Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own-Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Chlorophyll Content
2.3. Water Status and Photosynthetic Activity
2.4. Nutrient Element Composition and Growth Parameters
2.5. Total Phenolics
2.6. Statistical Analysis
3. Results
3.1. Nutrient Concentrations in Plant Tissues
3.2. Chlorophyll Content
3.3. Total Phenolics
3.4. Water Status and Photosynthetic Activity
3.5. Growth Parameters
4. Discussion
4.1. Nutrient Concentrations in Plant Tissues and Vine Growth
4.2. Chlorophyll Pigments, Water Status, and Photosynthetic Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Provisional Report on the State of the Global Climate 2020; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Flowers, T.J. Improving Crop Salt Tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Seo, M.; Takebayashi, Y.; Kamiya, Y.; Eiche, E.; Nick, P. Salt Adaptation Requires Efficient Fine-Tuning of Jasmonate Signalling. Protoplasma 2014, 251, 881–898. [Google Scholar] [CrossRef]
- Walker, R.; Torokfalvy, E.; Scott, N.; Kriedemann, P. An Analysis of Photosynthetic Response to Salt Treatment in Vitis vinifera. Funct. Plant. Biol. 1981, 8, 359. [Google Scholar] [CrossRef]
- Cramer, G.R.; Ergül, A.; Grimplet, J.; Tillett, R.L.; Tattersall, E.A.R.; Bohlman, M.C.; Vincent, D.; Sonderegger, J.; Evans, J.; Osborne, C.; et al. Water and Salinity Stress in Grapevines: Early and Late Changes in Transcript and Metabolite Profiles. Funct. Integr. Genom. 2007, 7, 111–134. [Google Scholar] [CrossRef] [PubMed]
- Downton, W.J.S.; Loveys, B.R.; Grant, W.J.R. Salinity Effects on the Stomatal Behaviour of Grapevine. New Phytol. 1990, 116, 499–503. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance, current assessment. J. Irrig. Drain Div. ASCE 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Shani, U.; Waisel, Y.; Eshel, A.; Xue, S.; Ziv, G. Responses to Salinity of Grapevine Plants with Split Root Systems. New Phytol. 1993, 124, 695–701. [Google Scholar] [CrossRef]
- Arbabzadeh, F.; Dutt, G. Salt Tolerance of Grape Rootstocks under Greenhouse Conditions. Am. J. Enol. Vitic. 1987, 38, 95–99. [Google Scholar]
- Fisarakis, I.; Nikolaou, N.; Tsikalas, P.; Therios, I.; Stavrakas, D. Effect of Salinity and Rootstock on Concentration of Potassium, Calcium, Magnesium, Phosphorus, and Nitrate–Nitrogen in Thompson Seedless Grapevine. J. Plant. Nutr. 2005, 27, 2117–2134. [Google Scholar] [CrossRef]
- Tattini, M.; Gucci, R.; Coradeschi, M.A.; Ponzio, C.; Everard, J.D. Growth, Gas Exchange and Ion Content in Olea Europaea Plants during Salinity Stress and Subsequent Relief. Physiol. Plant. 1995, 95, 203–210. [Google Scholar] [CrossRef]
- Fisarakis, I.; Chartzoulakis, K.; Stavrakas, D. Response of Sultana Vines (Vitis vinifera L.) on Six Rootstocks to NaCl Salinity Exposure and Recovery. Agric. Water Manag. 2001, 51, 13–27. [Google Scholar] [CrossRef]
- Kuiper, P.J.C. Lipids in Grape Roots in Relation to Chloride Transport. Plant. Physiol. 1968, 43, 1367–1371. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Correll, R.L. Rootstock Effects on Salt Tolerance of Irrigated Field-Grown Grapevines (Vitis vinifera L. Cv. Sultana): 1. Yield and Vigour Inter-Relationships. Aust. J. Grape Wine Res. 2002, 8, 3–14. [Google Scholar] [CrossRef]
- Hamman, R.A.; Dami, I.E. Effects of Irrigation on Wine Grape Growth and Fruit Quality. HortTechnology 2000, 10, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–39. [Google Scholar]
- Kishore, D.K.; Pandey, R.M.; Singh, R. Effect of Salt stress on growth characters of Perlette grapevines. Prog. Hort. 1985, 17, 289–297. [Google Scholar]
- Wintermans, J.F.G.M.; De Mots, A. Spectrophotometric Characteristics of Chlorophylls a and b and Their Phenophytins in Ethanol. Biochim. Et Biophys. Acta (Bba) Biophys. Incl. Photosynth. 1965, 109, 448–453. [Google Scholar] [CrossRef]
- Choné, X. Stem Water Potential Is a Sensitive Indicator of Grapevine Water Status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Chyla, M.A.; Zyrnicki, W. Determination of Metal Concentrations in Animal Hair by the ICP Method. BTER 2000, 75, 187–194. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; Division of Agricultural Sciences, University of California: Riverside, CA, USA, 1961; p. 309. [Google Scholar]
- Gaines, T.P.; Mitchell, G.A. Boron Determination in Plant Tissue by the Azomethine H Method. Commun. Soil Sci. Plant. Anal. 1979, 10, 1099–1108. [Google Scholar] [CrossRef]
- Sheen, H.T.; Kahler, H.L. Effect of Ions on Mohr Method for Chloride Determination. Ind. Eng. Chem. Anal. Ed. 1938, 10, 628–629. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M.C.; Gentilini, N. Metodi per lo studio dei polifenoli dei vini. L’ Enotec. Maggio 1989, 19, 83–89. [Google Scholar]
- Orcutt, D.M.; Nilsen, E.T. Physiology of Plants Under Stress: Soil and Biotic Factors; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 43–213. [Google Scholar]
- Zhu, J.-K. Regulation of Ion Homeostasis under Salt Stress. Curr. Opin. Plant. Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Iacono, F. Effect of Salinity and Ramsey Rootstock on Ion Concentrations and Carbon Dioxide Assimilation in Leaves of Drip-Irrigated, Field-Grown Grapevines (Vitis vinifera L. Cv. Sultana). Aust. J. Grape Wine Res. 1997, 3, 66–74. [Google Scholar] [CrossRef]
- Gong, H.; Blackmore, D.; Clingeleffer, P.; Sykes, S.; Jha, D.; Tester, M.; Walker, R. Contrast in Chloride Exclusion between Two Grapevine Genotypes and Its Variation in Their Hybrid Progeny. J. Exp. Bot. 2011, 62, 989–999. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.M.; Harvey, G.; Partington, D.L. Irrigation of Grapevines with Saline Water at Different Growth Stages: Effects on Leaf, Wood and Juice Composition: Timing of Salinity Affects Grape Tissue Composition. Aust. J. Grape Wine Res. 2011, 17, 239–248. [Google Scholar] [CrossRef]
- Ehlig, C.F. Effects of Salinity on Four Varieties of Table Grapes Grown in Sand Culture. Proc. Am. Soc. Hortic. Sci. 1960, 76, 323–331. [Google Scholar]
- Tregeagle, J.M.; Tisdall, J.M.; Blackmore, D.H.; Walker, R.R. A Diminished Capacity for Chloride Exclusion by Grapevine Rootstocks Following Long-Term Saline Irrigation in an Inland versus a Coastal Region of Australia. Aust. J. Grape Wine Res. 2006, 12, 178–191. [Google Scholar] [CrossRef]
- Henderson, S.W.; Baumann, U.; Blackmore, D.H.; Walker, A.R.; Walker, R.R.; Gilliham, M. Shoot Chloride Exclusion and Salt Tolerance in Grapevine Is Associated with Differential Ion Transporter Expression in Roots. BMC Plant. Biol. 2014, 14, 273. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.W.; Dunlevy, J.D.; Wu, Y.; Blackmore, D.H.; Walker, R.R.; Edwards, E.J.; Gilliham, M.; Walker, A.R. Functional Differences in Transport Properties of Natural HKT1;1 Variants Influence Shoot Na Exclusion in Grapevine Rootstocks. New Phytol. 2018, 217, 1113–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Khan, M.A.; Ungar, I.A.; Showalter, A.M. Effects of Salinity on Growth, Ion Content, and Osmotic Relations in Halopyrum Mucronatum (L.) Stapf. J. Plant. Nutr. 1999, 22, 191–204. [Google Scholar] [CrossRef]
- Khan, M.A.; Ungar, I.A.; Showalter, A.M. Effects of Sodium Chloride Treatments on Growth and Ion Accumulation of the Halophyte Haloxylon Recurvum. Commun. Soil Sci. Plant. Anal. 2000, 31, 2763–2774. [Google Scholar] [CrossRef]
- Aziz, I.; Khan, M.A. Experimental Assessment of Salinity Tolerance of Ceriops Tagal Seedlings and Saplings from the Indus Delta, Pakistan. Aquat. Bot. 2001, 70, 259–268. [Google Scholar] [CrossRef]
- Samra, J.S. Sodicity tolerance of grapes with reference to the uptake of nutrients. Indian J. Hort. 1985, 42, 12–17. [Google Scholar]
- Asch, F.; Dingkuhn, M.; Dörffling, K.; Miezan, K. Leaf K/ Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 2000, 113, 109–118. [Google Scholar] [CrossRef]
- Upadhyay, A.; Upadhyay, A.K.; Bhirangi, R.A. Expression of Na/H+ Antiporter Gene in Response to Water and Salinity Stress in Grapevine Rootstocks. Biol. Plant. 2012, 56, 762–766. [Google Scholar] [CrossRef]
- Gong, H.J.; Blackmore, D.H.; Clingeleffer, P.R.; Sykes, S.R.; Walker, R.R. Variation for Potassium and Sodium Accumulation in a Family from a Cross between Grapevine Rootstocks K 51-40 and 140 Ruggeri. Vitis 2014, 53, 65. [Google Scholar] [CrossRef]
- Prinsi, B.; Failla, O.; Scienza, A.; Espen, L. Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress. IJMS 2020, 21, 1076. [Google Scholar] [CrossRef] [Green Version]
- Talei, D.; Kadir, M.A.; Yusop, M.K.; Valdiani, A.; Puad, M. Salinity Effects on Macro and Micronutrients Uptake in Medicinal Plant King of Bitters (Andrographis Paniculata Nees.). Plant. Omics 2012, 5, 271–278. [Google Scholar]
- Hepler, P.K. Calcium: A Central Regulator of Plant Growth and Development. Plant. Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, J.-K. An Arabidopsis Mutant That Requires Increased Calcium for Potassium Nutrition and Salt Tolerance. Proc. Natl. Acad. Sci. USA 1997, 94, 14960–14964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parida, A.K.; Das, A.B.; Mittra, B. Effects of Salt on Growth, Ion Accumulation, Photosynthesis and Leaf Anatomy of the Mangrove, Bruguiera Parviflora. Trees Struct. Funct. 2004, 18, 167–174. [Google Scholar] [CrossRef]
- Downton, W. Growth and Mineral Composition of the Sultana Grapevine as Influenced by Salinity and Rootstock. Aust. J. Agric. Res. 1985, 36, 425. [Google Scholar] [CrossRef]
- Stevens, R.M.; Harvey, G.; Davies, G. Separating the Effects of Foliar and Root Salt Uptake on Growth and Mineral Composition of Four Grapevine Cultivars on Their Own Roots and on ‘Ramsey’ Rootstock. J. Am. Soc. Hortic. Sci. 1996, 121, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Sivritepe, N.; Sivritepe, H.O.; Celik, H.; Katkat, A.V. Salinity Responses of Grafted Grapevines: Effects of Scion and Rootstock Genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 193–201. [Google Scholar] [CrossRef]
- Özcan, H.; Turan, M.A.; Koc, O.; Cikili, Y.; Taban, S. Development of some chickpea (Cicer aietinum L. cvs.) varieties and the changes of proline, Na, Cl, P and K concentrations under salt stress (Turk. with Engl. Sum.). Turk. J. Agric. For. 2000, 24, 649–654. [Google Scholar]
- Pardossi, A.; Bagnoli, G.; Malorgio, F.; Campiotti, C.A.; Tognoni, F. NaCl Effects on Celery (Apium graveolens L.) Grown in NFT. Sci. Hortic. 1999, 81, 229–242. [Google Scholar] [CrossRef]
- Savvas, D.; Lenz, F. Effects of NaCl or Nutrient-Induced Salinity on Growth, Yield, and Composition of Eggplants Grown in Rockwool. Sci. Hortic. 2000, 84, 37–47. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses, 2nd ed.; Academic Press: New York, NY, USA, 1980; Volume II, pp. 365–488. [Google Scholar]
- Madore, M.A. Phloem transport of solutes in crop plants. In Handbook of Plant and Crop Physiology; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 337–355. [Google Scholar]
- Wolswinkel, P. Long-distance nutrient transport in plants and movement into developing grains. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications; Rengel, Z., Ed.; Food Products: New York, NY, USA, 1999; pp. 91–113. [Google Scholar]
- Silveira, J.A.G.; Melo, A.R.B.; Viégas, R.A.; Oliveira, J.T.A. Salinity-Induced Effects on Nitrogen Assimilation Related to Growth in Cowpea Plants. Environ. Exp. Bot. 2001, 46, 171–179. [Google Scholar] [CrossRef]
- Wahid, A.; Hameed, M.; Rasul, E. Salt-Induced Injury Symptom, Changes in Nutrient and Pigment Composition, and Yield Characteristics of Mungbean. Int. J. Agric Biol 2004, 6, 1143–1152. [Google Scholar]
- Bar, Y.; Apelbaum, A.; Kafkafi, U.; Goren, R. Relationship between Chloride and Nitrate and Its Effect on Growth and Mineral Composition of Avocado and Citrus Plants. J. Plant. Nutr. 1997, 20, 715–731. [Google Scholar] [CrossRef]
- Lea-Cox, J. Salinity Reduces Water Use and Nitrate-N-Use Efficiency of Citrus. Ann. Bot. 1993, 72, 47–54. [Google Scholar] [CrossRef]
- Feigin, A. Fertilization Management of Crops Irrigated with Saline Water. Plant. Soil 1985, 89, 285–299. [Google Scholar] [CrossRef]
- Nikolaou, N.; Mattheou, A.; Karagiannidis, N. Boron Toxicity in Grapevines as a result of irrigation: Effect of rain on leaching. Prog. Agric. Et Vitic. 1995, 112, 111–116. [Google Scholar]
- Grattan, S.R.; Grieve, C.M. Salinity–Mineral Nutrient Relations in Horticultural Crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Agastian, P.; Kingsley, S.; Vivekanandan, M. Effect of Salinity on Photosynthesis and Biochemical Characteristics in Mulberry Genotypes. Photosynth 2000, 38, 287–290. [Google Scholar] [CrossRef]
- Corso, M.; Bonghi, C. Grapevine Rootstock Effects on Abiotic Stress Tolerance. Plant. Sci. Today 2014, 1, 108–113. [Google Scholar] [CrossRef]
- Kiani-Pouya, A.; Rasouli, F. The Potential of Leaf Chlorophyll Content to Screen Bread-Wheat Genotypes in Saline Condition. Photosynthetica 2014, 52, 288–300. [Google Scholar] [CrossRef]
- Reddy, M.P.; Vora, A.B. Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S and H) leaves under NaCl salinity. Photosynthetica 1986, 20, 50–55. [Google Scholar]
- Zhang, S.; Song, J.; Wang, H.; Feng, G. Effect of Salinity on Seed Germination, Ion Content and Photosynthesis of Cotyledons in Halophytes or Xerophyte Growing in Central Asia. J. Plant. Ecol. 2010, 3, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.V. Regulation of Chlorophyll Biosynthesis and Degradation by Salt Stress in Sunflower Leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Azizov, I.V.; Khanisheva, M.A. Pigment content and activity of chloroplasts of wheat genotypes grown under saline environment. P. Azerbaijan Nat. Acad. Sci. Biol. Sci. 2010, 65, 96–98. [Google Scholar]
- Downton, W. Photosynthesis in Salt-Stressed Grapevines. Funct. Plant. Biol. 1977, 4, 183. [Google Scholar] [CrossRef]
- Baki, G.K.A.; Siefritz, F.; Man, H.-M.; Weiner, H.; Kaldenhoff, R.; Kaiser, W.M. Nitrate Reductase in Zea Mays L. under Salinity. Plant Cell Environ. 2000, 23, 515–521. [Google Scholar] [CrossRef]
- Flores, P.; Botella, M.A.; Martínez, V.; Cerdá, A. Ionic and Osmotic Effects on Nitrate Reductase Activity in Tomato Seedlings. J. Plant. Physiol. 2000, 156, 552–557. [Google Scholar] [CrossRef]
- Netondo, G.W.; Onyango, J.C.; Beck, E. Sorghum and Salinity: II. Gas Exchange and Chlorophyll Fluorescence of Sorghum under Salt Stress. Crop. Sci. 2004, 44, 806–811. [Google Scholar] [CrossRef]
- Sobrado, M.A. Leaf Characteristics and Gas Exchange of the Mangrove Laguncularia Racemosa as Affected by Salinity. Photosynthetica 2005, 43, 217–221. [Google Scholar] [CrossRef]
- Rivelli, A.R.; Lovelli, S.; Perniola, M. Effects of Salinity on Gas Exchange, Water Relations and Growth of Sunflower (Helianthus Annuus). Funct. Plant. Biol. 2002, 29, 1405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Meinzer, F.C. Efficiency of C-4 photosynthesis in Atriplex lentiformis under salinity stress. Aust. J. Plant. Physiol. 1999, 26, 79–86. [Google Scholar]
- Long, S.P.; Hallgren, J.E. Measurement of CO2 Assimilation by Plants in the Field and the Laboratory. In Photosynthesis and Production in a Changing Environment; Hall, D.O., Scurlock, J.M.O., Bolhar-Nordenkampf, H.R., Leegood, R.C., Long, S.P., Eds.; Chapman and Hall: London, UK, 1993; pp. 129–167. [Google Scholar]
- Nieva, F.J.J.; Castellanos, E.M.; Figueroa, M.E.; Gil, F. Gas Exchange and Chlorophyll Fluorescence of C3 and C4 Saltmarsh Species. Photosynthetica 1999, 36, 397–406. [Google Scholar] [CrossRef]
- Gould, K.S.; McKelvie, J.; Markham, K.R. Do Anthocyanins Function as Antioxidants in Leaves? Imaging of H2O2 in Red and Green Leaves after Mechanical Injury: H2O2 Scavenging by Anthocyanins. Plant Cell Environ. 2002, 25, 1261–1269. [Google Scholar] [CrossRef]
- Czeczot, H. Biological activities of flavonoids: A review. Pol. J. Food Nutr. 2000, 950, 3–13. [Google Scholar]
- Roberts, M.R.; Paul, N.D. Seduced by the Dark Side: Integrating Molecular and Ecological Perspectives on the Influence of Light on Plant Defence against Pests and Pathogens. New Phytol. 2006, 170, 677–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julkunen-Tiitto, R.; Nenadis, N.; Neugart, S.; Robson, M.; Agati, G.; Vepsäläinen, J.; Zipoli, G.; Nybakken, L.; Winkler, B.; Jansen, M.A.K. Assessing the Response of Plant Flavonoids to UV Radiation: An Overview of Appropriate Techniques. Phytochem. Rev. 2015, 14, 273–297. [Google Scholar] [CrossRef]
- Gómez, J.M.; Hernández, J.A.; Jiménez, A.; Del Río, L.A.; Sevilla, F. Differential Response of Antioxidative Enzymes of Chloroplasts and Mitochondria to Long-Term NaCl Stress of Pea Plants. Free Radic. Res. 1999, 31, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.A.; Ferrer, M.A.; Jiménez, A.; Barceló, A.R.; Sevilla, F. Antioxidant Systems and O2.−/H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins. Plant Physiol. 2001, 127, 817–831. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant. Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Marín, D.; Armengol, J.; Carbonell-Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández-Montes, E.; Intrigliolo, D.S.; Martínez-Zapater, J.M.; Medrano, H.; Mirás-Avalos, J.M.; et al. Challenges of Viticulture Adaptation to Global Change: Tackling the Issue from the Roots. Aust. J. Grape Wine Res. 2021, 27, 8–25. [Google Scholar] [CrossRef]
- Lo’ay, A.A.; EL-Ezz, S.F.A. Performance of ‘Flame Seedless’ Grapevines Grown on Different Rootstocks in Response to Soil Salinity Stress. Sci. Hortic. 2021, 275, 109704. [Google Scholar] [CrossRef]
- Lucero, C.C.; Filippo, M.D.; Vila, H.; Venier, M. Comparing water deficit and saline stress between 1103P and 101-14 Mgt rootstocks, grafted with Cabernet Sauvignon. Rev. De La Fac. De Cienc. Agrar. 2017, 49, 33–43. [Google Scholar]
Leaves | |||||||
---|---|---|---|---|---|---|---|
Merlot | Cabernet Franc | ||||||
Salinity | Na | Cl | K | Na | Cl | K | |
Control | Own roots | 0.071 | 0.52 | 2.14 | 0.08 | 0.60 | 2.21 |
1103 P | 0.063 | 0.69 | 1.84 | 0.08 | 0.60 | 2.51 | |
101-14 Mgt | 0.055 | 0.70 | 1.94 | 0.06 | 0.70 | 2.43 | |
100 mM NaCl | Own roots | 0.400 | 2.31 | 2.31 | 0.53 | 2.67 | 2.68 |
1103 P | 0.210 | 1.25 | 1.51 | 0.35 | 1.61 | 2.11 | |
101-14 Mgt | 0.510 | 1.69 | 1.25 | 0.78 | 1.75 | 1.92 | |
LSD (p < 0.05) | 0.044 | 0.183 | 0.183 | 0.044 | 0.183 | 0.183 | |
F | 6.102 | 72.292 | 13.576 | 6.102 | 72.292 | 13.576 | |
Roots | |||||||
Merlot | Cabernet Franc | ||||||
Salinity | Na | Cl | K | Na | Cl | K | |
Control | Own roots | 0.120 | 0.47 | 0.56 | 0.17 | 0.35 | 0.58 |
1103 P | 0.046 | 0.30 | 0.47 | 0.21 | 0.34 | 0.49 | |
101-14 Mgt | 0.160 | 0.33 | 0.32 | 0.55 | 0.75 | 0.10 | |
100 mM NaCl | Own roots | 1.57 | 1.26 | 0.40 | 1.18 | 1.25 | 0.39 |
1103 P | 1.12 | 0.94 | 0.33 | 1.51 | 1.21 | 0.31 | |
101-14 Mgt | 1.87 | 1.21 | 0.28 | 1.82 | 1.62 | 0.30 | |
LSD (p < 0.05) | 0.031 | 0.101 | 0.011 | 0.031 | 0.101 | 0.011 | |
F | 26.346 | 20.909 | 52.943 | 26.346 | 20.909 | 52.943 | |
Shoots | |||||||
Merlot | Cabernet Franc | ||||||
Salinity | Na | Cl | K | Na | Cl | K | |
Control | Own roots | 0.04 | 0.09 | 0.60 | 0.04 | 0.08 | 0.52 |
1103 P | 0.022 | 0.11 | 0.61 | 0.02 | 0.19 | 0.63 | |
101-14 Mgt | 0.015 | 0.10 | 0.60 | 0.03 | 0.14 | 0.44 | |
100 mM NaCl | Own roots | 0.18 | 0.11 | 0.42 | 0.21 | 0.15 | 0.40 |
1103 P | 0.11 | 0.18 | 0.56 | 0.71 | 0.29 | 0.46 | |
101-14 Mgt | 0.16 | 0.16 | 0.58 | 0.81 | 0.23 | 0.39 | |
LSD (p < 0.05) | 0.028 | 0.026 | 0.038 | 0.028 | 0.026 | 0.038 | |
F | 27.934 | 40.870 | 24.697 | 27.934 | 40.870 | 24.697 | |
Trunks | |||||||
Merlot | Cabernet Franc | ||||||
Salinity | Na | Cl | K | Na | Cl | Κ | |
Control | Own roots | 0.02 | 0.11 | 0.41 | 0.042 | 1.60 | 0.43 |
1103 P | 0.032 | 0.38 | 0.17 | 0.036 | 0.75 | 0.24 | |
101-14 Mgt | 0.050 | 0.31 | 0.26 | 0.055 | 1.20 | 0.28 | |
100 mM NaCl | Own roots | 0.52 | 0.23 | 0.33 | 0.085 | 0.81 | 0.31 |
1103 P | 0.61 | 0.59 | 0.24 | 0.153 | 1.21 | 0.23 | |
101-14 Mgt | 0.75 | 0.67 | 0.21 | 0.158 | 0.92 | 0.23 | |
LSD (p < 0.05) | 0.012 | 0.134 | 0.020 | 0.012 | 0.134 | 0.02 | |
F | 70.668 | 20.041 | 19.841 | 70.668 | 20.041 | 19.841 |
Leaves | |||||||||
---|---|---|---|---|---|---|---|---|---|
Merlot | Cabernet Franc | ||||||||
Salinity | N | P | Ca | Mg | N | P | Ca | Mg | |
Control | Own roots | 2.19 | 0.24 | 2.14 | 0.39 | 2.07 | 0.33 | 2.65 | 0.41 |
1103 P | 1.99 | 0.29 | 2.08 | 0.40 | 2.24 | 0.31 | 2.44 | 0.48 | |
101-14 Mgt | 2.02 | 0.21 | 2.43 | 0.46 | 1.99 | 0.36 | 2.51 | 0.54 | |
100 mM NaCl | Own roots | 2.22 | 0.32 | 1.69 | 0.36 | 2.27 | 0.46 | 2.17 | 0.39 |
1103 P | 1.65 | 0.41 | 1.29 | 0.35 | 1.91 | 0.38 | 1.79 | 0.41 | |
101-14 Mgt | 1.87 | 0.48 | 1.76 | 0.37 | 1.78 | 0.45 | 1.98 | 0.26 | |
LSD (p < 0.05) | 0.299 | 0.034 | 0.130 | 0.0147 | 0.299 | 0.034 | 0.130 | 0.0147 | |
F | 8.023 | 10.552 | 28.838 | 15.498 | 8.023 | 10.552 | 28.838 | 15.498 | |
Roots | |||||||||
Merlot | Cabernet Franc | ||||||||
Salinity | N | P | Ca | Mg | N | P | Ca | Mg | |
Control | Own roots | 0.58 | 0.27 | 0.91 | 0.27 | 0.66 | 0.31 | 1.12 | 0.32 |
1103 P | 0.60 | 0.22 | 1.14 | 0.18 | 0.62 | 0.29 | 0.95 | 0.24 | |
101-14 Mgt | 0.78 | 0.31 | 1.11 | 0.23 | 0.70 | 0.28 | 1.31 | 0.26 | |
100 mM NaCl | Own roots | 0.54 | 0.29 | 0.94 | 0.26 | 0.60 | 0.32 | 0.95 | 0.36 |
1103 P | 0.59 | 0.24 | 0.51 | 0.21 | 0.57 | 0.32 | 0.73 | 0.26 | |
101-14 Mgt | 0.61 | 0.33 | 1.02 | 0.25 | 0.63 | 0.31 | 1.01 | 0.25 | |
LSD (p < 0.05) | 0.059 | ns | 0.046 | 0.043 | 0.059 | ns | 0.046 | 0.043 | |
F | 30.920 | 17.253 | 26.728 | 30.902 | 17.253 | 26.728 | |||
Shoots | |||||||||
Merlot | Cabernet Franc | ||||||||
Salinity | N | P | Ca | Mg | N | P | Ca | Mg | |
Control | Own roots | 0.75 | 0.25 | 0.74 | 0.16 | 0.81 | 0.24 | 0.72 | 0.17 |
1103 P | 0.65 | 0.22 | 0.75 | 0.13 | 0.71 | 0.23 | 0.65 | 0.18 | |
101-14 Mgt | 0.79 | 0.30 | 0.82 | 0.18 | 0.79 | 0.21 | 0.64 | 0.15 | |
100 mM NaCl | Own roots | 0.66 | 0.24 | 0.65 | 0.16 | 0.70 | 0.31 | 0.55 | 0.14 |
1103 P | 0.53 | 0.27 | 0.72 | 0.14 | 0.65 | 0.32 | 0.72 | 0.13 | |
101-14 Mgt | 0.66 | 0.31 | 0.51 | 0.13 | 0.68 | 0.26 | 0.53 | 0.14 | |
LSD (p < 0.05) | 0.032 | 0.06. | 0.098 | 0.011 | 0.032 | 0.069 | 0.098 | 0.011 | |
F | 29.798 | 36.480 | 4.776 | 27.932 | 29.798 | 36.480 | 4.776 | 27.932 | |
Trunks | |||||||||
Merlot | Cabernet Franc | ||||||||
Salinity | N | P | Ca | Mg | N | P | Ca | Mg | |
Control | Own roots | 0.49 | 0.22 | 0.76 | 0.16 | 0.50 | 0.22 | 0.64 | 0.13 |
1103 P | 0.51 | 0.24 | 0.89 | 0.11 | 0.51 | 0.18 | 0.65 | 0.13 | |
101-14 Mgt | 0.55 | 0.23 | 0.82 | 0.17 | 0.55 | 0.24 | 0.63 | 0.16 | |
100 mM NaCl | Own roots | 0.47 | 0.26 | 0.70 | 0.13 | 0.49 | 0.21 | 0.55 | 0.12 |
1103 P | 0.47 | 0.25 | 0.75 | 0.10 | 0.46 | 0.23 | 0.72 | 0.15 | |
101-14 Mgt | 0.49 | 0.26 | 0.71 | 0.11 | 0.44 | 0.25 | 0.67 | 0.12 | |
LSD (p < 0.05) | 0.017 | ns | ns | ns | 0.017 | ns | ns | ns | |
F | 5.125 | 5.125 |
Leaves | |||||||||
---|---|---|---|---|---|---|---|---|---|
Merlot | Cabernet Franc | ||||||||
Salinity | Zn | Mn | B | Fe | Zn | Mn | B | Fe | |
Control | Own roots | 16.24 | 86.85 | 44.32 | 105.07 | 13.03 | 72.02 | 40.30 | 107.95 |
1103 P | 12.02 | 56.84 | 26.32 | 122.51 | 15.51 | 58.23 | 32.61 | 140.50 | |
101-14 Mgt | 12.32 | 66.86 | 40.24 | 126.69 | 11.46 | 42.40 | 38.34 | 82.91 | |
100 mM NaCl | Own roots | 18.05 | 78.65 | 50.12 | 77.03 | 18.10 | 90.11 | 44.29 | 79.12 |
1103 P | 15.29 | 52.45 | 48.16 | 82.68 | 17.86 | 49.28 | 40.61 | 109.84 | |
101-14 Mgt | 13.31 | 64.54 | 48.80 | 96.40 | 16.47 | 59.60 | 50.03 | 67.33 | |
LSD (p < 0.05) | 2.47 | ns | 2.440 | 7.301 | 2.47 | ns | 2.440 | 7.301 | |
F | 15.666 | 8.990 | 23.351 | 15.666 | 8.990 | 23.351 | |||
Roots | |||||||||
Merlot | Cabernet Franc | ||||||||
Salinity | Zn | Mn | B | Fe | Zn | Mn | B | Fe | |
Control | Own roots | 13.40 | 12.75 | 13.02 | 138.15 | 18.91 | 26.99 | 14.41 | 423.13 |
1103 P | 16.5 | 19.24 | 14.54 | 248.82 | 10.12 | 16.34 | 13.60 | 348.13 | |
101-14 Mgt | 12.07 | 19.80 | 19.17 | 67.46 | 12.07 | 19.80 | 19.74 | 297.03 | |
100 mM NaCl | Own roots | 24.44 | 22.37 | 12.39 | 297.70 | 35.97 | 28.26 | 12.68 | 482.51 |
1103 P | 16.08 | 23.42 | 13.90 | 288.60 | 18.11 | 24.66 | 14.94 | 444.80 | |
101-14 Mgt | 15.98 | 39.06 | 20.20 | 470.50 | 19.92 | 61.62 | 26.58 | 314.54 | |
LSD (p < 0.05) | 2.316 | 3.893 | 1.481 | 38.992 | 2.316 | 3.893 | 1.481 | 38.992 | |
F | 256.49 | 28.803 | 75.259 | 17.687 | 256.49 | 28.803 | 75.259 | 17.687 | |
Shoots | |||||||||
Merlot | Cabernet Franc | ||||||||
Salinity | Zn | Mn | B | Fe | Zn | Mn | B | Fe | |
Control | Own roots | 28.17 | 22.89 | 11.40 | 18.32 | 23.17 | 17.92 | 12.76 | 24.39 |
1103 P | 20.17 | 16.03 | 11.50 | 39.85 | 20.17 | 17.59 | 13.40 | 38.07 | |
101-14 Mgt | 18.37 | 22.89 | 13.87 | 27.87 | 21.37 | 15.87 | 15.69 | 48.01 | |
100 mM NaCl | Own roots | 31.22 | 23.87 | 9.66 | 24.98 | 27.22 | 25.65 | 9.92 | 34.52 |
1103 P | 24.54 | 17.89 | 12.44 | 14.74 | 23.54 | 18.06 | 10.97 | 20.69 | |
101-14 Mgt | 24.97 | 23.87 | 13.99 | 18.52 | 26.97 | 20.93 | 11.55 | 32.85 | |
LSD (p < 0.05) | 9.257 | 5.507 | 0.595 | ns | 9.257 | 5.95 | 0.595 | ns | |
F | 22.217 | 12.090 | 28.389 | 22.217 | 12.090 | 28.389 | |||
Trunks | |||||||||
Merlot | Cabernet Franc | ||||||||
Salinity | Zn | Mn | B | Fe | Zn | Mn | B | Fe | |
Control | Own roots | 22.4 | 18.87 | 12.88 | 142.4 | 20.61 | 22.59 | 11.40 | 100.73 |
1103 P | 16.97 | 23.09 | 11.40 | 95.51 | 10.95 | 13.59 | 11.50 | 79.27 | |
101-14 Mgt | 12.55 | 24.78 | 13.71 | 160.93 | 10.72 | 24.87 | 13.87 | 52.31 | |
100 mM NaCl | Own roots | 23.31 | 13.78 | 12.51 | 88.40 | 20.95 | 16.21 | 9.66 | 57.68 |
1103 P | 17.62 | 22.46 | 10.09 | 181.1 | 15.53 | 14.94 | 12.44 | 112.23 | |
101-14 Mgt | 13.49 | 16.24 | 10.64 | 88.40 | 12.68 | 16.24 | 13.99 | 77.82 | |
LSD (p < 0.05) | 2.134 | 2.850 | 0.729 | ns | 2.134 | 2.850 | 0.729 | ns | |
F | 9.098 | 5.534 | 4.832 | 9.098 | 5.534 | 4.832 |
Merlot | Cabernet Franc | ||||
---|---|---|---|---|---|
Salinity | Thirty Day | Sixty Day | Thirty Day | Sixty Day | |
Control | Own roots | 0.811 | 0.711 | 0.806 | 0.737 |
1103 P | 0.818 | 0.759 | 0.812 | 0.737 | |
101-14 Mgt | 0.821 | 0.772 | 0.819 | 0.749 | |
100 mM NaCl | Own roots | 0.795 | 0.561 | 0.801 | 0.598 |
1103 P | 0.819 | 0.702 | 0.802 | 0.715 | |
101-14 Mgt | 0.815 | 0.724 | 0.811 | 0.653 | |
LSD p < 0.05: 0.059, F: 12.947 |
Merlot | Cabernet Franc | ||||||
---|---|---|---|---|---|---|---|
Salinity | Shoots | Trunks | Roots | Shoots | Trunks | Roots | |
Control | Own roots | 48.48 | 62.33 | 60.75 | 35.28 | 54.61 | 57.27 |
1103 P | 55.98 | 59.09 | 94.82 | 42.42 | 71.53 | 90.48 | |
101-14 Mgt | 47.03 | 48.11 | 75.28 | 38.54 | 62.35 | 70.41 | |
100 mM NaCl | Own roots | 47.31 | 59.61 | 60.25 | 33.24 | 57.16 | 57.82 |
1103 P | 52.17 | 57.86 | 91.92 | 40.43 | 72.36 | 89.41 | |
101-14 Mgt | 46.26 | 46.50 | 74.95 | 41.10 | 60.94 | 70.82 | |
LSD (p < 0.05) | 4.75 | 6.78 | 13.842 | 4.75 | 6.78 | 13.842 | |
F | 13.196 | 11.665 | 13.266 | 13.196 | 11.665 | 13.266 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, K.-E.; Chatzistathis, T.; Theocharis, S.; Argiriou, A.; Koundouras, S.; Zioziou, E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own-Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change. Sustainability 2021, 13, 2477. https://doi.org/10.3390/su13052477
Nikolaou K-E, Chatzistathis T, Theocharis S, Argiriou A, Koundouras S, Zioziou E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own-Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change. Sustainability. 2021; 13(5):2477. https://doi.org/10.3390/su13052477
Chicago/Turabian StyleNikolaou, Kleopatra-Eleni, Theocharis Chatzistathis, Serafeim Theocharis, Anagnostis Argiriou, Stefanos Koundouras, and Elefteria Zioziou. 2021. "Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own-Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change" Sustainability 13, no. 5: 2477. https://doi.org/10.3390/su13052477
APA StyleNikolaou, K. -E., Chatzistathis, T., Theocharis, S., Argiriou, A., Koundouras, S., & Zioziou, E. (2021). Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own-Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change. Sustainability, 13(5), 2477. https://doi.org/10.3390/su13052477