Pollen and Fungal Spores Evaluation in Relation to Occupants and Microclimate in Indoor Workplaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Vegetation Description
2.2. Aerobiological Monitoring
2.3. Microclimate Monitoring
2.4. Occupant Behavior Monitoring
2.5. Statistical Analysis
3. Results
3.1. Pollen and Fungal Spores Characterization
3.2. Non-Working Days (NWDs) and Working Days (WDs)
3.3. Non-Working Hours (NWHs) and Working Hours (WHs)
3.4. Correlation among Biocontaminants, Meteorological Variables, and Occupants’ Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, M.; Hays, A. Indoor and outdoor allergies. Prim. Care Clin. Off. Pract. 2016, 43, 451–463. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Sbihi, H.; Boutin, R.C.T.; Cutler, C.; Suen, M.; Finlay, B.B.; Turvey, S.E. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy 2019, 64, 2103–2115. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Wu, W.; Fan, W.; Haahtela, T.; Zhang, G. House dust microbiome and human health risks. Int. Microbiol. 2019, 22, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.T.; Melikov, A.K. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor Air 2018, 28, 500–524. [Google Scholar] [CrossRef]
- Ai, Z.T.; Hashimoto, K.; Melikov, A.K. Airborne transmission between room occupants during short-term events: Measurement and evaluation. Indoor Air 2019, 29, 563–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damialis, A.; Häring, F.; Gökkaya, M.; Rauer, D.; Reiger, M.; Bezold, S.; Bounas-Pyrros, N.; Eyerich, K.; Todorova, A.; Hammel, G.; et al. Human exposure to airborne pollen and relationships with symptoms and immune responses: Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments. Sci. Total Environ. 2019, 653, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Avery, A.M.; Waring, M.S.; DeCarlo, P.F. Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Environ. Sci. Process. Impacts 2019, 21, 528–547. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.Y.; Buttner, M.; Rivas, D.; Cross, C.; Bazylinski, D.A.; Seggev, J. Variation in airborne fungal spore concentrations among five monitoring locations in a desert urban environment. Environ. Monit. Assess. 2018, 190, 424. [Google Scholar] [CrossRef] [Green Version]
- Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J.P.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity. Sci. World. J. 2015, 2015, 940243. [Google Scholar] [CrossRef] [Green Version]
- Borchers, A.T.; Chang, C.; Gershwin, E.M. Mold and human health: A reality check. Clin. Rev. Allergy Immunol. 2017, 52, 305–322. [Google Scholar] [CrossRef]
- Pasteur, L. Mémoire sur les corpuscules organisés qui existent dans l’atmosphère. Examen de la doctrine des générations spontanées. Ann. des Sci. Nat. Partie Zool. 1861, 4, 5–98. [Google Scholar]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Agency for Safety and Health at Work—EU-OSHA. Priorities for Occupational Safety and Health Research in Europe: 2013–2020; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar] [CrossRef]
- Kessler, R.C.; Almeida, D.M.; Berglund, P.; Stang, P. Pollen and mold exposure impairs the work performance of employees with allergic rhinitis. Ann. Allergy Asthma Immunol. 2001, 87, 289–295. [Google Scholar] [CrossRef]
- Mirskaya, E.; Agranovski, I.E. Sources and mechanisms of bioaerosol generation in occupational environments. Crit. Rev. Microbiol. 2018, 44, 739–758. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.M.; Hong, H.J.; Park, S.H.; Yoon, D.K.; Nam Goung, S.J.; Lee, C.M. Distribution and influencing factors of airborne bacteria in public facilities used by pollution-sensitive population: A meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Dear, R.J.; Brager, G.S. Developing an adapting model of thermal comfort and preferences. Atlanta. ASHRAE. Trans. 1998, 104, 145–167. [Google Scholar]
- Wierzbicka, A.; Pedersen, E.; Persson, R.; Nordquist, B.; Stålne, K.; Gao, C.; Harderup, L.-E.; Borell, J.; Caltenco, H.; Ness, B.; et al. Healthy indoor environments: The need for a holistic approach. Int. J. Environ. Res. Public Health 2018, 15, 1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, A.; Matiu, M.; Michaelis, R.; Jochner, S. Indoor birch pollen concentrations differ with ventilation scheme, room location, and meteorological factors. Indoor Air. 2017, 27, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Jantunen, J.; Saarinen, K. Intrusion of airborne pollen through open windows and doors. Aerobiologia 2009, 25, 193–201. [Google Scholar] [CrossRef]
- Hugg, T.; Rantio-Lehtimäki, A. Indoor and outdoor pollen concentrations in private and public spaces during the Betula pollen season. Aerobiologia 2007, 23, 119–129. [Google Scholar] [CrossRef]
- Yamamoto, N.; Matsuki, Y.; Yokoyama, H.; Matsuki, H. Relationships among indoor, outdoor, and personal airborne japanese cedar pollen counts. PLoS ONE 2015, 10, e0131710. [Google Scholar] [CrossRef]
- Sterling, D.A.; Lewis, R.D. Pollen and fungal spores indoor and outdoor of mobile homes. Ann. Allergy Asthma Immunol. 1998, 80, 279–285. [Google Scholar] [CrossRef]
- Lyles, W.B.; Greve, K.W.; Bauer, R.M.; Ware, M.R.; Schramke, C.J.; Crouch, J.; Hicks, A. Sick building syndrome. South. Med. J. 1991, 84, 65–71. [Google Scholar] [CrossRef]
- Seltzer, J.M. Building-related illnesses. J. Allergy Clin. Immunol. 1994, 94, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Skov, P.; Valbjørn, O.; Pedersen, B.V. Influence of personal characteristics, job-related factors and psychosocial factors on the sick building syndrome. Danish Indoor Climate Study Group. Scand. J. Work Environ. Health 1989, 15, 286–295. [Google Scholar] [CrossRef]
- Toivola, M.; Alm, S.; Reponen, T.; Kolari, S.; Nevalainen, A. Personal exposures and microenvironmental concentrations of particles and bioaerosols. J. Environ. Monit. 2002, 4, 166–174. [Google Scholar] [CrossRef]
- Ghosh, B.; Lal, H.; Srivastava, A. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 2015, 85, 254–272. [Google Scholar] [CrossRef]
- Hong, T.; Gurian, P.L. Characterizing bioaerosol risk from environmental sampling. Environ. Sci. Technol. 2012, 46, 6714–6722. [Google Scholar] [CrossRef] [PubMed]
- Raulf, M.; Buters, J.; Chapman, M.; Cecchi, L.; de Blay, F.; Doekes, G.; Eduard, W.; Heederik, D.; Jeebhay, M.F.; Kespohl, S.; et al. Monitoring of occupational and environmental aeroallergens—EAACI Position Paper. Allergy 2014, 69, 1280–1299. [Google Scholar] [CrossRef]
- Walser, S.M.; Gerstner, D.G.; Brenner, B.; Bünger, J.; Eikmann, T.; Janssen, B.; Kolb, S.; Kolk, A.; Nowak, D.; Raulf, M.; et al. Evaluation of exposure-response relationships for health effects of microbial bioaerosols—A systematic review. Int. J. Hyg. Environ. Health 2015, 218, 577–589. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Fabi, V.; Andersen, R.V.; Corgnati, S.; Olesen, B.W. Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Build. Environ. 2012, 58, 188–198. [Google Scholar] [CrossRef]
- Nazaroff, W. Indoor bioaerosol dynamics. Indoor Air 2016, 26, 61–78. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Monti, P.; Cattani, G.; Boccuni, F.; Cacciani, M.; Canepari, S.; Capone, P.; Catrambone, M.; Cusano, M.; De Santis, A.; et al. Integrated evaluation of indoor particulate exposure: The VIEPI project. Sustainability 2020, 12, 9758. [Google Scholar] [CrossRef]
- Dobashi, K.; Usami, A.; Yokozeki, H.; Tsurikisawa, N.; Nakamura, Y.; Sato, K.; Okumura, J.; Yamaguchi, M. On behalf of Committee for Japanese guideline for diagnosis and management of occupational allergic disease, The Japanese Society of Allergology. Japanese guidelines for occupational allergic diseases 2020. Allergol. Int. 2020, 69, 387–404. [Google Scholar] [CrossRef]
- Hirst, J. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- UNI 11108:2004. Air Quality. Method for Sampling and Counting of Airborne Pollen Grains and Fungal Spores; UNI, Italian National Unification: Milano, Italy, 2004; p. 8. [Google Scholar]
- UNI CEN/TS 16868:2015. Ambient Air—Sampling and Analysis of Airborne Pollen Grains and Fungal Spores for Allergy Networks—Volumetric Hirst Method; UNI, Italian National Unification: Milano, Italy, 2015. [Google Scholar]
- Mandrioli, P.; Comtois, P.; Domınguez-Vilches, E.; Galan-Soldevilla, C.; Syzdek, L.D.; Isard, S.A. Sampling: Principles and techniques. In Methods in Aerobiology; Mandrioli, P., Comtois, P., Levizzani, V., Eds.; Pitagora Editrice: Bologna, Italic, 1998; p. 261. [Google Scholar]
- Negrini, A.C.; Arobba, D. Allergenic pollens and pollinosis in Italy: Recent advances. Allergy 1992, 47, 371–379. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Saar, M.; Meltsov, V. Passports of sampling sites in routine aerobiological monitoring of outdoor air. In Aerobiological Monographs, Towards a Comprehensive Vision; MeteoSwiss (CH) and University of Montreal (CA): Montreal, QC, Canada, 2011; Volume 1, pp. 215–231. [Google Scholar]
- Park, D.U.; Yeom, J.K.; Lee, W.J.; Lee, K.M. Assessment of the levels of airborne bacteria, Gram-negative bacteria, and fungi in hospital lobbies. Int. J. Environ. Res. Public Health 2013, 10, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Sautour, M.; Sixt, N.; Dalle, F.; L’Ollivier, C.; Fourquenet, V.; Calinon, C.; Paul, K.; Valvin, S.; Maurel, A.; Aho, S.; et al. Profiles and seasonal distribution of airborne fungi in indoor and outdoor environments at a French hospital. Sci. Total Environ. 2009, 407, 3766–3771. [Google Scholar] [CrossRef]
- Cho, S.Y.; Myong, J.P.; Kim, W.B.; Park, C.; Lee, S.J.; Lee, S.H.; Lee, D.G. Profiles of environmental mold: Indoor and outdoor air sampling in a hematology Hospital in Seoul, South Korea. Int. J. Environ. Res. Public Health 2018, 15, 2560. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Delgado, L.; Ribeiro, H.; Abreu, I. Fungal spores from Pleosporales in the atmosphere of urban and rural locations in Portugal. J. Environ. Monit. 2010, 12, 1187–1194. [Google Scholar] [CrossRef]
- Burton, W.N.; Conti, D.J.; Chen, C.Y.; Schultz, A.B.; Edington, D.W. The impact of allergies and allergy treatment on worker productivity. J. Occup. Environ. Med. 2001, 43, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Perotin, J.M.; Barbe, C.; Nguyen, K.L.; Fontaine, J.F.; Gabignon, Y.; Nardi, J.; Launois, C.; Lebargy, F.; Lavaud, F.; Deslee, G. Work-related respiratory symptoms in Champagne vineyard workers. Eur. Ann. Allergy Clin. Immunol. 2015, 47, 140–144. [Google Scholar] [PubMed]
- Ariano, R.; Mistrello, G.; Panzani, R.C. Occupational respiratory allergy to cyclamen pollen: A case report. Eur. Ann. Allergy Clin. Immunol. 2006, 38, 90–93. [Google Scholar] [PubMed]
- Hermanides, H.K.; Laheÿ-de Boer, A.M.; Zuidmeer, L.; Guikers, C.; van Ree, R.; Knulst, A.C. Brassica oleracea pollen, a new source of occupational allergens. Allergy 2006, 61, 498–502. [Google Scholar] [CrossRef]
- Wittmaack, K.; Wehnes, H.; Heinzmann, U.; Agerer, R. An overview on bioaerosols viewed by scanning electron microscopy. Sci. Total Environ. 2005, 346, 244–255. [Google Scholar] [CrossRef]
- Vermeulen, A.M.; Groenewoud, G.C.; de Jong, N.W.; de Groot, H.; van Wijk, R.G.; van Toorenenbergen, A.W. Primary sensitization to sweet bell pepper pollen in greenhouse workers with occupational allergy. Clin. Exp. Allergy 2003, 33, 1439–1442. [Google Scholar] [CrossRef]
- Miesen, W.M.; van der Heide, S.; Kerstjens, H.A.; Dubois, A.E.; de Monchy, J.G. Occupational asthma due to IgE mediated allergy to the flower Molucella laevis (Bells of Ireland). Occup. Environ. Med. 2003, 60, 701–703. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, B.P.; Das, S.; Adhikari, A.; Alam, J. Exposure to varying concentration of fungal spores in grain storage godowns and its effect on the respiratory function status among the workers. Ind. Health 2007, 45, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Gravensen, S. Microbiological studies on carpets versus hard floors in non-industrial occupations. Indoor Air 1987, 87, 668–672. [Google Scholar]
- Takahashi, Y.; Takano, K.; Suzuki, M.; Nagai, S.; Yokosuka, M.; Takeshita, T.; Saito, A.; Yasueda, H.; Enomoto, T. Two routes for pollen entering indoors: Ventilation ad clothes. J. Investig. Allergol. Clin. Immunol. 2008, 18, 382–388. [Google Scholar] [PubMed]
- Billionnet, C.; Sherrill, D.; Annesi-Maesano, I. Estimating the health effects of exposure to multi-pollutant mixture. Ann. Epidemiol. 2012, 22, 126–141. [Google Scholar] [CrossRef]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amato, G.; Chong-Neto, H.J.; Monge Ortega, O.P.; Vitale, C.; Ansotegui, I.; Rosario, N.; Haahtela, T.; Galan, C.; Pawankar, R.; Murrieta-Aguttes, M. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 2020, 75, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Sikoparija, B.; Skjøth, C.A.; Celenk, S.; Testoni, C.; Abramidze, T.; Alm Kübler, K.; Belmonte, J.; Berger, U.; Bonini, M.; Charalampopoulos, A.; et al. Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia 2017, 33, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, L.; D’Amato, G.; Annesi-Maesano, I. External exposome and allergic respiratory and skin diseases. J. Allergy Clin. Immunol. 2018, 141, 846–857. [Google Scholar] [CrossRef] [Green Version]
- Steckling, N.; Gotti, A.; Bose-O’Reilly, S.; Chapizanis, D.; Costopoulou, D.; De Vocht, F.; Garí, M.; Grimalt, J.O.; Heath, E.; Hiscock, R.; et al. Biomarkers of exposure in environment-wide association studies—Opportunities to decode the exposome using human biomonitoring data. Environ. Res. 2018, 164, 597–624. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; Annesi-Maesano, I.; D’Amato, G.; Cecchi, L. Climate change and occupational allergies: An overview on biological pollution, exposure and prevention. Ann. Ist. Super. Sanità 2016, 52, 406–414. [Google Scholar] [CrossRef]
- Vandenplas, O.; Godet, J.; Hurdubaea, L.; Rifflart, C.; Suojalehto, H.; Walusiak-Skorupa, J.; Munoz, X.; Sastre, J.; Klusackova, P.; Moore, V.; et al. Severe occupational asthma: Insights from a multicenter European cohort. J. Allergy Clin. Immunol. Pract. 2019, 7, 2309–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larese Filon, F.; Drusian, A.; Mauro, M.; Negro, C. Laboratory animal allergy reduction from 2001 to 2016: An intervention study. Respir. Med. 2018, 136, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastl, K.; Bastl, M.; Bergmann, K.C.; Berger, U. How to do a clinical trial? Recommendations from the aerobiological point of view. World Allergy Organ. J. 2019, 12, 100020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.; Berger, U.; Behrendt, H.; Bergmann, K.C. Pollen and pollinosis. Chem. Immunol. Allergy 2014, 100, 228–233. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Gherardi, M. Development and validation of an intra-calibration procedure for MiniDISCs measuring ultrafine particles in multi-spatial indoor environments. Atmos. Environ. 2021, 246, 118154. [Google Scholar] [CrossRef]
- Bulski, K. Bioaerosols at plants processing materials of plant origin-a review. Environ. Sci. Pollut. Res. Int. 2020, 27, 27507–27514. [Google Scholar] [CrossRef]
A representative NWD | |||||||
---|---|---|---|---|---|---|---|
Hour | Door (min) | Window (min) | Fan (min) | Occupants (n) | Tair (°C) | RH (%) | WS (m/s) |
07:30 | Closed | Closed | Off | 0 | 19.85 | 40.05 | 0 |
08:00 | Closed | Closed | Off | 0 | 19.80 | 39.94 | 0 |
08:30 | Closed | Closed | Off | 0 | 19.80 | 39.76 | 0.001 |
09:00 | Closed | Closed | Off | 0 | 19.79 | 39.71 | 0 |
09:30 | Closed | Closed | Off | 0 | 19.80 | 39.85 | 0.001 |
10:00 | Closed | Closed | Off | 0 | 19.80 | 40.11 | 0 |
10:30 | Closed | Closed | Off | 0 | 19.80 | 40.27 | 0.001 |
11:00 | Closed | Closed | Off | 0 | 19.71 | 40.58 | 0 |
11:30 | Closed | Closed | Off | 0 | 19.70 | 40.98 | 0 |
12:00 | Closed | Closed | Off | 0 | 19.70 | 41.06 | 0 |
12:30 | Closed | Closed | Off | 0 | 19.63 | 41.21 | 0 |
13:00 | Closed | Closed | Off | 0 | 19.60 | 41.30 | 0 |
13:30 | Closed | Closed | Off | 0 | 19.60 | 41.35 | 0 |
14:00 | Closed | Closed | Off | 0 | 19.60 | 41.44 | 0 |
14:30 | Closed | Closed | Off | 0 | 19.53 | 41.58 | 0 |
15:00 | Closed | Closed | Off | 0 | 19.50 | 41.68 | 0 |
15:30 | Closed | Closed | Off | 0 | 19.50 | 41.82 | 0 |
16:00 | Closed | Closed | Off | 0 | 19.50 | 41.93 | 0 |
16:30 | Closed | Closed | Off | 0 | 19.50 | 42.01 | 0 |
17:00 | Closed | Closed | Off | 0 | 19.46 | 42.14 | 0 |
17:30 | Closed | Closed | Off | 0 | 19.40 | 42.31 | 0 |
18:00 | Closed | Closed | Off | 0 | 19.35 | 42.43 | 0 |
18:30 | Closed | Closed | Off | 0 | 19.30 | 42.49 | 0.001 |
19:00 | Closed | Closed | Off | 0 | 19.23 | 42.43 | 0.001 |
19:30 | Closed | Closed | Off | 0 | 19.20 | 42.37 | 0 |
A Representative WD | |||||||
Hour | Door (min) | Window (min) | Fan (min) | Occupants (n) | Tair (°C) | RH (%) | WS (m/s) |
07:30 | Closed | Closed | Off | 0 | 20.87 | 35.12 | 0 |
08:00 | Closed | Closed | Off | 0 | 20.89 | 35.04 | 0 |
08:30 | Closed | Closed | Off | 0 | 20.95 | 34.66 | 0 |
09:00 | Open | Open | Off | 1 | 22.02 | 31.46 | 0.003 |
09:30 | Open | Open | Off | 1 | 22.61 | 31.01 | 0 |
10:00 | Open | Open | Off | 1 | 23.08 | 31.14 | 0 |
10:30 | Open | Open | Off | 0 | 22.62 | 32.86 | 0.023 |
11:00 | Open | Open | Off | 2 | 22.40 | 34.26 | 0.064 |
11:30 | Open | Open | Off | 1 | 22.17 | 34.62 | 0.143 |
12:00 | Open | Open | Off | 1 | 22.30 | 33.37 | 0.159 |
12:30 | Open | Open | Off | 0 | 23.08 | 29.71 | 0.059 |
13:00 | Open | Closed | Off | 0 | 24.11 | 28.05 | 0 |
13:30 | Open | Closed | Off | 1 | 24.32 | 27.45 | 0 |
14:00 | Open | Closed | Off | 1 | 24.48 | 26.18 | 0 |
14:30 | Open | Closed | Off | 2 | 24.61 | 23.79 | 0 |
15:00 | Open | Closed | Off | 2 | 24.98 | 23.66 | 0 |
15:30 | Closed | Closed | Off | 1 | 25.76 | 25.07 | 0 |
16:00 | Open | Closed | Off | 1 | 25.97 | 25.66 | 0 |
16:30 | Open | Closed | Off | 1 | 26.04 | 22.98 | 0 |
17:00 | Open | Closed | Off | 1 | 24.64 | 25.04 | 0 |
17:30 | Closed | Closed | Off | 0 | 24.19 | 27.20 | 0.002 |
18:00 | Closed | Closed | Off | 0 | 23.96 | 28.62 | 0 |
18:30 | Closed | Closed | Off | 0 | 23.49 | 29.89 | 0 |
19:00 | Closed | Closed | Off | 0 | 23.11 | 30.64 | 0 |
19:30 | Closed | Closed | Off | 0 | 22.76 | 31.37 | 0 |
NWDs (from Saturday to Sunday) | WDs (from Monday to Friday) | |||||||
---|---|---|---|---|---|---|---|---|
NWD (N Days) | TC (Particles/m3) | DA (Particles/m3) | Percentages (%) * | WD (N Days) | TC (Particles/m3) | DA (Particles/m3) | Percentages (%) * | |
Summer | 16 | 40 | ||||||
Pollen | 97.0 | 0.6 ± 1.2 | 2.0 | 1148.4 | 28.7 ± 53.1 | 98.0 | ||
Fungal Spores | 88.0 | 5.5 ± 7.7 | 3.3 | 6460.1 | 161.5 ± 204.5 | 96.7 | ||
Winter | 8 | 19 | ||||||
Pollen | 7.0 | 0.9 ± 1.2 | 14.0 | 104.3 | 5.5 ± 8.8 | 86.0 | ||
Fungal Spores | 209.4 | 26.2 ± 41.0 | 38.4 | 797.3 | 42.0 ± 39.0 | 61.6 |
OD [0–1] | Occ [%] | OW [0–1] | Fan On [0–1] | Tair [°C] | RH [%] | WS [m/s] | Pollen [Particles/m3] | Fungal Spores [Particles/m3] | |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.13 | 0.15 | 4.88 | 3.88 | 20.42 | 39.56 | 0.00 | 1.20 | 11.49 |
StDev | 0.25 | 0.29 | 16.15 | 15.68 | 2.17 | 7.19 | 0.01 | 3.40 | 19.94 |
OD | Occ | OW | Fan On | Tair | RH | WS | Pollen | Fungal Spores | |
---|---|---|---|---|---|---|---|---|---|
OD | 1.00 | ||||||||
Occ | 0.93 | 1.00 | |||||||
OW | 0.60 | 0.49 | 1.00 | ||||||
Fan On | 0.58 | 0.52 | −0.05 | 1.00 | |||||
Tair | 0.73 | 0.73 | 0.33 | 0.45 | 1.00 | ||||
RH | −0.55 | −0.58 | −0.21 | −0.28 | −0.81 | 1.00 | |||
WS | 0.47 | 0.56 | 0.44 | 0.07 | 0.37 | −0.30 | 1.00 | ||
Pollen | 0.33 | 0.42 | 0.33 | −0.06 | 0.37 | −0.30 | 0.86 | 1.00 | |
Fungal Spores | 0.37 | 0.40 | 0.29 | −0.03 | 0.35 | −0.15 | 0.58 | 0.65 | 1.00 |
MRall | MRno_od-Tair | MRob | |
---|---|---|---|
Intercept | −9.26 | 2.49 | 0.48 |
Occ | −0.80 | −0.22 | 11.29 |
OD (0–1) | −0.46 | // | −6.90 |
OW (0–1) | −0.02 | −0.02 | 0.00 |
Fan On (0–1) | −0.04 | −0.03 | −0.05 |
Tair | 0.43 | // | // |
RH | 0.03 | −0.05 | // |
WS | 278.04 | 277.86 | // |
R | 0.89 | 0.88 | 0.549 |
Paverage | 0.32 | 0.22 | 0.18 |
MRall | MRno_od-Tair | MRob | |
---|---|---|---|
Intercept | −152.89 | −7.08 | 7.14 |
Occ | −14.56 | 25.31 | 19.79 |
OD (0–1) | −50.64 | // | 34.70 |
OW (0–1) | −0.40 | −0.10 | −0.17 |
Fan On (0–1) | −0.58 | −0.28 | −0.56 |
Tair | 5.22 | // | // |
RH | 1.39 | 0.35 | // |
WS | 939.48 | 845.37 | // |
R | 0.70 | 0.62 | 0.50 |
Paverage | 0.07 | 0.25 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ovidio, M.C.; Di Renzi, S.; Capone, P.; Pelliccioni, A. Pollen and Fungal Spores Evaluation in Relation to Occupants and Microclimate in Indoor Workplaces. Sustainability 2021, 13, 3154. https://doi.org/10.3390/su13063154
D’Ovidio MC, Di Renzi S, Capone P, Pelliccioni A. Pollen and Fungal Spores Evaluation in Relation to Occupants and Microclimate in Indoor Workplaces. Sustainability. 2021; 13(6):3154. https://doi.org/10.3390/su13063154
Chicago/Turabian StyleD’Ovidio, Maria Concetta, Simona Di Renzi, Pasquale Capone, and Armando Pelliccioni. 2021. "Pollen and Fungal Spores Evaluation in Relation to Occupants and Microclimate in Indoor Workplaces" Sustainability 13, no. 6: 3154. https://doi.org/10.3390/su13063154
APA StyleD’Ovidio, M. C., Di Renzi, S., Capone, P., & Pelliccioni, A. (2021). Pollen and Fungal Spores Evaluation in Relation to Occupants and Microclimate in Indoor Workplaces. Sustainability, 13(6), 3154. https://doi.org/10.3390/su13063154