The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Collection Used
2.2. Delineation of Low-Crop-Yield Management Zones Using Spatial Statistics
2.3. Global and Local Spatial Autocorrelation Statistics
2.4. Geostatistical Analyses of Field Spatial Variability of Crop Yield
2.5. Cases Studies
3. Discussion
- Quick focus on areas with poor crop-yield performance;
- Less tillage needed for the areas with high crop performance (clusters: H–H, High);
- Reduced seed for the areas with high crop performance (clusters: H–H, High);
- Less energy is needed due to reduced fuels since fewer hours are needed for machinery use (clusters: H–H, High);
- Reduced inputs (adjusted fertilizer amounts and irrigation) for the areas with high crop performance (clusters: H–H, High);
- Economic benefits for the farmer due to the reduced input amounts;
- Environmental benefits (from reduced input amounts, less chemical leaching to the environment, reduced emissions due to reduced machinery use);
- Better planning for the input needs and better future crop management.
4. Limitations
5. Conclusions
- Autocorrelation of yield data to reveal areas with low yield values;
- Spatial distribution and mapping of the crop-yield data;
- Yield history evaluation by performing yield comparisons between years;
- Identification of areas with very low yield values that require additional attention;
- Insights for the delineation of the management zones for the field, aiming to improve inputs and reduce costs.
- Promotes sustainability by providing a clear and easy geostatistical way to reduce overall inputs and focus only on cultivated areas with low yield;
- Adapts spatial autocorrelation of crop yield data to on-farm experimentation;
- Allows assessment of spatially varying treatment effects;
- Outlines a statistically principled approach which enables the delineation of management zones based on spatially varying crop yield data;
- Demonstrates statistical analyses on two example datasets using free spatial analysis software (such as GeoDa spatial analysis software [30]);
- Compares the performance of the three most used spatial statistics in the potential reduction in overall agronomic inputs;
- Supports the idea of transforming the cluster maps of local statistics into prescription maps for the delineation of management zones;
- Provides an estimation of the potential reduction in inputs based on the cluster maps of local spatial statistics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Peterson, C.L.; Shropshire, G.J.; Otawa, T. Spatial Variability of Field Topography and Wheat Yield in the Palouse Region of the Pacific Northwest. Trans. ASAE 1998, 41, 17–27. [Google Scholar] [CrossRef]
- Legg, B.J.; Stafford, J.V. Precision Agriculture—New Technologies. In Proceedings of the Brighton Crop Protection Conference—Pests & Diseases: Proceedings of an International Conference: Held at the Brighton Centre & the Stakis Brighton Metropole Hotel, Brighton, UK, 16–19 November 1998; British Crop Protection Council: Alton, UK, 1998. [Google Scholar]
- French, R.J. Soil factors influencing growth and yield of narrow-leafed lupin and field pea in Western Australia. Aust. J. Agric. Res. 2002, 53, 217. [Google Scholar] [CrossRef]
- Vieira, S.R.; González, A.P. Analysis of the spatial variability of crop yield and soil properties in small agricultural plots. Bragantia 2003, 62, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Du, G.; Zoldoske, D.; Hakim, A.; Cochran, R.; Fugelsang, K.; Jorgensen, G. Effects of irrigation amount on water relations, vegetative growth, yield and fruit composition of Sauvignon blanc grapevines under partial rootzone drying and conventional irrigation in the San Joaquin Valley of California, USA. J. Hortic. Sci. Biotechnol. 2004, 79, 26–33. [Google Scholar] [CrossRef]
- Van Leeuwen, C. Terroir: The effect of the physical environment on vine growth, grape ripening and wine sensory attributes. Manag. Wine Qual. 2010, 273–315. [Google Scholar] [CrossRef]
- Scudiero, E.; Teatini, P.; Corwin, D.L.; Deiana, R.; Berti, A.; Morari, F. Delineation of site-specific management units in a saline region at the Venice Lagoon margin, Italy, using soil reflectance and apparent electrical conductivity. Comput. Electron. Agric. 2013, 99, 54–64. [Google Scholar] [CrossRef]
- Plant, R.E. Site-specific management: The application of information technology to crop production. Comput. Electron. Agric. 2001, 30, 9–29. [Google Scholar] [CrossRef]
- Basnet, B.; Kelly, R.; Jensen, T.; Strong, W.; Apan, A.; Butler, D. Delineation of management zones using multiple crop yield data. In Proceedings of the 16th Triennial Congress of the International Soil Tillage Research Organisation (ISTRO 2003), Brisbane, Australia, 13–18 July 2003. [Google Scholar]
- Masseroni, D.; Ortuani, B.; Corti, M.; Gallina, P.M.; Cocetta, G.; Ferrante, A.; Facchi, A. Assessing the Reliability of Thermal and Optical Imaging Techniques for Detecting Crop Water Status under Different Nitrogen Levels. Sustainability 2017, 9, 1548. [Google Scholar] [CrossRef] [Green Version]
- Masseroni, D.; Facchi, A.; Gandolfi, C. Is Soil Water Potential a Reliable Variable for Irrigation Scheduling in the Case of Peach Orchards? Soil Sci. 2016, 181, 232–240. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.; Washington-Allen, R.; Wright, W.C.; Ghodsi, S.; Grant, T.; Zheng, M.; Vanchiasong, P. Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region. Agriculture 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Chopin, P.; Blazy, K.-M. Assessment of regional variability in crop yields with spatial autocorrelation: Banana farms and policy implications in Martinique. Agric. Ecosyst. Environ. 2013, 181, 12–21. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Bahat, I.; Peeters, A.; Shtein, A.; Netzer, Y.; Cohen, Y.; Ben-Gal, A. A weighted multivariate spatial clustering model to determine irrigation management zones. Comput. Electron. Agric. 2019, 162, 719–731. [Google Scholar] [CrossRef]
- Griffin, T.; Brown, J.; Lowenberg-Deboer, J. Yield Monitor Data Analysis Protocol: A Primer in the Management and Analysis of Precision Agriculture Data. SSRN Electron. J. 2007. [Google Scholar] [CrossRef] [Green Version]
- Perea, R.G.; Daccache, A.; Díaz, J.A.R.; Poyato, E.C.; Knox, J.W. Modelling impacts of precision irrigation on crop yield and in-field water management. Precis. Agric. 2018, 19, 497–512. [Google Scholar] [CrossRef]
- Rakshit, S.; Baddeley, A.; Stefanova, K.; Reeves, K.; Chen, K.; Cao, Z.; Evans, F.; Gibberd, M. Novel approach to the analysis of spatially-varying treatment effects in on-farm experiments. Field Crop. Res. 2020, 255, 107783. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, L.; Jia, X.; Seielstad, G.; Helgason, C. Zone mapping application for precision-farming: A decision support tool for variable rate application. Precis. Agric. 2010, 11, 103–114. [Google Scholar] [CrossRef] [Green Version]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.; McGrath, J.M.; et al. Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Sela, S.; van Es, H.M.; Moebius-Clune, B.N.; Marjerison, R.; Moebius-Clune, D.; Schindelbeck, R.; Severson, K.; Young, E. Dynamic Model Improves Agronomic and Environmental Outcomes for Maize Nitrogen Management over Static Approach. J. Environ. Qual. 2017, 46, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, P.C.; Shannon, D.K.; Palm, H.L.; Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R.; Mueller, L.J.; Hubbard, V.C.; Oliveira, L.F. Sensor-Based Nitrogen Applications Out-Performed Producer-Chosen Rates for Corn in On-Farm Demonstrations. Agron. J. 2011, 103, 1683–1691. [Google Scholar] [CrossRef]
- World Commission on Environment and Development (W.C.E.D.). From One Earth to One World: An Overview; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Tanguay, G.A.; Rajaonson, J.; Lefebvre, J.-F.; Lanoie, P. Measuring the Sustainability of Cities: A Survey-Based Analysis of the Use of Local Indicators. SSRN Electron. J. 2009. [Google Scholar] [CrossRef] [Green Version]
- Ping, J.L.; Green, C.J.; Zartman, R.E.; Bronson, K.F. Exploring spatial dependence of cotton yield using global and local auto-correlation statistics. Field Crops Res. 2004, 89, 219–236. [Google Scholar] [CrossRef]
- Lambert, D.M.; Lowenberg-Deboer, J.; Bongiovanni, R. A Comparison of Four Spatial Regression Models for Yield Monitor Data: A Case Study from Argentina. Precis. Agric. 2004, 5, 579–600. [Google Scholar] [CrossRef]
- GeoDa Data and Lab. Available online: https://geodacenter.github.io/data-and-lab/ (accessed on 17 December 2020).
- Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nat. Cell Biol. 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Peeters, A.; Zude, M.; Käthner, J.; Ünlü, M.; Kanber, R.; Hetzroni, A.; Gebbers, R.; Ben-Gal, A. Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Bevington, J.; Scudiero, E.; Teatini, P.; Vellidis, G.; Morari, F. Factorial kriging analysis leverages soil physical properties and exhaustive data to predict distinguished zones of hydraulic properties. Comput. Electron. Agric. 2019, 156, 426–438. [Google Scholar] [CrossRef]
- Nie, K.; Wang, Z.; Du, Q.; Ren, F.; Tian, Q. A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China. Sustainability 2015, 7, 2662–2677. [Google Scholar] [CrossRef] [Green Version]
- Moral, F.J. Comparison of different geostatistical approaches to map climate variables: Application to precipitation. Int. J. Clim. 2009, 30, 620–631. [Google Scholar] [CrossRef]
- Scudiero, E.; Teatini, P.; Manoli, G.; Braga, F.; Skaggs, T.H.; Morari, F. Workflow to Establish Time-Specific Zones in Precision Agriculture by Spatiotemporal Integration of Plant and Soil Sensing Data. Agronomy 2018, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Fink, L.; Meitin, A.; Bohadana, S.; Lutenberg, O.; Ravid, G. Applying machine learning on sensor data for irrigation recommendations: Revealing the agronomist’s tacit knowledge. Precis. Agric. 2018, 19, 421–444. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Yin, X. Geostatistical Analyses of Field Spatial Variability of Cotton Yield. J. Geosci. Environ. Prot. 2016, 4, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Mathur, M. Spatial autocorrelation analysis in plant population: An overview. J. Appl. Nat. Sci. 2015, 7, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Cliff, A.D.; Ord, J.K. Spatial Processes; Pion: London, UK, 1981; p. 266. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Boston, MA, USA, 1988. [Google Scholar]
- Berry, B.J.L.; Marble, D.F. Spatial Analysis: A Reader in Statistical Geography; Prentice-Hall: Englewood Cliffs, NJ, USA, 1968; p. 512. [Google Scholar]
- Zhang, C.S.; McGrath, D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of south-eastern Ireland from two different periods. Geoderma 2004, 119, 261–275. [Google Scholar] [CrossRef]
- Ronny, V.; Consuelo, M. Effective Sample Size in Spatial Modeling. In Proceedings of the 58th World Statistical Congress, Dublin, Ireland, 21–26 August 2011. [Google Scholar]
- Clifford, P.; Richardson, S. Testing the association between two spatial processes. Stat. Decis. 1985, 2, 155–160. [Google Scholar]
- Getis, A.; Ord, J. Seemingly independent tests: Addressing the problem of multiple simultaneous and dependent tests. In Proceedings of the 39th Annual Meeting of the Western Regional Science Association, Kanuai, HI, USA, 28 February 2000. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 2010, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distribution issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Mueller-Warrant, G.W.; Whittaker, G.W.; Young, W.C. GIS Analysis of Spatial Clustering and Temporal Change in Weeds of Grass Seed Crops. Weed Sci. 2008, 56, 647–669. [Google Scholar] [CrossRef]
- Anselin, L.; Bongiovanni, R.; Lowenberg-de Boer, J. A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production. Am. J. Agric. Econ. 2004, 86, 675–687. [Google Scholar] [CrossRef]
- Bivand, R. Spdep: Spatial Dependence: Weighting Schemes, Statistics and Models. R Package Version 0.4-21. 2008. Available online: http://cran.rproject.org/src/contrib/Descriptions/spdep.html (accessed on 12 February 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsos, T.M.; Menexes, G.C.; Mamolos, A.P. The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs. Sustainability 2021, 13, 2362. https://doi.org/10.3390/su13042362
Koutsos TM, Menexes GC, Mamolos AP. The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs. Sustainability. 2021; 13(4):2362. https://doi.org/10.3390/su13042362
Chicago/Turabian StyleKoutsos, Thomas M., Georgios C. Menexes, and Andreas P. Mamolos. 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs" Sustainability 13, no. 4: 2362. https://doi.org/10.3390/su13042362
APA StyleKoutsos, T. M., Menexes, G. C., & Mamolos, A. P. (2021). The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs. Sustainability, 13(4), 2362. https://doi.org/10.3390/su13042362