Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of the Trihelix Gene Family in D. officinale
2.2. Phylogenetic Analysis
2.3. Conserved Structures and Motifs of Trihelix Genes
2.4. Promoter Analysis and Gene Ontology (GO) Annotation
2.5. Expression Profile Analysis
2.6. Plant Materials and Experimental Treatments
2.7. RNA Isolation, Expression and Statistical Analysis
2.8. qRT-PCR Analysis of DoGT Genes
3. Results
3.1. Identification of the DoGT Genes in D. officinale
3.2. Sequence Alignment and Phylogenetic Analyses of Trihelix TFs
3.3. Protein Structure of the DoGT Gene Family
3.4. Exon-Intron Organization of DoGT Genes
3.5. Cis-Acting Elements Analysis and Gene Ontology (GO) Annotation
3.6. DoGT Gene Expression Profiling
3.7. Analysis of DoGT Genes Expression in Tissues
3.8. Response of DoGT Genes to Cold Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riechmann, J.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.-Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.; Samaha, R. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Lindemose, S.; O’Shea, C.; Jensen, M.K.; Skriver, K. Structure, Function and Networks of Transcription Factors Involved in Abiotic Stress Responses. Int. J. Mol. Sci. 2013, 14, 5842–5878. [Google Scholar] [CrossRef] [Green Version]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. BBA Gene Regul. Mech. 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Nagano, Y. Several features of the GT-factor trihelix domain resemble those of the Myb DNA-binding domain. Plant Physiol. 2000, 124, 491–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, Y.; Inaba, T.; Furuhashi, H.; Sasaki, Y. Trihelix DNA-binding protein with specifificities for two distinct cis-elements: Both important for light downregulated and dark-inducible gene expression in higher plants. J. Biol. Chem. 2001, 276, 22238–22243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.X. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci. 1999, 4, 210–214. [Google Scholar] [CrossRef]
- Kaplan-Levy, R.N.; Brewer, P.B.; Quon, T.; Smyth, D.R. The trihelix family of transcription factors—Light, stress and development. Trends Plant Sci. 2012, 17, 163–171. [Google Scholar] [CrossRef]
- Ayadi, M.; Delaporte, V.; Li, Y.F.; Zhou, D.X. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett. 2004, 562, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, R.M.; Caspar, T.; Dehesh, K.; Quail, P.H. DNA binding factor GT-2 from Arabidopsis. Plant Mol Biol. 1993, 23, 337–348. [Google Scholar] [CrossRef]
- Xie, Z.M.; Zou, H.F.; Lei, G.; Wei, W.; Zhou, Q.Y.; Niu, C.F.; Liao, Y.; Tian, A.G.; Ma, B.; Zhang, W.K. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE 2009, 4, e6898. [Google Scholar] [CrossRef] [Green Version]
- Ni, M.; Dehesh, K.; Tepperman, J.M.; Quail, P.H. GT-2: In vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell 1996, 8, 1041–1059. [Google Scholar]
- Dehesh, K.; Smith, L.G.; Tepperman, J.M.; Quail, P.H. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J. Cell Mol. Biol. 2010, 8, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.E.; Conceicao, A.D.; Smyth, D.R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development 1999, 126, 5635–5644. [Google Scholar] [PubMed]
- Brewer, P.B.; Howles, P.A.; Dorian, K.; Griffith, M.E.; Ishida, T.; Kaplan-Levy, R.N.; Kilinc, A.; Smyth, D.R. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 2004, 131, 4035–4045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampugnani, E.R.; Kilinc, A.; Smyth, D.R. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana. Plant J. 2012, 71, 724–735. [Google Scholar] [CrossRef]
- Kitakura, S.; Fujita, T.; Ueno, Y.; Terakura, S.; Wabiko, H.; Machida, Y. The protein encoded by oncogene 6b from agrobacterium tumefaciens interacts with a nuclear protein of tobacco. Plant Cell 2002, 14, 451–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming-Jun, G.; Xiang, L.; Helen, L.; Gropp, G.M.; Lydiate, D.D.; Shu, W.; Hegedus, D.D. ASIL1 is required for proper timing of seed filling in Arabidopsis. Plant Signal Behav. 2011, 6, 1886–1888. [Google Scholar]
- Luo, J.; Tang, S.; Mei, F.; Peng, X.; Li, J.; Li, X.; Yan, X.; Zeng, X.; Liu, F.; Wu, Y. BnSIP1–1, a Trihelix Family Gene, Mediates Abiotic Stress Tolerance and ABA Signaling in Brassica napus. Front. Plant Sci. 2017, 8, e71136. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.W.; Griffith, M.E.; Li, X.R.; Zhu, Z.F.; Tan, L.B.; Fu, Y.C.; Zhang, W.X.; Wang, X.K.; Xie, D.X.; Sun, C.Q. Origin of seed shattering in rice (Oryza sativa L.). Planta 2007, 226, 11–20. [Google Scholar] [CrossRef]
- Yu, C.; Song, L.; Song, J.; Ouyang, B.; Guo, L.; Shang, L.; Wang, T.; Li, H.; Zhang, J.; Ye, Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. Plant Sci. 2018, 270, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.H.; Ji, Z.H.; Wood, J.J.; Wood, H.P. Dendrobium. In Flora of China; Wu, C.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China, 2009; pp. 367–397. [Google Scholar]
- Zhao, M.M.; Zhang, G.; Zhang, D.W.; Hsiao, Y.Y.; Guo, S.X. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS ONE 2013, 8, e72705. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Zeng, X.; Guo, S. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci. Rep. 2016, 6, 39693. [Google Scholar] [CrossRef]
- Lavarack, B.; Harris, W.; Stocker, G. Dendrobium and Its Relatives; Timber Press: Portland, OR, USA, 2000. [Google Scholar]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2011, 40, D302–D305. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Hu, R.; Gu, T.; Han, J.; Qiu, D.; Su, P.; Feng, J.; Chang, J.; Yang, G.; He, G. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BMC Genom. 2019, 20, 287. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2014, 31, 1296–1297. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Rong, T.J.; Wen, G.S.; Qian, X.; Zha, Y.H.; Xu, S.Z. Comparison on Two Modified Total RNA Isolation Methods from Dendrobium officinale. J. Yunnan Agric. Univ. 2012, 27, 703–707. [Google Scholar]
- Gao, M.-J.; Lydiate, D.J.; Li, X.; Lui, H.; Gjetvaj, B.; Hegedus, D.D.; Rozwadowski, K. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 2009, 21, 54. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.W.; Wang, Y.; Pan, Q.; Chen, S.K.; Feng, C.Z.; Hai, J.B.; Li, H.F. Comparison of Trihelix transcription factors between wheat and Brachypodium distachyon at genome-wide. BMC Genom. 2019, 20, 142. [Google Scholar] [CrossRef]
- Qin, Y.; Ma, X.; Yu, G.; Wang, Q.; Wang, L.; Kong, L.; Kim, W.; Wang, H.W. Evolutionary history of trihelix family and their functional diversification. DNA Res. 2014, 21, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Song, A.; Wu, D.; Fan, Q.; Tian, C.; Chen, S.; Guan, Z.; Xin, J.; Zhao, K.; Chen, F. Transcriptome-wide identification and expression profiling analysis of chrysanthemum trihelix transcription factors. Int. J. Mol. Sci. 2016, 17, 198. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, Q.; Wang, H.; Zhang, H.; Xu, X.; Li, C.; Yang, C. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa. Sci. Rep. 2016, 6, 36274. [Google Scholar] [CrossRef] [Green Version]
- Todeschini, A.L.; Georges, A.; Veitia, R.A. Transcription factors: Specific DNA binding and specific gene regulation. Trends Genet. 2014, 30, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Dennis, E.S.; Berger, F.; Peacock, W.J.; Chaudhury, A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2005, 102, 17531–17536. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Huaxia, Y.; Lu, W.; Wu, C.; Cao, X.; Guo, X. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol. 2012, 12, 144. [Google Scholar] [CrossRef] [Green Version]
- Gonzàlez-Porta, M.; Frankish, A.; Rung, J.; Harrow, J.; Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013, 14, R70. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.Y.; Xia, E.H.; Liu, F.H.; Gao, L.Z. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata. Gene 2015, 557, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Gao, L.Z. Genome-wide analysis of WRKY genes and their response to hormone and mechanic stresses in carrot. Front. Genet. 2019, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Qiu, Y.; Du, L.; Poovaiah, B.W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci. 2012, 185–186, 274–280. [Google Scholar] [CrossRef]
- Xu, H.; Shi, X.; He, L.; Guo, Y.; Zang, D.; Li, H.; Zhang, W.; Wang, Y. Arabidopsis thaliana trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-Box and some GT motifs. Plant Cell Physiol. 2018, 59, 946–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Xie, K.; Hou, X.; Hu, H.; Xiong, L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol. Genet. Genom. 2010, 283, 157–169. [Google Scholar] [CrossRef]
- Wu, Z.G.; Jiang, W.; Chen, S.L.; Mantri, N.; Tao, Z.M.; Jiang, C.X. Insights from the cold transcriptome and metabolome of Dendrobium officinale: Global reprogramming of metabolic and gene regulation networks during cold acclimation. Front. Plant Sci. 2016, 7, 1653. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Sequence ID | CDS (bp) | ORF (aa) | MW (kD) | PI | GRAVY | Group | Location |
---|---|---|---|---|---|---|---|---|
DoGT1 | PKU61201.1 | 1845 | 614 | 68.32 | 8.66 | −0.244 | GT-1 | Chloroplast |
DoGT2 | PKU61538.1 | 1173 | 390 | 44.48 | 6.54 | −0.734 | GT-1 | Chloroplast/Nucleus/Peroxisome |
DoGT3 | PKU64395.1 | 1002 | 333 | 37.46 | 9.08 | −0.633 | SIP1 | Nucleus |
DoGT4 | PKU64635.1 | 960 | 319 | 37.35 | 6.66 | −0.846 | GT-2 | Nucleus |
DoGT5 | PKU65280.1 | 2370 | 789 | 85.07 | 5.86 | −0.691 | GT-2 | Nucleus |
DoGT6 | PKU66139.1 | 756 | 251 | 28.23 | 10.05 | −0.496 | SIP1 | Cell membrane/Chloroplast |
DoGT7 | PKU68542.1 | 1095 | 364 | 42.29 | 5.8 | −0.778 | GTγ | Nucleus |
DoGT8 | PKU70315.1 | 1335 | 444 | 51.02 | 6.56 | −0.905 | GTγ | Nucleus |
DoGT9 | PKU72438.1 | 789 | 262 | 30.19 | 5.23 | −1.039 | SIP1 | Chloroplast/Nucleus |
DoGT10 | PKU72660.1 | 882 | 293 | 32.82 | 9.79 | −0.73 | SIP1 | Chloroplast/Nucleus |
DoGT11 | PKU72926.1 | 1272 | 423 | 47.82 | 5.12 | −0.864 | SIP1 | Nucleus |
DoGT12 | PKU73007.1 | 882 | 293 | 33.06 | 9.21 | −0.936 | SIP1 | Nucleus |
DoGT13 | PKU73055.1 | 1125 | 374 | 42.48 | 6.01 | −0.794 | GTγ | Nucleus |
DoGT14 | PKU73826.1 | 963 | 320 | 35.29 | 10.06 | −0.865 | SIP1 | Nucleus |
DoGT15 | PKU74793.1 | 612 | 203 | 22.01 | 7.04 | −0.368 | SIP1 | Nucleus |
DoGT16 | PKU75532.1 | 1860 | 619 | 69.43 | 6.27 | −0.849 | GT-2 | Nucleus |
DoGT17 | PKU75541.1 | 936 | 311 | 36.63 | 6.39 | −1.139 | GT-1 | Nucleus |
DoGT18 | PKU76359.1 | 1164 | 387 | 43.90 | 6.36 | −0.697 | GT-1 | Nucleus |
DoGT19 | PKU76537.1 | 792 | 263 | 31.69 | 6.34 | −1.414 | GT-1 | Nucleus |
DoGT20 | PKU77186.1 | 834 | 277 | 30.78 | 9.45 | −0.973 | SIP1 | Nucleus |
DoGT21 | PKU77634.1 | 2136 | 711 | 77.12 | 5.55 | −0.778 | GT-2 | Nucleus |
DoGT22 | PKU78493.1 | 672 | 223 | 24.97 | 5.07 | −0.709 | SH4 | Nucleus |
DoGT23 | PKU79539.1 | 1782 | 593 | 64.86 | 6.27 | −0.465 | SIP1 | Chloroplast |
DoGT24 | PKU79543.1 | 1344 | 447 | 49.48 | 6.01 | −0.808 | GTγ | Nucleus |
DoGT25 | PKU81577.1 | 837 | 278 | 31.63 | 10.19 | −0.832 | SIP1 | Nucleus |
DoGT26 | PKU81817.1 | 1209 | 402 | 45.93 | 4.58 | −1.286 | SIP1 | Nucleus |
DoGT27 | PKU81902.1 | 870 | 289 | 32.33 | 10.11 | −0.709 | SIP1 | Nucleus |
DoGT28 | PKU83780.1 | 810 | 269 | 30.75 | 6.13 | −0.996 | SIP1 | Nucleus |
DoGT29 | PKU84102.1 | 948 | 315 | 36.80 | 6.65 | −1.156 | GT-1 | Nucleus |
DoGT30 | PKU84591.1 | 1749 | 582 | 63.77 | 6.61 | −0.576 | SIP1 | Chloroplast |
DoGT31 | PKU86134.1 | 1440 | 479 | 53.07 | 8.65 | −0.605 | GT-2 | Nucleus |
DoGT32 | PKU87767.1 | 993 | 330 | 35.74 | 9.33 | −0.737 | SH4 | Nucleus |
Motif ID | Conserved Motifs | Width | Sites |
---|---|---|---|
Motif 1 | GYPRSPVQCKNKIENLKKRYK | 21 | 32 |
Motif 2 | WSEGETLALJDAYEEKWJSLNRGNLRAKDWEEVAATV | 37 | 15 |
Motif 3 | WPKQETRALIALRAELDRRFLESGPKKPLWEEISARM | 37 | 11 |
Motif 4 | SSWPFFKRLDALLR | 14 | 29 |
Motif 5 | GDVGELAEAJRKFGEGYLRVERKKMEMMRELERERMEME | 39 | 11 |
Motif 6 | VVENPALLDSMSHVSHKAKDDVRKILSSKHLFYREMCAYHN | 41 | 4 |
Motif 7 | AAFFEGLLKZLMEQQEAMQQRFLETIERREQERMRREEAWR | 41 | 7 |
Motif 8 | IQSEALELEKRRFKWQRFSSKKDRELEKMRLKNERLRLENERMTLELRQK | 50 | 4 |
Motif 9 | REEERRAQERARAEKRDAAIISFLQKLTG | 29 | 8 |
Motif 10 | GFTAMDMTAISFCEENNIPVVLFNLLEPGNISRALCGDQVGTLIDQSGRI | 50 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Huang, H.; Wang, Y. Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale. Sustainability 2021, 13, 2826. https://doi.org/10.3390/su13052826
Tong Y, Huang H, Wang Y. Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale. Sustainability. 2021; 13(5):2826. https://doi.org/10.3390/su13052826
Chicago/Turabian StyleTong, Yan, Hui Huang, and YuHua Wang. 2021. "Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale" Sustainability 13, no. 5: 2826. https://doi.org/10.3390/su13052826
APA StyleTong, Y., Huang, H., & Wang, Y. (2021). Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale. Sustainability, 13(5), 2826. https://doi.org/10.3390/su13052826