Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Methods
2.2.1. Stochastic Frontier Model—Measurement of Agricultural Technical Efficiency
2.2.2. Spatial Econometric Model—Analysis of Agricultural Technical Efficiency Factors
2.3. Data Sources
3. Results
3.1. Estimation Results of the Stochastic Frontier Production Function
3.2. Estimation Results of the Spatial Econometric Model
3.2.1. Spatial Auto-Correlation Test of Agricultural Technical Efficiency
3.2.2. Influencing Factors of Agricultural Technical Efficiency
3.2.3. Robustness Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Koondhar, M.A.; Li, H.; Wang, H.; Bold, S.; Kong, R. Looking back over the past two decades on the nexus between air pollution, energy consumption, and agricultural productivity in China: A qualitative analysis based on the ARDL bounds testing model. Environ. Sci. Pollut. Res. Int. 2020, 27, 13575–13589. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, S.; Hu, B.; Zhou, Y.; Shi, Z. A comprehensive framework for assessing the impact of potential agricultural pollution on grain security and human health in economically developed areas. Environ. Pollut. 2020, 263, 114653. [Google Scholar] [CrossRef]
- Hadjikakou, M.; Ritchie, E.; Watermeyer, K.; Bryan, B. Improving the assessment of food system sustainability. Lancet Planet. Health 2019, 3, e62–e63. [Google Scholar] [CrossRef] [Green Version]
- Clarke-Sather, A.; Tang, X.; Yonglan, X.; Qu, J. The Impact of Green Water Management Strategies on Household-Level Agricultural Water Productivity in a Semi-Arid Region: A Survey-based Assessment. Water 2017, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ma, Z.; Ma, Q.; Liu, M.; Yuan, X.; Mu, R.; Zuo, J.; Zhang, J.; Wang, S. Comprehensive evaluation and optimization of agricultural system: An emergy approach. Ecol. Indic. 2019, 107, 105650–105651. [Google Scholar] [CrossRef]
- Norse, D.; Ju, X. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 2015, 209, 5–14. [Google Scholar] [CrossRef]
- Lewis, C. Feeding the World: Brazil’s Transformation into a Modern Agricultural Economy, by Herbert S. Klein and Francisco Vidal Luna. Engl. Hist. Rev. 2020, ceaa295. [Google Scholar] [CrossRef]
- Safieddin Ardebili, S. Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran. Renew. Energy 2020, 154, 29–37. [Google Scholar] [CrossRef]
- Wang, X.; Rungsuriyawiboon, S. Agricultural efficiency, technical change and productivity in China. Post-Communist Econ. 2010, 22, 207–227. [Google Scholar] [CrossRef]
- Rungsuriyawiboon, S.; Zhang, Y. Examining the economic performance of Chinese farms: A dynamic efficiency and adjustment cost approach. Econ. Anal. Policy 2017, 57, 74–87. [Google Scholar] [CrossRef]
- Luminita, C.; Jean, A.; Zahariav, M.; Gogonea, R.-M. A regional agricultural efficiency convergence assessment in Romania—Appraising differences and understanding potentials. Land Use Policy 2020, 99, 104838. [Google Scholar] [CrossRef]
- Sabasi, D.; Shumway, C.R. Climate change, health care access and regional influence on components of U.S. agricultural productivity. Appl. Econ. 2018, 50, 6149–6164. [Google Scholar] [CrossRef]
- Ghoshal, P.; Goswami, B. Measurement of Production Efficiency: A Case of Indian Agricultural Production in Post Reforms Period. Asian J. Agric. Ext. Econ. Sociol. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Shuaibu, M.; Nchake, M. Credit Market Conditions and Agricultural Performance in Sub-Saharan Africa. J. Dev. Areas 2020, 54, 41–53. [Google Scholar] [CrossRef]
- Shanmugam, K.; Venkataramani, A. Technical efficiency in agricultural production and its determinants: An exploratory study at the district level. Indian J. Agric. Econ. 2006, 61, 169–184. [Google Scholar]
- Sunge, R.; Ngepah, N. Agricultural trade liberalization, regional trade agreements and agricultural technical efficiency in Africa. Outlook Agric. 2019, 49, 003072701987055. [Google Scholar] [CrossRef]
- Quiroga, S.; Suárez, C.; Fernández-Haddad, Z.; Philippidis, G. Levelling the playing field for European Union agriculture: Does the Common Agricultural Policy impact homogeneously on farm productivity and efficiency? Land Use Policy 2017, 68, 179–188. [Google Scholar] [CrossRef]
- Bahta, Y.; Jordaan, H.; Sabastain, G. Agricultural Management Practices and Factors Affecting Technical Efficiency in Zimbabwe Maize Farming. Agriculture 2020, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Renwick, A.; Yuan, P.; Ratna, N. Agricultural cooperative membership and technical efficiency of apple farmers in China: An analysis accounting for selectivity bias. Food Policy 2018, 81, 122–132. [Google Scholar] [CrossRef]
- Iqbal, N.; Sial, M. Semi-parametric analysis of agricultural production under dichotomy of inputs. Agric. Econ. (Zemědělská Ekon) 2016, 64, 378–388. [Google Scholar] [CrossRef]
- Ea, O. An Empirical Analysis of the effect of Agricultural Input on Agricultural Productivity in Nigeria. Int. J. Agric. Sci. Food Technol. 2017, 77–85. [Google Scholar] [CrossRef]
- Chen, Z.; Huffman, W.E.; Rozelle, S. Farm technology and technical efficiency: Evidence from four regions in China. China Econ. Rev. 2009, 20, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Thirty Years of Spatial Econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Chica-Olmo, J.; González Morales, J.; Zafra, J. Effects of location on Airbnb apartment pricing in Málaga. Tour. Manag. 2020, 77, 103981. [Google Scholar] [CrossRef]
- Chen, N.; Jin, X. Industry risk transmission channels and the spillover effects of specific determinants in China’s stock market: A spatial econometrics approach. N. Am. J. Econ. Financ. 2020, 52, 101–137. [Google Scholar] [CrossRef]
- Copiello, S.; Grillenzoni, C. Solar Photovoltaic Energy and Its Spatial Dependence. Energy Procedia 2017, 141, 86–90. [Google Scholar] [CrossRef]
- Najkar, N.; Kohansal, M.; Ghorbani, M. Impact of Industrial Agglomeration on Productivity: Evidence from Iran’s Food Industry. Chin. Geogr. Sci. 2019, 30, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Cardamone, P. Productivity and spatial proximity: Evidence from the Italian food industry. J. Int. Rev. Appl. Econ. 2020, 34, 327–341. [Google Scholar] [CrossRef]
- Accetturo, A.; Giacinto, V.D.; Micucci, G.; Pagnini, M. Geography, productivity, and trade: Does selection explain why some locations are more productive than others? J. Reg. Sci. 2018, 58, 949–979. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ge, Z.; Han, S.; Xing, L.; Zhu, M.; Zhang, J.; Liu, J. Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. J. Clean. Prod. 2020, 260, 121011. [Google Scholar] [CrossRef]
- Lele, U.; Goswami, S. Agricultural policy reforms: Roles of markets and states in China and India. Glob. Food Secur. 2020, 26, 100371. [Google Scholar] [CrossRef] [PubMed]
- Apata, T. Public spending mechanisms and gross domestic product (GDP) growth in the agricultural sector (1970–2016): Lessons for Nigeria from agricultural policy progressions in China. Bull. Geogr. Socio-Econ. Ser. 2019, 44, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Arnade, C.; Cooke, B.; Gale, F. Agricultural Price Transmission: China Relationships with World Commodity Markets. J. Commod. Mark. 2017, 7, 28–40. [Google Scholar] [CrossRef]
- Leontief, W. Input–Output Data Base for Analysis of Technological Change. Econ. Syst. Res. 1989, 1, 287–295. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Macedo, P. The effect of urban air pollutants in Germany: Eco-efficiency analysis through fractional regression models applied after DEA and SFA efficiency predictions. Sustain. Cities Soc. 2020, 59, 102204. [Google Scholar] [CrossRef]
- Namazi, M.; Mohammadi, E. Natural resource dependence and economic growth: A TOPSIS/DEA analysis of innovation efficiency. Resour. Policy 2018, 59, 544–552. [Google Scholar] [CrossRef]
- Laurinavičius, E.; Rimkuvienė, D. The Comparative Efficiency Analysis of EU Members Agriculture Sectors. Rural Sustain. Res. 2017, 37, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Product. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Greene, W.H. The econometric approach to efficiency analysis. Meas. Product. Effic. Product. Growth 2008, 1, 92–250. [Google Scholar]
- Bokusheva, R. Measuring dependence in joint distributions of yield and weather variables. Agric. Financ. Rev. 2011, 71, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Zhang, Y.; Wang, J.; Nuetah, J.A. Effects of Farm Size on Technical Efficiency in China’s Broiler Sector: A Stochastic Meta-Frontier Approach. Can. J. Agric. Econ./Rev. Can. D’agroeconomie 2016, 64, 493–516. [Google Scholar] [CrossRef]
- Huang, W.; Xu, L.; Guo, Y. Analysis on Technical Efficiency and Influencing Factors of Agricultural Production in China—Based on the Stochastic Frontier Analysis model. E3s Web Conf. 2021, 235. [Google Scholar] [CrossRef]
- Ali, I.; Xue-xi, H.; Khan, I.; Ali, H.; Baz, K.; Khan, S.U. Technical efficiency of hybrid maize growers: A stochastic frontier model approach. J. Integr. Agric. 2019, 18, 2408–2421. [Google Scholar] [CrossRef]
- Mango, N.; Makate, C.; Hanyani-Mlambo, B.; Siziba, S.; Lundy, M. A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook. Cogent Econ. Financ. 2015, 3, 1117189. [Google Scholar] [CrossRef] [Green Version]
- Akhtaruzzaman, K.M.; Ratna, B.; Rasmus, N.; Ayoe, H. Production risk, technical efficiency, and input use nexus: Lessons from Bangladesh aquaculture. J. World Aquac. Soc. 2021, 52, 57–72. [Google Scholar]
- Otsuka, A.; Goto, M.; Sueyoshi, T. Energy efficiency and agglomeration economies: The case of Japanese manufacturing industries. Reg. Sci. Policy Pract. 2014, 6, 195–212. [Google Scholar] [CrossRef]
- Lee, L.-f. Consistency and Efficiency of Least Squares Estimation for Mixed Regressive, Spatial Autoregressive Models. Econom. Theory 2002, 18, 252–277. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Panel Data Analysis. In Encyclopedia of GIS; Springer: Cham, Switzerland, 2015. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Evenson, R.E. Spillover Benefits of Agricultural Research: Evidence from U.S. Experience. Am. J. Agric. Econ. 1989, 71, 447–452. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, B. Impact of industrial agglomeration on energy efficiency in China’s paper industry. J. Clean. Prod. 2018, 184, 1072–1080. [Google Scholar] [CrossRef]
- Chang, C.-L.; Oxley, L. Industrial agglomeration, geographic innovation and total factor productivity: The case of Taiwan. Math. Comput. Simul. 2009, 79, 2787–2796. [Google Scholar] [CrossRef] [Green Version]
- Futagami, K.; Ohkusa, Y. The Quality Ladder and Product Variety: Larger Economies May Not Grow Faster. Jpn. Econ. Rev. 2003, 54, 336–351. [Google Scholar] [CrossRef]
- Rice, P.; Venables, A.J.; Patacchini, E. Spatial determinants of productivity: Analysis for the regions of Great Britain. Reg. Sci. Urban Econ. 2006, 36, 727–752. [Google Scholar] [CrossRef] [Green Version]
- Robert-Nicoud, F.; Sbergami, F. Home-market vs. vote-market effect: Location equilibrium in a probabilistic voting model. Eur. Econ. Rev. 2004, 48, 155–179. [Google Scholar] [CrossRef]
Variable | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|
ate | 110 | 0.522 | 0.138 | 0.259 | 0.8 |
agg | 110 | 1.103 | 0.259 | 0.673 | 1.743 |
lnatp | 110 | 6.964 | 0.876 | 5.489 | 8.656 |
pti | 110 | 0.381 | 0.062 | 0.248 | 0.529 |
lneia | 110 | 12.77 | 0.566 | 11.414 | 13.411 |
lnpgdp | 110 | 10.394 | 0.409 | 9.557 | 11.326 |
psa | 110 | 0.158 | 0.038 | 0.096 | 0.252 |
pga | 110 | 0.711 | 0.063 | 0.589 | 0.917 |
tem | 110 | 12.349 | 2.19 | 7.1 | 14.8 |
Parameter | Coefficient | S.D. | T Value |
---|---|---|---|
0.0363 | 0.0041 | 8.7670 | |
0.9492 | 0.0107 | 88.4930 | |
Maximum likelihood function estimation: 147.6131 | |||
One sided test value of maximum likelihood function = 221.1584 |
City|Year | 2008 | 2017 |
---|---|---|
Shijiazhuang | 0.5121 | 0.6563 |
Handan | 0.3311 | 0.4987 |
Xingtai | 0.2590 | 0.4273 |
Baoding | 0.3004 | 0.4692 |
Zhangjiakou | 0.4532 | 0.6077 |
Chengde | 0.3762 | 0.5405 |
Tangshan | 0.5259 | 0.6673 |
Qinhuangdao | 0.7017 | 0.8001 |
Cangzhou | 0.4890 | 0.6375 |
Hengshui | 0.3104 | 0.4789 |
Langfang | 0.6489 | 0.7617 |
Average efficiency | 0.4462 | 0.5950 |
Year | Moran Index | p-Value |
---|---|---|
2008 | 0.041 | 0.043 |
2009 | 0.042 | 0.043 |
2010 | 0.042 | 0.043 |
2011 | 0.043 | 0.042 |
2012 | 0.043 | 0.042 |
2013 | 0.044 | 0.042 |
2014 | 0.044 | 0.041 |
2015 | 0.044 | 0.041 |
2016 | 0.045 | 0.041 |
2017 | 0.045 | 0.041 |
Var|Model | SDM FE | SDM RE | SAR FE | SAR RE | SEM FE | SEM RE |
---|---|---|---|---|---|---|
agg | 0.0336 *** | 0.0352 *** | 0.0341 *** | 0.0357 ** | 0.0472 *** | 0.0471 *** |
(4.11) | (4.04) | (3.65) | (3.59) | (3.99) | (3.83) | |
lnatp | 0.0111 ** | 0.0105 ** | 0.0074 | 0.0057 | 0.0046 | 0.0028 |
(2.29) | (2.03) | (1.39) | (1.01) | (0.69) | (0.40) | |
pti | 0.0733 * | 0.0765 * | 0.0957 ** | 0.1145 *** | 0.4311 *** | 0.4403 *** |
(1.76) | (1.74) | (2.50) | (2.77) | (14.70) | (14.85) | |
lneia | 0.0048 | 0.0073 | 0.0160 | 0.0107 | 0.0122 | 0.0042 |
(0.40) | (0.59) | (1.16) | (0.73) | (0.85) | (0.29) | |
lnpgdp | 0.0599 *** | 0.0686 *** | 0.0599 *** | 0.0662 *** | 0.1488 *** | 0.1480 *** |
(4.26) | (4.62) | (5.03) | (5.11) | (27.43) | (26.70) | |
psa | 0.2412 ** | 0.2101 * | 0.1690 | 0.1539 | 0.0664 | 0.0431 |
(2.30) | (1.87) | (1.38) | (1.19) | (0.43) | (0.27) | |
pga | −0.0263 | −0.0275 | −0.0002 | −0.0013 | −0.0139 | −0.0197 |
(−1.12) | (−1.10) | (−0.01) | (−0.04) | (−0.41) | (−0.56) | |
tem | 0.0009 | 0.0006 | 0.0008 | 0.0007 | 0.0004 | 0.0003 |
(1.59) | (1.11) | (1.21) | (1.08) | (0.46) | (0.31) | |
Cons | −0.4484 | −0.7556 *** | −1.3050 *** | |||
(−1.57) | (−3.13) | (−6.18) | ||||
N | 110 | 110 | 110 | 110 | 110 | 110 |
rsq | 0.006 | 0.154 | 0.040 | 0.011 | 0.614 | 0.669 |
R2_w | 0.9798 | 0.9788 | 0.9559 | 0.9577 | 0.9327 | 0.9317 |
Var | Direct Impact | Indirect Impact | Total Impact |
---|---|---|---|
agg | 0.0312 *** (3.77) | 0.1020 *** (3.11) | 0.1332 *** (3.76) |
lnatp | 0.0094 ** (1.97) | 0.0605 *** (2.64) | 0.0699 *** (2.80) |
pti | 0.0623 * (1.81) | 0.5547 *** (8.23) | 0.6169 *** (10.51) |
lneia | 0.0058 (0.47) | −0.0449* (−2.31) | −0.0392 (−1.58) |
lnpgdp | 0.0589 *** (4.37) | 0.0448 *** (3.10) | 0.1037 *** (8.20) |
psa | 0.2252 ** (2.13) | 0.9610 * (1.79) | 1.1862 ** (2.08) |
pga | −0.0187 (−0.73) | −0.2533 *** (−3.56) | −0.2720 *** (−3.63) |
tem | 0.0008 (1.58) | 0.0011 (0.55) | 0.0020 (0.87) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Wu, J. Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model. Sustainability 2021, 13, 2708. https://doi.org/10.3390/su13052708
Yin Z, Wu J. Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model. Sustainability. 2021; 13(5):2708. https://doi.org/10.3390/su13052708
Chicago/Turabian StyleYin, Ziqi, and Jianzhai Wu. 2021. "Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model" Sustainability 13, no. 5: 2708. https://doi.org/10.3390/su13052708
APA StyleYin, Z., & Wu, J. (2021). Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model. Sustainability, 13(5), 2708. https://doi.org/10.3390/su13052708