Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile
Abstract
:1. Introduction
2. Material and Methods
2.1. Efficiency and Eco-Efficiency Assessment
2.2. Factors Affecting the Efficiency and Eco-Efficiency Differences
2.3. Sample Description
3. Results and Discussion
3.1. Efficiency and Eco-Efficiency Estimation
3.2. Factors Affecting Differences between the Efficiency and Eco-Efficiency Scores
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daskalopoulos, E.; Badr, O.; Probert, S.D. An integrated approach to municipal solid waste management. Resour. Conserv. Recycl. 1998, 24, 33–50. [Google Scholar] [CrossRef]
- Marques, R.C.; Simoes, P. Incentive regulation and performance measurement of the Portuguese solid waste management services. Waste Manag. Res. 2009, 27, 188–196. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. Improving efficiency in the MSW collection and disposal service combining price cap and yardstick regulation: The Italian case. Waste Manag. 2018, 79, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Margallo, M.; Ziegler-Rodriguez, K.; Vázquez-Rowe, I.; Aldaco, R.; Irabien, Á.; Kahha, R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Sci. Total Environ. 2019, 689, 1255–1275. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. 2009. Available online: http://databank.worldbank.org/data/source/world-development-indicators (accessed on 31 January 2020).
- Valenzuela-Levi, N. Factors influencing municipal recycling in the Global South: The case of Chile. Resour. Conserv. Recycl. 2019, 150, 104441. [Google Scholar] [CrossRef]
- Ministry of Environment. Ley 20.920 Gestión de Residuos, Responsabilidad Extendida del Productor y Fomento al Reciclaje; (In Spanish). 2016. Available online: https://mma.gob.cl/economia-circular/ley-de-fomento-al-reciclaje/ (accessed on 31 January 2020).
- Vásquez, Ó. Gestión de los residuos sólidos municipales en la ciudad del Gran Santiago de Chile: Desafíos y oportunidades. Rev. Int. Contam. Ambient. 2011, 27, 347–355. [Google Scholar]
- European Commission, A.A. Closing the Loop—An EU Action Plan for the Circular Economy. Communication No. 614. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 13 February 2021).
- Cavaleiro de Ferreira, A.; Fuso-Nerini, F. A Framework for Implementing and Tracking Circular Economy in Cities: The Case of Porto. Sustainability 2019, 11, 1813. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. Resear. Ana. 2018, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Molinos-Senante, M. Factors affecting eco-efficiency of municipal waste services in Tuscan municipalities: An empirical investigation of different management models. Waste Manag. 2020, 105, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Handbook on Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Korhonen, P.; Luptacik, M. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. Eur. J. Operat. Resear. 2004, 154, 437–446. [Google Scholar] [CrossRef]
- Beltrán-Esteve, M.; Reig-Martínez, E.; Estruch-Guitart, V. Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis. Environ. Imp Assessment. 2017, 63, 116–127. [Google Scholar] [CrossRef]
- Gomez, T.; Gémar, G.; Molinos-Senante, M.; Sala-Garrido, R.; Caballero, R. Measuring the eco-efficiency of wastewater treatment plants under data uncertain. J. Environ. Sci. 2018, 226, 484–492. [Google Scholar]
- Rogge, N.; De Jaeger, S. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model. Waste Manag. 2012, 32, 1968–1987. [Google Scholar] [CrossRef]
- Pérez-López, G.; Prior, D.; Zafra-Gómez, J.L. Temporal scale efficiency in DEA panel data estimations. An application to the solid waste disposal service in Spain. Omega 2018, 76, 18–27. [Google Scholar] [CrossRef]
- Guerrini, A.; Carvalho, P.; Romano, G.; Cunha Marques, R.; Leardini, C. Assessing efficiency drivers in municipal solid waste collection services through a non-parametric method. J. Clean. Prod. 2017, 147, 431–441. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, L.; Liu, X.; Cheng, M. Evaluating the efficiency of municipal solid waste management in China. Int. J. Environ. Res. Public Health 2018, 15, 2448. [Google Scholar] [CrossRef] [Green Version]
- Sarra, A.; Mazzocchitti, M.; Rapposelli, A. Evaluating joint environmental and cost performance in municipal waste management systems through data envelopment analysis: Scale effects and policy implications. Ecol. Ind. 2017, 73, 756–771. [Google Scholar] [CrossRef]
- Expósito, A.; Velasco, F. Municipal solid-waste recycling market and the European 2020 Horizon Strategy: A regional efficiency analysis in Spain. J. Clean. Prod. 2018, 172, 938–948. [Google Scholar] [CrossRef]
- Agovino, M.; D’Uva, M.; Garofalo, A.; Marchesano, K. Waste management performance in Italian provinces: Efficiency and spatial effects of local governments and citizen action. Ecol. Indic. 2018, 89, 680–695. [Google Scholar] [CrossRef]
- Halkos, G.; Petrou, K.N. Assessing 28 EU member states’ environmental efficiency in national waste generation with DEA. J. Clean. Prod. 2019, 208, 509–521. [Google Scholar] [CrossRef]
- Marques, R.C.; De Witte, K. Is big better? On scale and scope economies in the Portuguese water sector. Econ. Model. 2011, 28, 1009–1016. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Noris, M.; Zhang, Z. Productivity Growth, Technical Progress and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 1, 66–83. [Google Scholar]
- Fernández-Aracil, P.; Ortuño-Padilla, A.; Melgarejo-Moreno, J. Factors related to municipal costs of waste collection service in Spain. J. Clean. Prod. 2018, 175, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Simões, P.; De Witte, K.; Marques, R.C. Regulatory structures and the operational environment in the Portuguese solid waste sector. Waste Manag. 2010, 30, 1130–1137. [Google Scholar] [CrossRef]
- Simões, P.; Cruz, N.F.; Marques, R.C. The performance of private partners in the waste sector. J. Clean. Prod. 2012, 29–30, 214–221. [Google Scholar] [CrossRef]
- Díaz-Villavicencio, G.; Didonet, S.R.; Dodd, A. Influencing factors of ecoefficient urban waste management: Evidence from Spanish municipalities. J. Clean. Prod. 2017, 164, 1486–1496. [Google Scholar] [CrossRef]
- Theodorsson-Norheim, E. Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Comp. Meth. Progr. Biomed. 1986, 23, 57–62. [Google Scholar] [CrossRef]
- Chilean Census. 2017. Available online: https://www.censo2017.cl/ (accessed on 1 February 2020).
- Romano, G.; Rapposelli, A.; Marrucci, L. Improving waste production and recycling through zero-waste strategy and privatization: An empirical investigation. Resour. Conserv. Recycl. 2019, 146, 256–263. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Komilis, D. A standardized inspection methodology to evaluate municipal solid waste collection performance. J. Environ. Manag. 2019, 246, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Sarra, A.; Mazzocchitti, M.; Nissi, E. A methodological proposal to determine the optimal levels of intermunicipal cooperation in the organization of solid waste management systems. Waste Mang. 2020, 115, 56–64. [Google Scholar] [CrossRef] [PubMed]
Efficiency Assessment | Eco-Efficiency Assessment |
---|---|
Inputs: (i) total costs of MSW collection and disposal (CLP/year) | Inputs: (i) total costs of MSW collection and disposal (CLP/year) |
Output: (i) quantity of MSW collected and disposed (ton/year) | Desirable outputs: (i) quantity of paper collected and recycled (ton/year); (ii) quantity of glass collected and recycled (ton/year); (iii) quantity of plastic collected and recycled (ton/year); (iv) quantity of organic matter collected and recycled (ton/year). |
Undesirable output: unsorted waste (ton/year) |
Unit of Measure | Average | Standard Deviation | Minimum | Maximum | ||
---|---|---|---|---|---|---|
Input | Total costs | CLP/year | 1,173,068 | 2,051,970 | 98 | 14,765,504 |
Desirable output | Paper recycled | Tons/year | 51 | 389 | 0 | 6023 |
Glass recycled | Tons/year | 89 | 302 | 0 | 2759 | |
Plastics recycled | Tons/year | 15 | 114 | 0 | 1842 | |
Organic waste recycled | Tons/year | 88 | 803 | 0 | 13,089 | |
Undesirable Outputs | Unsorted waste | Tons/year | 25,967 | 43,074 | 3 | 360,451 |
Environmental Variables | Population Density | Inhabit./km2 | 1117 | 3272 | 0 | 18,221 |
Municipality size | km2 | 1831 | 4747 | 7 | 49,924 | |
Population Served | Inhabitants | 49,383 | 87,729 | 633 | 568,094 | |
Tourism Index | 0.048 | 0.107 | 0.000 | 1.000 | ||
Annual waste generated per capita | kg/Inhabit*year | 1240 | 10,192 | 0.430 | 176,500 |
Efficiency Score | Eco-Efficiency Score | |
---|---|---|
Average | 0.26 | 0.54 |
Standard deviation | 0.23 | 0.11 |
Maximum | 1.00 | 1.00 |
Minimum | 0.00 | 0.50 |
Efficient municipalities (%) | 4.70 | 4.36 |
Groups | Number of Municipalities | Average Relative Difference (%) | p-Value of Kruskal–Wallis |
---|---|---|---|
Population Served (Inhabitant) | |||
<3100 | 35 | 1079 | 0.000 |
3100–10,900 | 95 | 11,994 | |
10,901–13,500 | 26 | 402 | |
>13,500 | 142 | 116 | |
Municipal size (Km2) | |||
<248 | 79 | 186 | 0.448 |
240–420 | 36 | 346 | |
420–600 | 40 | 383 | |
>600 | 143 | 8124 | |
Population Density (Inhabitant/km2) | |||
<4 | 24 | 1096 | 0.002 |
4–48 | 154 | 7534 | |
48–11,000 | 108 | 159 | |
>11,000 | 12 | 40 | |
Tourism Ranking | |||
<0.10 | 67 | 661 | 0.002 |
0.10–0.59 | 155 | 7419 | |
0.59–0.87 | 40 | 164 | |
>0.87 | 36 | 93 | |
Kg waste generated/ Nº of inhabitants (kg waste generated/inhabitant*year) | |||
<405 | 44 | 25,897 | 0.000 |
405–510 | 72 | 231 | |
510–1210 | 161 | 268 | |
>1210 | 21 | 232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanquileo-Melgarejo, P.; Molinos-Senante, M.; Romano, G.; Carosi, L. Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile. Sustainability 2021, 13, 2022. https://doi.org/10.3390/su13042022
Llanquileo-Melgarejo P, Molinos-Senante M, Romano G, Carosi L. Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile. Sustainability. 2021; 13(4):2022. https://doi.org/10.3390/su13042022
Chicago/Turabian StyleLlanquileo-Melgarejo, Paula, María Molinos-Senante, Giulia Romano, and Laura Carosi. 2021. "Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile" Sustainability 13, no. 4: 2022. https://doi.org/10.3390/su13042022
APA StyleLlanquileo-Melgarejo, P., Molinos-Senante, M., Romano, G., & Carosi, L. (2021). Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile. Sustainability, 13(4), 2022. https://doi.org/10.3390/su13042022