fields of cultivated ancestral wheat to verify and update the hybridization capacity, thanks to the comparable flowering periods.
- Starting cultivation in cooperation with local farmers, especially of Ae. ventricosa that, unlike cultivated wheat varieties, has a higher quantity of microelements such as Fe and Zn. Then, verify the prospect of production and marketing of its flour and/or pasta as a natural alternative to conventional medicine, and helpful for people with Fe and Zn deficiencies.
- Study plant communities of annual meadows to define their phytosociological framework.
4.2. Asparagus pastorianus Webb & Berthel
Expected Actions
- Monitoring of the few known sites of coastal area in southern Sicily, well preserved and for which in situ conservation actions would be appropriate, because of the following potential threats: (a) policy developments that aim at tourist exploitation [56]; and (b) potential negative effect of mammals, especially rodents and lagomorphs on seed germination, as already observed in the Canary Islands [60].
- Targeted actions for the collection of germplasm to ex situ conservation because the species has zero accessions in the RIBES seed banks.
- Research activities to verify the gene pool through crossing with other species of the same genus and any differences with the populations of the Canary Islands and Morocco.
- Verify the seed dispersal system in Sicily, as was done in the Canary Islands.
- Evaluate the enhancement of the Sicily populations for the production of their use for medicinal purposes.
4.3. Beta macrocarpa Guss
Expected Actions
- Cultivation, in cooperation with local farmers and both plant and animal breeders, to test the commercial product, thanks to the high contents of minerals, important for food and feed.
- Monitoring of populations in known areas and field surveys to find new sites.
- Targeted actions for the collection of germplasm to ex situ conservation, because there are no accessions in the RIBES seed banks.
- In situ and ex situ crossing test with Beta vulgaris subsp. maritima, due to the sharing of GP1.
- Phytosociological studies in regions where it grows for vegetation, habitat, and ecological evaluation.
4.4. Brassica insularis Moris (Policy Species), Brassica montana Pourr
Expected Actions
- All Italian taxa of genus Brassica may be used as genetic resources, with potential host valuable traits that could be transferred to the respective cultivated crops (cabbage, cauliflower, broccoli, etc.) [83], starting from the places with greater ecological affinities and closest to the known localities where the wild species grow.
- In situ and ex situ crosses with cultivated B. oleracea, although some preliminary studies have shown low fertility values of crosses between B. montana and cultivated forms of B. oleracea [87]. The wild populations could be maintained with low on-site management because they grow on cliff sites and suffer especially due to the availability of nutrients.
- Monitoring of known populations and field surveys to find new sites (especially for B. insularis). Despite the restriction on collecting B. insularis from the known sites, the cleaning of cliffs to create suitable climbing areas could be a problem. Preventing access to the B. insularis populations appears to be the most suitable conservation measure with the support of protection policies, which was how it was achieved for the Corsica populations [82].
- Ecological studies are needed to determine the role of grazing (especially by goats) on population maintenance [99].
- Phytosociological studies in Italy, where it occurs, to evaluate vegetation, habitat, ecology, and biodiversity, especially for B. insularis for which there is a lack of data.
4.5. Crambe hispanica L. subsp. hispanica, Crambe tataria Sebeók subsp. tataria (Policy Species)
Expected Actions
- In situ and ex situ conservation to prevent the risk of extinction by increasing the number of individuals in wild populations. For C. hispanica subsp. hispanica, an ex situ conservation strategy is strongly needed to support the industrial purposes as an oil plant, through on farm conservation, while as for in situ conservation, research to learn more about the breeding system and the vertical pollen transfer is needed [121].
- In situ conservation is the most appropriate strategy for C. tataria subsp. tataria, although some in vitro regeneration studies [117] suggest a possible long-term conservation of plant tissue by ex situ strategies.
- Habitat conservation at the global level is very helpful because C. tataria grows in different habitats of the 92/43/EEC directive of several countries where it is reported, such as Italy (Eastern sub-Mediterranean dry grasslands (Scorzoneretalia villosae) (code 62A0)), Romania (Sub-Pannonic steppic grasslands (6240*) and Ponto-Sarmatic steppes (code 62C0*)) [125], and Kazakhstan (Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (code 6210*)) [126].
- The man-made summer fires with the aim to clean the soil in the habitat of C. hispanica subsp. hispanica (Crambetum hispanicae), when not avoidable, must be targeted to the dry component of the plant and carried out from the end of July, after the period of seed dissemination (May–June), otherwise the plants could be irreversibly damaged. As for the populations growing along the road, it is crucial that bodies responsible for road management be informed about the presence of threatened species. The species in question is linked to abandoned or extensively managed agricultural areas, which have a good naturalness (defined HNVF, high nature value farmland) due to the immediate proximity of shrubland or woodland vegetation. Therefore, one of the main threats to the survival of the species and its plant community is the current trend to use high impact agriculture, including chemical input, such as herbicides.
- Monitoring of known populations for both species.
- Maintenance of C. hispanica subsp. hispanica in Botanical Gardens for educational purposes.
- Genetic research (ad hoc) to define the gene pools of C. tataria subsp. tataria.
4.6. Ipomoea sagittata Poir
Expected Actions
- Clarify with ad hoc studies and researchers (including historical ones) if the taxon is exotic or native in Europe.
- Monitoring of populations in known areas and field surveys to find new sites, especially in the Lazio region, where there are few sites.
- Ex situ germplasm conservation is needed because it has zero accessions in the RIBES seed banks, but in situ conservation actions are also important, especially where it is highly threatened.
- Research on gene pools and the content of microelements is welcome.
- Interviews, where the taxon is more widespread (e.g., in Salento), to check possible uses.
4.7. Lathyrus amphicarpos L., Lathyrus palustris L
Expected Actions
- In situ and ex situ conservation to prevent the risk of extinction by increasing the number of existing wild populations for both Lathyrus species.
- Use in the human diet of L. amphicarpos due to good antioxidant activity present in their seeds and for the presence of high content of saturated fatty acids [162], but only after research and breeding with the aim to turn saturated fat to unsaturated fat acid content.
- Monitoring the known populations of L. amphicarpos and field surveys to find new sites because of the earlier confusion with L. cicera, which is very similar in morphology, although much more widespread in Italy.
- Specific ecological studies on L. palustris wetlands habitats, which could provide information on factors related to the maintenance of wetlands and their conservation, considering the potential benefit of use as grazing fodder, especially for buffalo [167].
- Ecological and phytosociological studies for L. amphicarpos, because information available in the literature is poor.
4.8. Vicia cusnae Foggi & Ricceri, Vicia serinica R. Uechtr. et Huter
Expected Actions
- Research in situ with monitoring programs to better understand the reproductive biology and ecology of the species and the populations trends.
- Evaluate ecological and genetic affinities between the different populations of both species.
- Phytosociological studies to define the phytosociological association and discover why similar environments produce different types of vegetation and habitats.
- Ex situ conservation for both species. For V. cusnae it is possible, because it is an orthodox species, which means that it tolerates seed drying with high levels of germination (80%) after scarification, at 21 °C [180]. The only germplasm accessions of V. cusnae are preserved at the Millennium Seed Bank of the Royal Botanic Gardens in Kew (U.K.) and those of V. serinica in the seed bank collections of the Institute of Biosciences and Bioresources (IBBR—CNR) of Bari, but both are absent in RIBES seedbanks.
- Start crossbreeding studies with V. sativa L., whose seeds are consumed by birds and often used as forage, to test their gene pools and to check their taxonomy and systematics.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perrino, E.V.; Perrino, P. Crop wild relatives: Know how past and present to improve future research, conservation and utilization strategies, especially in Italy: A review. Genet. Resour. Crop Evol. 2020, 67, 1067–1105. [Google Scholar] [CrossRef]
- Zair, W.; Maxted, N.; Brehm, J.M.; Amri, A. Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genet. Resour. Crop Evol. 2020, 68, 693–709. [Google Scholar] [CrossRef]
- Maxted, N.; Ford-Lloyd, B.V.; Kell, S.P. Crop wild relatives: Establishing the context. In Crop Wild Relative Conservation and Use; Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J., Dulloo, E., Turok, J., Eds.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Maxted, N.; Kell, S. Establishment of a Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs; Commission on Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Pimentel, D.; Wilson, C.; McCullum, C.; Huang, R.; Dwen, P.; Flack, J.; Tran, Q.; Saltman, T.; Cliff, B. Economic and environmental benefits of biodiversity. BioScience 1997, 47, 747–757. [Google Scholar] [CrossRef]
- Phillips, O.L.; Meilleur, B. Usefulness and economic potential of the rare plants of the United States: A status survey. Econ. Bot. 1998, 52, 57–67. [Google Scholar] [CrossRef]
- Maxted, N.; Ford-Lloyd, B.V.; Jury, S.L.; Kell, S.P.; Scholten, M.A. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 15, 2673–2685. [Google Scholar] [CrossRef]
- Kell, S.P.; Knüpffer, H.; Jury, S.L.; Ford-Lloyd, B.V.; Maxted, N. Crops and wild relatives of the Euro-Mediterranean region: Making and using a conservation catalogue. In Crop Wild Relative Conservation and Use; Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J., Dulloo, E., Turok, J., Eds.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Harlan, J.R.; de Wet, J.M.J. Towards a rational classification of cultivated plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Jarvis, A.; Lane, A.; Hijmans, R.J. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- McCouch, S.; Baute, G.J.; Bradeen, J.; Bramel, P.; Bretting, P.K.; Buckler, E.; Burke, J.M.; Charest, D.; Cloutier, S.; Cole, G.; et al. Agriculture: Feeding the future. Nature 2013, 499, 23–24. [Google Scholar] [CrossRef]
- Hunter, D.; Heywood, V. Crop Wild Relatives: A Manual of In Situ Conservation; Biodiversity International: Rome, Italy, 2012. [Google Scholar]
- Vincent, H.; Amri, A.; Castañeda-Álvarez, N.P.; Dempewolf, H.; Dullo, E.; Guarino, L.; Hole, D.; Mba, C.; Toledo, A.; Maxted, N. Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019, 2, 136. [Google Scholar] [CrossRef] [Green Version]
- Khaki Mponya, N.; Chanyenga, T.; Magos Brehm, J.; Maxted, N. In situ and ex situ conservation gap analyses of crop wild relatives from Malawi. Genet. Resour. Crop Evol. 2020, 68, 759–771. [Google Scholar] [CrossRef]
- FAO. International Treaty on Plant Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Magrini, S.; Atzeri, P.; Bacchetta, G.; Bedini, G.; Carasso, V.; Carta, A.; Ceriani, R.; Ciancaleoni, S.; Di Martino, L.; Di Santo, M.; et al. The Conservation of the Italian Crop Wild Relatives in the RIBES Seedbanks: First Data to Establish National Inventories and Conservation Priorities. In The RIBES Seed-Banks for the Conservation of the Crop Wild Relatives (CWR); Mariotti, M., Magrini, S., Eds.; RIBES Series 2; IRIS UniPA: Palermo, Italy, 2016; Volume 2, pp. 7–18. Available online: https://iris.unipa.it/retrieve/handle/10447/231481/425888/Magrini%20et%20al.,%202016.pdf (accessed on 23 October 2020).
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E.; et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C. Prodromo Della Vegetazione d’Italia. Check-List Sintassonomica Aggiornata di Classi, Ordini e Alleanze Presenti in Italia; Società Botanica Italiana Onlus: Roma, Italy, 2013; Available online: http://www.prodromo-vegetazione-italia.org (accessed on 20 November 2020).
- Rivas-Martínez, S. Global Bioclimatics. Clasificación Bioclimática de la Tierra, 2004. Available online: http://www.globalbioclimatics.org/book/bioc/bioc1.pdf (accessed on 21 October 2020).
- ISTAT. Consultazione Dati. 2012. Available online: http://agri.istat.it (accessed on 10 December 2012).
- Conti, F.; Manzi, A.; Pedrotti, F. Libro Rosso delle Piante d’Italia; Ministero Ambiente, WWF Italia, Società Botanica Italiana: Roma, Italy, 1992.
- Conti, F.; Manzi, A.; Pedrotti, F. Liste Rosse Regionali delle Piante d’Italia; WWF Italia, Società Botanica Italiana, CIAS: Camerino, Italy, 1997. [Google Scholar]
- Foggi, B.; Rossi, G.; Gentili, E.R. Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Vicia cusnae Foggi et Ricceri. Inform. Bot. Ital. 2008, 40, 124–126. [Google Scholar]
- Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, 2011.
- Rossi, G.; Montagnani, C.; Gargano, D.; Peruzzi, L.; Abeli, T.; Ravera, S.; Cogoni, A.; Fenu, G.; Magrini, S.; Gennai, M.; et al. Lista Rossa della Flora Italiana. 1. Policy Species e Altre Specie Minacciate; Comitato Italiano IUCN, Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Stamperia Romana: Roma, Italy, 2013.
- Rossi, G.; Orsenigo, S.; Montagnani, C.; Fenu, G.; Gargano, D.; Peruzzi, L.; Wagensommer, R.P.; Foggi, B.; Bacchetta, G.; Domina, G.; et al. Is legal protection sufficient to ensure plant conservation? The Italian Red List of policy species as a case study. Oryx 2016, 50, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Perrino, E.V.; Wagensommer, R.P. Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Aegilops uniaristata Vis. Inform. Bot. Ital. 2012, 44, 201–203. [Google Scholar]
- Perrino, E.V.; Wagensommer, R.P. Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Aegilops biuncialis Vis. Inform. Bot. Ital. 2013, 45, 119–121. [Google Scholar]
- Perrino, E.V.; Wagensommer, R.P. Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Aegilops ventricosa Tausch. Inform. Bot. Ital. 2013, 45, 323–326. [Google Scholar]
- Perrino, E.V.; Russo, G.; Turrisi, R.E.; Tomaselli, V.; Wagensommer, R.P. Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Crambe hispanica L. Inform. Bot. Ital. 2013, 45, 354–357. [Google Scholar]
- Santo, A.; Fenu, G.; Domina, G.; Bacchetta, G. Schede per una lista rossa della flora vascolare e crittogamica italiana: Brassica insularis Moris. Inform. Bot. Ital. 2013, 45, 127–130. [Google Scholar]
- Orsenigo, S.; Fenu, G.; Gargano, D.; Montagnani, C.; Abeli, T.; Alessandrini, A.; Bacchetta, G.; Bartolucci, F.; Carta, A.; Castello, M.; et al. Red list of threatened vascular plants in Italy. Plant Biosyst. 2020. [Google Scholar] [CrossRef]
- Convention on the Conservation of European Wildlife and Natural Habitats (1979) Adopted in Berne 19 September 1979. Available online: https://www.coe.int/en/web/bern-convention (accessed on 19 November 2020).
- European Commission. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora, 1995–2007. Available online: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML (accessed on 19 November 2020).
- Landucci, F.; Panella, L.; Lucarini, D.; Gigante, D.; Donnini, D.; Kell, S.; Maxted, N.; Venanzoni, R.; Negri, V. A prioritized inventory of crop wild relatives and wild harvested plants of Italy. Crop Sci. 2014, 54, 1628–1644. [Google Scholar] [CrossRef]
- Vincent, H.; Wiersema, J.; Kell, S.; Fielder, H.; Dobbie, S.; Castañeda-Álvarez, N.P.; Guarino, L.; Eastwood, R.; León, B.; Maxted, N. A prioritized crop wild relative inventory to help underpin global food security. Biol. Conserv. 2013, 167, 265–275. [Google Scholar] [CrossRef]
- Orsenigo, S.; Montagnani, C.; Fenu, G.; Gargano, D.; Peruzzi, L.; Abeli, T.; Alessandrini, A.; Bacchetta, G.; Bartolucci, F.; Bovio, M.; et al. Red Listing plants under full national responsibility: Extinction risk and threats in the vascular flora endemic to Italy. Biol. Conserv. 2018, 224, 213–222. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C.; Burrascano, S.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; et al. Italian Interpretation Manual of the Habitats (92/43/EEC Directive); Ministry of Environment, Land and Sea Protection, 2010. Available online: http://vnr.unipg.it/habitat/ (accessed on 18 November 2020).
- Thiyagarajan, K.; Latini, A.; Cantale, C.; Galeffi, P. Structural characterization of the DRF1 gene of Aegilops speltoides and comparison of its sequence with those of B and other Triticeae genomes. Euphytica 2020, 216, 152. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2007, 302, 1–17. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Velu, G.; Singh, R.P.; Crespo-Herrera, L.; Juliana, P.; Dreisigacker, S.; Valluru, R.; Stangoulis, J.; Singh Sohu, V.; Singh Mavi, G.; Mishra, V.K.; et al. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci. Rep. 2018, 8, 13526. [Google Scholar] [CrossRef]
- Cakmak, I.; Pfeiffer, W.H.; Mcclafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Rawat, N.; Tiwari, V.K.; Singh, N.; Randhawa, G.S.; Singh, K.; Chhuneja, P.; Dhaliwal, H.S. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet. Resour. Crop Evol. 2009, 56, 53–64. [Google Scholar] [CrossRef]
- Loureiro, I.; Escorial, M.C.; García-Baudin, J.M.; Chueca, M.C. Hybridization between wheat (Triticum aestivum) and the wild species Aegilops geniculata and A. biuncialis under experimental field conditions. Agric. Ecosyst. Environ. 2006, 120, 384–390. [Google Scholar] [CrossRef]
- Chennaveeraiah, M.S. Karyomorphologic and Cytotaxonomic Studies in Aegilops. Acta Hort. Gothoburg. 1960, 23, 89–231. [Google Scholar]
- Waines, J.G.; Barnhart, D. Biosystematic research in Aegilops and Triticum. Hereditas 1992, 116, 207–212. [Google Scholar] [CrossRef]
- Bogdanović, S.; Ljubičić, I.; Clementi, M. Aegilops uniaristata Vis. (Poaceae): Typification and occurrence in Croatia. Acta Bot. Croat. 2015, 74, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cabi, E.; Dogan, M.; Özler, H.; Akaydin, G.; Karagöz, A. Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae). Afr. J. Agric. Res. 2010, 5, 2841–2849. [Google Scholar]
- Perrino, E.V.; Wagensommer, R.P.; Medagli, P. The genus Aegilops L. (Poaceae) in Italy: Taxonomy, geographical distribution, ecology, vulnerability and conservation. Syst. Biodivers. 2014, 12, 331–349. [Google Scholar] [CrossRef]
- Zaharieva, M.; Monneveux, P. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its relatives in Europe. Crop Sci. 2006, 46, 512–527. [Google Scholar] [CrossRef]
- Perrino, E.V. New data on Aegilops uniaristata Vis. endangered taxon in Italy. Nat. Croat. 2011, 20, 117–123. [Google Scholar]
- Bellakhdar, J. La Pharmacopée Marocaine Traditionnelle: Médecine Arabe Ancienne et Savoir Populaires; Ibis Press: Paris, France, 1997. [Google Scholar]
- Abderrahim, O.; Martin, G.J.; Abdelaziz, A. Botanical identification and ethno-medicinal uses of some underground part of medicinal plants collected and traded in Marrakech region. J. Med. Plants Res. 2013, 7, 2165–2169. [Google Scholar] [CrossRef] [Green Version]
- Darias, V.; Martín-Herrera, D.; Abdala, S.; de la Fuente, D. Plants Used in Urinary Pathologies in the Canary Islands. Pharm. Biol. 2001, 39, 170–180. [Google Scholar] [CrossRef]
- Raimondo, F.M.; Bazan, G. Una nuova associazione a palma nana della Sicilia sud-occidentale. In Proceedings of the 44th Congresso Società Italiana di Scienza della Vegetazione, Ravenna, Italy, 27–29 February 2008; p. 66. [Google Scholar]
- López Darias, M.; Nogales, M. Effects of the invasive Barbary ground squirrel (Atlantoxerus getulus) on seed dispersal systems of insular xeric environments. J. Arid Environ. 2008, 72, 926–939. [Google Scholar] [CrossRef]
- Padilla, D.P.; González-Castro, A.; Nogales, M. Significance and extent of secondary seed dispersal by predatory birds on oceanic islands: The case of the Canary archipelago. J. Ecol. 2012, 100, 416–427. [Google Scholar] [CrossRef]
- Borgen, L. Chromosome numbers of vascular plants from the Canary Islands, with special reference to the occurrence of polyploidy. Nytt Mag. Bot. 1969, 16, 81–121. [Google Scholar]
- Nogales, M.; González-Castro, A.; Marrero, P.; Bonnaud, E.; Traveset, A. Contrasting Selective Pressures on Seed Traits of Two Congeneric Species by Their Main Native Guilds of Dispersers on Islands. PLoS ONE 2013, 8, e63266. [Google Scholar] [CrossRef] [Green Version]
- Biancardi, E.; Panella, L.W.; Lewellen, R.T. Beta Maritima: The Origin of Beets; Springer: New York, NY, USA, 2012. [Google Scholar]
- Laface, V.L.A.; Musarella, C.M.; Cano Ortiz, A.; Quinto Canas, R.; Cannavò, S.; Spampinato, G. Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy). Plants 2020, 9, 1181. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro de Carvalho, M.A.A.; Nóbrega, H.; Frese, L.; Freitas, G.; Abreu, U.; Costa, G.; Fontinha, S. Distribution and abundance of Beta patula Aiton and other crop wild relatives of cultivated beets on Madeira. J. Kult. 2010, 62, 357–366. [Google Scholar]
- Frese, L.; Demeijer, E.; Letschert, J. New wild beetgenetic resources from Portugal and Spain. Zuckerindustrie 1990, 115, 950–955. [Google Scholar]
- Kadereit, G.; Hohmann, S.; Kadereit, J.W. Asynopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia 2006, 36, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Leys, M.; Petit, E.J.; El-Bahloul, Y.; Liso, C.; Fournet, S.; Arnaud, J.F. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol. Evol. 2014, 4, 1828–1852. [Google Scholar] [CrossRef]
- Castro, S.; Romeiras, M.M.; Castro, M.; Duarte, M.C.; Loureiro, J. Hidden diversity in wild Beta taxa from Portugal: Insights from genome size and ploidy level estimations using flow cytometry. Plant Sci. 2013, 207, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Lange, W.; Debock, T.S.M. The diploidised meiosis of tetraploid Beta macrocarpa and its possible application in breeding sugar-beet. Plant Breed. 1989, 103, 196–206. [Google Scholar] [CrossRef]
- Kishima, Y.; Mikami, T.; Hirai, A.; Sugiura, M.; Kinoshita, T. Beta chloroplast genomes: Analysis offraction I protein and chloroplast DNA variation. Theor. Appl. Genet. 1987, 73, 330–336. [Google Scholar] [CrossRef]
- Bartsch, D.; Ellstrand, N.C. Genetic evidence for the origin of Californian wild beets (genus Beta). Theor. Appl. Genet. 1999, 99, 1120–1130. [Google Scholar] [CrossRef]
- Ford-Lloyd, B. Beta adanensis. The IUCN Red List of Threatened Species 2011: E.T165230A5993528. 2011. Available online: https://www.iucnredlist.org/species/165230/5993528 (accessed on 23 October 2020).
- Duarte, M.C.; Draper Munt, D.; Branca, F.; Donnini, D.; Tavares, M. Beta macrocarpa. The IUCN Red List of Threatened Species 2011: E.T169911A6689398. 2011. Available online: https://www.iucnredlist.org/species/169911/6689398 (accessed on 23 October 2020).
- Carvalho, M.; Frese, L.; Duarte, M.C.; Magos Brehm, J.; Tavares, M.; Santos Guerra, A.; Draper, D. Beta patula. The IUCN Red List of Threatened Species 2011: E.T162088A5532483. 2011. Available online: https://www.iucnredlist.org/species/162088/5532483 (accessed on 23 October 2020).
- Wagensommer, R.P.; Fröhlich, T.; Fröhlich, M. First record of the southeast European species Cerinthe retorta Sibth. & Sm. (Boraginaceae) in Italy and considerations on its distribution and conservation status. Acta Bot. Gall. Bot. Lett. 2014, 161, 111–115. [Google Scholar] [CrossRef]
- Hessini, K.; Jeddi, K.; El Shaer, H.M.; Smaoui, A.; Ben Salem, H.; Siddique, K.H.M. Potential of herbaceous vegetation as animal feed in semi-arid Mediterranean saline environments: The case for Tunisia. Agron. J. 2020, 112, 2445–2455. [Google Scholar] [CrossRef]
- Mei, J.; Li, O.; Yang, X.; Qian, L.; Liu, L.; Yin, J.; Frauen, M.; Li, J.; Qian, W. Genomic relationships between wild and cultivated Brassica oleracea L. with emphasis on the origination of cultivated crops. Genet. Resour. Crop Evol. 2010, 57, 687–692. [Google Scholar] [CrossRef]
- Stork, A.L.; Snogerup, S.; Wüest, J. Seed characters in Brassica section Brassica and some related groups. Candollea 1980, 35, 421–450. [Google Scholar]
- Snogerup, S.; Gustafsson, M.; von Bothmer, R. Brassica sect Brassica (Brassicaceae). I. Taxonomy and Variation. Willdenowia 1990, 19, 271–365. [Google Scholar]
- Gómez-Campo, C. Collection, preservation and distribution of wild genetic resources. In Biology and Breeding of Crucifers; Gupta, S.K., Ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Snogerup, S.; Persson, D. Hybridization between Brassica insularis Moris and Brassica balearica Pers. Hereditas 1983, 99, 187–190. [Google Scholar] [CrossRef]
- Hurtrez-Boussès, S. Genetic differentiation among natural populations of the rare Corsican endemic Brassica insularis Moris: Implications for conservation guidelines. Biol. Conserv. 1996, 76, 25–30. [Google Scholar] [CrossRef]
- Maggioni, L.; Alessandrini, A. The occurrence of Brassica montana Pourr. (Brassicaceae) in the Italian regions of Emilia-Romagna and Marche, and in the Republic of San Marino. Ital. Bot. 2019, 7, 1–16. [Google Scholar] [CrossRef]
- Biondi, E.; Gubellini, L.; Pinzi, M.; Casavecchia, S. The vascular flora of Conero Regional Nature Park (Marche, Central Italy). Flora Mediterr. 2012, 22, 67–167. [Google Scholar] [CrossRef]
- Santo, A.; Mattana, E.; Frigau, L.; Marzo Pastor, A.; Picher Morelló, M.C.; Bacchetta, G. Effects of NaCl stress on seed germination and seedling development of Brassica insularis Moris (Brassicaceae). Plant Biol. 2017, 19, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Noël, F.; Maurice, S.; Mignot, A.; Glémin, S.; Carbonell, D.; Justy, F.; Guyot, I.; Olivieri, I.; Petit, C. Interaction of climate, demography and genetics: A ten-year study of Brassica insularis, a narrow endemic Mediterranean species. Conserv. Genet. 2010, 11, 509–526. [Google Scholar] [CrossRef]
- Gustafsson, M.; Lannér-Herrera, C. Overview of the Brassica oleracea complex: Their distribution and ecological specificities. Bocconea 1997, 7, 27–37. [Google Scholar]
- Mei, J.; Li, J.; Li, Q.; Yang, X.; Yin, J.; Cai, D.; Frauen, M.; Qian, W. Identification of Sclerotinia sclerotiorum resistance within Brassica oleracea. In Proceedings of the ISHS Brassica Symposium, 16th Crucifer Genetics Workshop, Lillehammer, Norway, 8–12 September 2008; p. 81. [Google Scholar]
- Mithen, R.F.; Lewis, B.G.; Heaney, R.K.; Fenwick, G.R. Resistance of leaves of Brassica species to Leptosphaeria maculans. Trans. Br. Mycol. Soc. 1987, 88, 525–531. [Google Scholar] [CrossRef]
- Mithen, R.F.; Magrath, R. Glucosinolates and resistance to Leptosphaeria maculans in wild and cultivated Brassica species. Plant Breed. 1992, 108, 60–68. [Google Scholar] [CrossRef]
- Ramsey, A.D.; Ellis, P.R. Resistance in wild Brassicas to the cabbage whitefly, Aleyrodes proletella. Acta Hortic. 1996, 407, 507–514. [Google Scholar] [CrossRef]
- Ellis, P.R.; Pink, D.A.C.; Barber, N.E.; Mead, A. Identification of high levels of resistance to cabbage root fly, Delia radicum, in wild Brassica species. Euphytica 1999, 110, 207–214. [Google Scholar] [CrossRef]
- Horn, P.J.; Vaughan, J.G. Seed glucosinolates of fourteen wild Brassica species. Phytochemistry 1983, 22, 465–471. [Google Scholar] [CrossRef]
- Velasco, L.; Becker, H.C. Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet. Resour. Crop Evol. 2000, 47, 231–238. [Google Scholar] [CrossRef]
- Warwick, S.I.; Francis, A.; Gugel, R.K. Guide to Wild Germplasm of Brassica and Allied Crops (Tribe Brassiceae, Brassicaceae), 3rd ed.; Part IV—Wild Crucifer Species as Sources of Agronomic Traits; 2009; Available online: http://www.brassica.info/info/publications/guidewild/Guide_ed3_PART%20IV_16July2009.pdf (accessed on 15 October 2020).
- Pelgrom, K.T.B.; Broekgaarden, C.; Voorrips, R.E.; Bas, N.; Visser, R.G.F.; Vosman, B. Host plant resistance towards the cabbage whitefly in Brassica oleracea and its wild relatives. Euphythica 2015, 202, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Holsinger, K.E.; Gottlieb, L.D. Conservation of rare and endangered plants: Principles and prospects. In Genetics and Conservation of Rare Plants; Falk, D.A., Holsinger, K.E., Eds.; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Hamrick, J.L.; Godt, M.J.W.; Murawski, D.A.; Loveless, M.D. Correlation between species traits andallozyme diversity: Implications for conservation biology. In Genetics and Conservation of Rare Plants; Falk, D.A., Holsinger, K.E., Eds.; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Ruiz de la Torre, J. Conservation of Plant Species Within Their Native Ecosystems. In Plant Conservation in the Mediterranean; Gomez-Campo, C., Ed.; Junk Publishers: The Hague, The Netherlands, 1985; pp. 197–219. [Google Scholar]
- Tito, G.A.; Chaves, L.H.G.; Fernandes, J.D.; Monteiro, D.R.; Vasconcelos, A.C.F.D. Effect of Copper, Zinc, Cadmium and Chromium in the Growth of Crambe. Agric. Sci. 2014, 5, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Tutus, A.; Comlekcioglu, N.; Karaman, S.; Alma, M.H. Chemical composition and fiber properties of Crambe orientalis and Crambe tataria. Int. J. Agric. Biol. 2010, 12, 286–290. [Google Scholar]
- Comlekcioglu, N.; Karaman, S.; Ilcim, A. Oil composition and some morphological characters of Crambe orientalis var. orientalis and Crambe tataria var. tataria from Turkey. Nat. Prod. Res. 2008, 22, 525–532. [Google Scholar] [CrossRef]
- Leppik, E.; White, G. Preliminary Assessment of Crambe germplasm resources. Euphytica 1975, 24, 681–689. [Google Scholar] [CrossRef]
- Mcgregor, W.G.; Plessers, A.G.; Craig, B.M. Species trials with oil plants, I. Crambe. Can. J. Plant Sci. 1961, 41, 716–719. [Google Scholar] [CrossRef]
- White, G.A.; Higgins, J.J. Culture of Crambe a new industrial oilseed crop. ARS, USDA. Prod. Res. Rep. 1966, 95, 1–20. [Google Scholar]
- Bassegio, D.; Zanotto, M.D.; Santos, R.F.; Werncke, I.; Dias, P.P.; Olivo, M. Oilseed crop Crambe as a source of renewable energy in Brazil. Renew. Sust. Energ. Rev. 2016, 66, 311–321. [Google Scholar] [CrossRef]
- Perrino, P. Risultati di una esplorazione e raccolta di Crambe (Crambe hispanica L.). In Proceedings of the 5th Simposio Nazionale Sulla Conservazione Della Natura, Bari, Italy, 22–27 April 1975; Volume I, pp. 283–292. [Google Scholar]
- Laghetti, G.; Piergiovanni, A.R.; Perrino, P. Yield and oil quality in selected lines of Crambe abyssinica Hochst. ex R.E. Fries and C. hispanica L. grown in Italy. Ind. Crops Prod. 1995, 4, 203–212. [Google Scholar] [CrossRef]
- Perrino, P.; Laghetti, G.; Caliandro, A.; Marzi, V.; Galoppini, C.; Tomassini, C.; Porceddu, E.; Scarascia Mugnozza, G.T. Il Crambe (Crambe abyssinica Hochst. ex R.E. Fries): Una nuova e promettente oleifera industriale. Agric. Ric. 1992, 131, 41–50. [Google Scholar]
- Liang, J.; Shu, J. Crambe L. In Flora of China; Wu, Z., Raven, P.H., Eds.; Science Press: Beijing, China, 2001; Volume 8, p. 26. [Google Scholar]
- Kaplan, Z. Flora and phytogeography of the Czech Republic. Preslia 2012, 84, 505–573. [Google Scholar]
- de Candolle, A.P. Crambe L. In Regni Vegetabilis Systema Naturale 2; Treuttel et Würtz: Paris, France, 1821. [Google Scholar]
- Prina, A. Taxonomic review of the genus Crambe sect. Crambe (Brassicaceae, Brassiceae). An. Jard. Bot. Madr. 2009, 66, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Greuter, W.; Burdet, H.M.; Long, G. Med-Checklist 3; Conservatoire et Jardin Botaniques: Geneva Switzerland; Botanischer Garten & Botanisches Museum: Berlin, Germany, 1986. [Google Scholar]
- Yildiztugay, E.; Küçüködük, M.; Özel, M.; ÖZDEMİR, C. A New Record for the Flora of Turkey: Crambe hispanica L. (Brassicaceae). Turk. J. Bot. 2009, 33, 227–230. [Google Scholar]
- Marhold, K. Brassicaceae. Euro+Med Plantbase—The Information Resource for Euro-356. 2011. Available online: http://ww2.bgbm.org/EuroPlusMed/query.asp (accessed on 21 October 2020).
- Piovan, A.; Cassina, G.; Filippini, R. Crambe tataria: Actions for ex situ conservation. Biodivers. Conserv. 2011, 20, 359–371. [Google Scholar] [CrossRef]
- Perrino, E.V.; Tomaselli, V.; Signorile, G.; Angiulli, F.; Silletti, G. Vegetation with Crambe hispanica L. in Apulia Region (Vegetazione a Crambe hispanica L. in Puglia). Fitosociologia 2011, 48, 99–107. [Google Scholar]
- Cristaudo, A.; Margani, I. Specie nuove ed interessanti per la Flora Siciliana. Inform. Bot. Ital. 2005, 37, 1153–1159. [Google Scholar]
- Scelsi, F.; Spampinato, G. Segnalazione di nuovi reperti per la flora dell’Aspromonte (Italia meridionale). Giorn. Bota. Ital. 1994, 128, 384. [Google Scholar] [CrossRef]
- Perrino, E.V.; Tomaselli, V.; Perrino, P. Conservation in Situ and ex Situ of Crambe hispanica L. (Gargano Mountain, Apulia). Ital. J. Agron. 2009, 4, 431–436. [Google Scholar]
- Chiapella Feoli, L.; Poldini, L. Prati e pascoli del Friuli (NE Italia) su substrati basici. Stud. Geobot. 1995, 13, 3–140. [Google Scholar]
- Löve, A. IOPB Chromosome Number Reports LXI. Taxon 1978, 27, 375–392. [Google Scholar] [CrossRef]
- Kupriianov, A.N.; Turalin, B.A.; Kurbatova, N.V.; Kurmanbaeva, M.S.; Abidkulova, K.T.; Bazargalieva, A.A. Features of age-related conditions of the Crambe tataria Sebeók in Western Kazakhstan. EurAsian J. Biosci. 2020, 14, 177–182. [Google Scholar]
- Oroian, S.; Sămăghiţan, M.; Tănase, C. Plants species of community interest identified in the flora of the Transylvanian plain (Mureş County). Stud. Univ. Vasile Goldiş Ser. Ştiinţele Vieţii 2017, 27, 209–214. [Google Scholar]
- Demina, O.; Bragina, T. Fundamental basis for the conservation of biodiversity of the Black Sea-Kazakh Steppes. Hacquetia 2014, 13, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Rivera, D.; Matilla, G.; Obón, C.; Alcaraz, F. Plants and Humans in the Near East and the Caucasus: Ancient and Traditional Uses of Plants as Food and Medicine: An Ethnobotanical Diachronic Review; Ediciones de la Universidad de Murcia: Murcia, Spain, 2012; Volume 2. [Google Scholar]
- Von Raab-Straube, E. Convolvulaceae. Euro+Med Plantbase—The Information Resource for Euro-Mediterranean Plant DiverSity. 2018. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 10 November 2020).
- Austin, D.F. Salt Marsh Morning-glory (Ipomoea sagittata, Convolvulaceae)—An Amphi-Atlantic Species. Econ. Bot. 2014, 68, 203–219. [Google Scholar] [CrossRef]
- Wood, J.R.I.; Muñoz-Rodríguez, P.; Williams, B.R.M.; Scotland, R.W. A foundation monograph of Ipomoea in the New World. PhytoKeys 2020, 143, 1–823. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, S. Ipomoea L. In Flora Iberica; Castroviejo, S., Aedo, C., Laínz, M., Muñoz Garmendia, F., Nieto Feliner, G., Paiva, J., Benedí, C., Eds.; Real Jardín Botánico, CSIC: Madrid, Spain, 2012; Volume 11, pp. 279–286. [Google Scholar]
- Bartolucci, F.; Domina, G.; Alessandrini, A.; Angiolini, C.; Ardenghi, N.M.G.; Bacchetta, G.; Banfi, E.; Bolpagni, R.; Bonari, G.; Bräuchler, C.; et al. Notulae to the Italian native vascular flora: 7. Ital. Bot. 2019, 7, 125–148. [Google Scholar] [CrossRef] [Green Version]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S.; et al. An updated checklist of the vascular flora alien to Italy. Plant Biosyst. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- Medagli, P.; Bianco, P.; D’Emerico, S.; Ruggiero, L.; Gennaio, R.; Scarpina, L. Nuove stazioni e distribuzione in Italia di Ipomoea sagittata Poiret (Fam. Convolvulaceae). Thalass. Salent. 1994, 20, 17–19. [Google Scholar]
- Medagli, P. La Riserva Naturale delle Cesine in Provincia di Lecce. Osservazioni sull’ambiente vegetale. Quad. Cent. Stud. Geot. Ing. 1981, 3, 5–16. [Google Scholar]
- Bianco, P.; Gabrieli Tommasi, I.; Medagli, P. Nuove stazioni pugliesi e scheda palinologica di Ipomoea sagittata Poiret, entità anfiatlantica subtropicale. Inform. Bot. Ital. 1986, 18, 85–93. [Google Scholar]
- Géhu, J.M.; Biondi, E. Données sur la vegetation des ceintures d’atterrissement des Lacs Alimini (Salento, Italie). Doc. Phytosoc. 1988, 11, 353–378. [Google Scholar]
- Domina, G.; Ciccarello, S.; Scafidi, F. Sesbania punicea (Cav.) Benth. (Fabaceae). Notulae alla flora esotica d’Italia 12 (244). Inform. Bot. Ital. 2015, 47, 77. [Google Scholar]
- Brullo, S.; Scelsi, F.; Siracusa, G. Contributo alla conoscenza della vegetazione terofitica della Sicilia occidentale. Boll. Acc. Gioenia Sci. Nat. 1994, 27, 341–365. [Google Scholar]
- Pasta, S.; La Mantia, T. Lineamenti della flora e della vegetazione dell’area della Riserva Naturale “Grotta di Santa Ninfa”. Nat. Sicil. 2001, 25, 271–297. [Google Scholar]
- Troia, A.; Napolitano, T. Segnalazioni floristiche e vegetazionali per le zone umide costiere del territorio di Petrosino (Sicilia occidentale). Nat. Sicil. 2017, 41, 25–34. [Google Scholar]
- Maiorca, G.; Spampinato, G.; Caprio, A. Flora e vegetazione dei laghi costieri La Vota (Calabria centro-occidentale). Fitosociologia 2002, 39, 81–108. [Google Scholar]
- Cervini, M.; Tramonti, P. Studio di Fattibilita’ per la Pianificazione Territoriale e la Gestione dei Monumenti Naturali del Parco Regionale dei Monti Ausoni e Lago di Fondi e per il Programma Pluriennale di Promozione Economica e Sociale. 2009. Available online: http://www.cervini.it/bbb/file_content/fl19.pdf (accessed on 20 November 2020).
- Preet, R.; Gupta, R.C. Meiotic studies of the Convolvulaceae Juss. from Indian Hot Desert. Chromosome Bot. 2018, 12, 77–85. [Google Scholar]
- Tomaselli, V.; Di Pietro, R.; Sciandrello, S. Plant communities structure and composition in three coastal wetlands in southern Apulia (Italy). Biologia 2011, 66/6, 1027–1043. [Google Scholar] [CrossRef]
- Biondi, E.; Casavecchia, S.; Guerra, V. Analysis of vegetation diversity in relation to the geomorphological characteristics in the Salento coasts (Apulia—Italy). Fitosociologia 2006, 43, 25–38. [Google Scholar]
- Troia, A.; Adragna, F.; Campisi, P.; Campo, G.; Dia, M.; Ilardi, V.; La Mantia, T.; La Rosa, A.; Lo Valvo, M.; Muscarella, C.; et al. I pantani di Anguillara (Calatafimi Segesta, Trapani): Dati preliminari sulla biodiversità a supporto della tutela del biotopo. Nat. Sicil. 2016, 40, 171–200. [Google Scholar]
- Roberts, R.A. Sweetpotato weevil . In Insects, the Yearbook of Agriculture; Stefferud, A., Ed.; U.S. Department of Agriculture: Washington, DC, USA, 1952; pp. 527–553. [Google Scholar]
- Kearney, J.; Smartt, J. The grasspea Lathyrus sativus (Leguminosae-Papilionoideae). In Evolution of Crop Plants; Simmonds, N.W., Ed.; Longman: New York, NY, USA, 1976. [Google Scholar]
- Yunus, A.G.; Jackson, M.T. The gene pools of the grasspea (Lathyrus sativus L.). Plant Breed. 1991, 106, 319–328. [Google Scholar] [CrossRef]
- Heywood, V.; Casas, A.; Ford-Lloyd, B.; Kell, S.; Maxted, N. Conservation and sustainable use of crop wild relatives. Agric. Ecosyst. Environ. 2007, 121, 245–255. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Rubiales, D. Lathyrus diversity: Available resources with relevance to crop improvement—L. sativus and L. cicera as case studies. Ann. Bot. 2014, 113, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Khawaja, H.I.T.; Ellis, J.R.; Sybenga, J. Cytogenetics of Lathyrus palustris, a natural autohexaploid. Genome 1995, 38, 827–831. [Google Scholar] [CrossRef]
- Ali, H.B.M.; Osman, S.A. Ribosomal DNA localization on Lathyrus species chromosomes by FISH. J. Genet. Eng. Biotechnol. 2020, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Roskov, Y.; Zarucchi, J.; Novoselova, M.; Bisby, F. ILDIS: World Database of Legumes (version 12, May 2014). In Species 2000 and ITIS Catalogue of Life; Roskov, Y., Ower, G., Orrell, T., Nicolson, D., Bailly, N., Kirk, P.M., Bourgoin, T., DeWalt, R.E., Decock, W., van Nieukerken, E., Eds.; Naturalis: Leiden, The Netherlands, 2020; Available online: http://www.catalogueoflife.org/col. (accessed on 15 November 2020).
- Lucchese, F.; Lattanzi, E. Una specie nuova per l’Italia peninsulare: Lathyrus amphicarpos L. (=L. quadrimarginalus Bory et Chaub.) nel Lazio. Arch. Bot. Ital. 1988, 64, 93–101. [Google Scholar]
- Anzalone, B.; Iberite, M.; Lattanzi, E. La Flora vascolare del Lazio. Inform. Bot. Ital. 2010, 42, 187–317. [Google Scholar]
- Caldarella, O.; Gianguzzi, L.; Romano, S.; Fici, S. The vascular flora of Nature Reserve “Pizzo Cane, Pizzo Trigna and Grotta Mazzamuto” (NW Sicily). Webbia 2009, 64, 101–151. [Google Scholar] [CrossRef]
- Gianguzzi, L.; Geraci, A.; Certa, G. Note corologiche ed ecologiche su taxa indigeni ed esotici della flora vascolare Siciliana. Nat. Sicil. 1995, 4, 39–62. [Google Scholar]
- Wagensommer, R.P.; Marrese, M.; Perrino, E.V.; Bartolucci, F.; Cancellieri, L.; Carruggio, F.; Conti, F.; Di Pietro, R.; Fortini, P.; Galasso, G.; et al. Contributo alla conoscenza floristica della Puglia: Resoconto dell’escursione del Gruppo di Floristica (S.B.I.) nel 2011 nel settore meridionale dei Monti della Daunia. Inform. Bot. Ital. 2014, 46, 175–208. [Google Scholar]
- Pastor-Cavada, E.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT 2009, 42, 705–709. [Google Scholar] [CrossRef]
- Pastor-Cavada, E.; Pastor, J.E.; Juan, R.; Vioque, J. Nutritional Characterization of Wild Legumes (Lathyrus and Vicia Genera); Satou, H., Nakamura, R., Eds.; Chapter 2; Legumes—Type Nutritional Composition and Health Benefitss; Nova Science Publishers: New York, NY, USA, 2013; pp. 41–92. [Google Scholar]
- Zoric, L.; Merkulov, L.; Lukovik, J.; Boza, P.; Krstic, B. Evaluation of forage quality of Lathyrus L. species based on histological characteristics. Acta Agron. Hung. 2011, 59, 47–55. [Google Scholar] [CrossRef]
- Przybylska, J.; Zimniak-Przybylska, Z.; Krajewski, P. Diversity of seed albumins in some Lathyrus species related to L. sativus L.: An electrophoretic study. Genet. Resour. Crop Evol. 1999, 46, 261–266. [Google Scholar] [CrossRef]
- Lasen, C. Descrizione degli Habitat dell’Alto Adige; Provincia Autonoma di Bolzano-Alto Adige, Ripartizione Natura, Paesaggio e Sviluppo del Territorio: Bolzano, Italy, 2017. [Google Scholar]
- Angelini, P.; Bianco, P.; Cardillo, A.; Francescato, C.; Oriolo, G. Gli Habitat in Carta della Natura: Schede Descrittive degli Habitat per la Cartografia alla Scala 1:50.000; ISPRA, SystemCart S.r.l.: Roma, Italy, 2009; p. 335. [Google Scholar]
- Perrino, E.V.; Magazzini, P.; Musarella, C. Management of grazing “buffalo” to preserve habitats by Directive 92/43 EEC in a wetland protected area of the Mediterranean coast: Palude Frattarolo, Apulia, Italy. Euro Mediterr. J. Environ. Integr. 2020. accepted. [Google Scholar] [CrossRef]
- Caputo, G. Significato dei rapporti tra Vicia serinica Uechtr. et Huter e Vicia argentea Lupeyr. Delpinoa 1967, 9, 65–74. [Google Scholar]
- Foggi, B.; Ricceri, C. Vicia cusnae Foggi et Ricceri, sp. nov. (Leguminosae) nell’Appennino settentrionale. Webbia 1989, 43, 25–31. [Google Scholar] [CrossRef]
- Davis, P.H. Flora of Turkey and the East Aegean Islands 3; Edinburgh University Press: Edinburgh, UK, 1970. [Google Scholar]
- Alessandrini, A.; Branchetti, G. Flora Reggiana; Cierre Edizioni: Verona, Italy, 1997. [Google Scholar]
- Greuter, W.; Burdet, H.M.; Long, G. Med-Checklist 4; Conservatoire et Jardin Botanique: Geneva, Switzerland; Botanischer Garten & Botanisches Museum: Berlin, Germany, 1989. [Google Scholar]
- Gustavsson, L.A. Floristic reports from the high mountains of Sterea Ellas, Greece, 1. Bot. Not. 1978, 131, 7–25. [Google Scholar]
- Strid, A.; Papanicolaou, K. Floristic notes from the mountains of Northern Greece. Materials for the Mountain Flora of Greece, 7. Nord. J. Bot. 1981, 1, 66–82. [Google Scholar] [CrossRef]
- Caputo, G. Vicia serinica Uechtr et Huter, endemica orofila del massiccio del Sirino (Appennino Lucano). Cenni storici, ecologia e cariologia. Delpinoa 1966–1967, 8–9, 37–56. [Google Scholar]
- Tomaselli, V.; Cimmarusti, G.; Forte, L.; Perrino, P. Caratterizzazione ecologica e fitosociologica dei popolamenti a Vicia serinica Uechtr et Huter del Massiccio del Sirino-Papa (Basilicata—Pz). In Proceedings of the 42th Congress “Le foreste d’Italia: Dalla Conoscenza alla Gestione”, Potenza and Matera, Italy, 20–23 June 2006; pp. 69–70. [Google Scholar]
- Favarger, C.; Contandriopoulos, J. Essai sur l’endemisme. Bull. Soc. Bot. Suisse 1961, 71, 384–408. [Google Scholar]
- Van Rheede Van Oudshoorn, K.; Van Rooyen, M.W. Dispersal Biology of Desert Plants: Adaptations of Desert Organism; Springer: Berlin, Germany, 1999. [Google Scholar]
- Olivier, L.; Galland, J.P.; Maurin, H. Livre Rouge de la Flore Menacée de France; Collection Patrimoines Naturels No. 20; Museo National d’Histoire Naturelle, Conservatoire Botanique National du Porquerolles, Ministère de l’Environnement: Paris, France, 1995. [Google Scholar]
- Flynn, S.; Turner, R.M.; Stuppy, W.H. Seed Information Database. 2006. Available online: http://data.kew.org/sid/ (accessed on 21 November 2020).
Taxa | IT | IS | 1 | ‡2 | ‡3 | ‡4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aegilops biuncialis | X | X | LC | CR | VU 1 | |||||||
Aegilops uniaristata | X | X | LC | EN | DD | V | VU | VU 2 | ||||
Aegilops ventricosa | X | X | LC | VU 3 | ||||||||
Asparagus pastorianus | X | X | VU | VU | VU | NT 2 | ||||||
Beta macrocarpa | X | X | EN | |||||||||
Brassica insularis | X | X | NT | EN | NT | NT 1 | NT 4 | X | X | |||
Brassica montana | X | X | LC | VU | VU 2 | |||||||
Crambe hispanica subsp. hispanica | X | LC | EW | VU 5 | ||||||||
Crambe tataria subsp. tataria | X | LC | VU | V | NT | NT 1 | X | |||||
Ipomoea sagittata | X | X | VU | EN | EN | E | ||||||
Lathyrus amphicarpos | X | X | NT | LR | LR | R | ||||||
Lathyrus palustris | X | X | EN | EN 2 | ||||||||
Vicia cusnae | X | X | LR | R | VU | VU 6 | ||||||
Vicia serinica | X | X | LR | R | EN 2 |
Taxa | Ex Situ Priority Conservation | In Situ Priority Conservation | Syntaxon/Habitat (Code) | ||
---|---|---|---|---|---|
HP | NP | ZP | A | ||
Aegilops biuncialis | X | X | (6220*) | ||
Aegilops uniaristata | X | X | (6220*) | ||
Aegilops ventricosa | X | X | (6220*) | ||
Asparagus pastorianus | X | X | Asparago pastoriani-Chamaeropetum humilis | ||
Beta macrocarpa | X | X | ? | ||
Brassica insularis | X | X | ? | ||
Brassica montana | X | X | Reichardio maritimae-Brassicetum robertianae | ||
Crambe hispanica subsp. hispanica | X | X | Crambetum hispanicae | ||
Crambe tataria subsp. tataria | X | X | Centaureo-Globularietum cordifoliae (62A0) | ||
Ipomoea sagittata | X | X | Calystegion sepium (6430) | ||
Lathyrus amphicarpos | X | X | ? | ||
Lathyrus palustris | X | X | Molinio-Arrhenatheretea (6410, 6420) | ||
Vicia cusnae | X | X | Thlaspion rotundifolii (8210) | ||
Vicia serinica | X | X | Sideridenion italicae (6210*) | ||
TOTAL | 7 | 4 | 3 | 14 |
Taxa | Gene Pools (GP) | Ex Situ Priority Conservation | In Situ Priority Conservation | ||||
---|---|---|---|---|---|---|---|
GP1 | GP2 | GP3 | HP | NP | ZP | A | |
Aegilops biuncialis | X | X | X | X | |||
Aegilops uniaristata | X | X | X | X | |||
Aegilops ventricosa | X | X | X | X | |||
Beta macrocarpa | X | X | X | ||||
Brassica insularis | X | X | X | X | |||
Brassica montana | X | X | X | X | |||
Crambe hispanica subsp. hispanica | X | X | X | ||||
Lathyrus amphicarpos | X | X | X | ||||
TOTAL | 2 | 6 | 5 | 2 | 3 | 3 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrino, E.V.; Wagensommer, R.P. Crop Wild Relatives (CWR) Priority in Italy: Distribution, Ecology, In Situ and Ex Situ Conservation and Expected Actions. Sustainability 2021, 13, 1682. https://doi.org/10.3390/su13041682
Perrino EV, Wagensommer RP. Crop Wild Relatives (CWR) Priority in Italy: Distribution, Ecology, In Situ and Ex Situ Conservation and Expected Actions. Sustainability. 2021; 13(4):1682. https://doi.org/10.3390/su13041682
Chicago/Turabian StylePerrino, Enrico Vito, and Robert Philipp Wagensommer. 2021. "Crop Wild Relatives (CWR) Priority in Italy: Distribution, Ecology, In Situ and Ex Situ Conservation and Expected Actions" Sustainability 13, no. 4: 1682. https://doi.org/10.3390/su13041682
APA StylePerrino, E. V., & Wagensommer, R. P. (2021). Crop Wild Relatives (CWR) Priority in Italy: Distribution, Ecology, In Situ and Ex Situ Conservation and Expected Actions. Sustainability, 13(4), 1682. https://doi.org/10.3390/su13041682