Research Progress on Aerobiology in the Last 30 Years: A Focus on Methodology and Occupational Health
Abstract
:1. Introduction
1.1. Historical Background
1.2. Aerobiology and Occupational Health
2. Materials and Methods
2.1. Data Collection: Systematic Search
2.2. Data Analysis
3. Results and Discussion
3.1. Article Numbers, General Data and Trends
3.2. Research Areas
3.3. Networks and Emerging Research Trends
3.3.1. Categories
3.3.2. Countries
3.3.3. Keywords
3.3.4. Additional Remarks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernstrom, A.; Goldblatt, M. Aerobiology and Its Role in the Transmission of Infectious Diseases. J. Pathog. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandelwal, A. Aerobiology: Aspects and prospects. Palaeobotanist 2008, 57, 251–255. [Google Scholar]
- Beggs, P.J.; Šikoparija, B.; Smith, M. Aerobiology in the International Journal of Biometeorology, 1957–2017. Int. J. Biometeorol. 2017, 61, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, P.H. The Microbiology of the Atmosphere; Leonard Hill: London, UK, 1961. [Google Scholar]
- Lacey, M.E.; West, J.S. The Air Spora: A Manual for Catching and Identifying Airborne Biological Particles; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Mandrioli, P.; Ariatti, A. Aerobiology: Future course of action. Aerobiology 2001, 17, 1–10. [Google Scholar] [CrossRef]
- Cox, C.S. The Aerobiological Pathway of Microorganisms; John Wiley & Sons: Chichester, UK, 1987. [Google Scholar] [CrossRef]
- Kapadi, M.R.; Patel, S.I. Aeromycological approach of some fungal diseases on Tomato Crop (Lycopersicon esculentum Mill.) at Nashik, India 422007. J. Drug Deliv. Ther. 2019, 9, 329–331. [Google Scholar] [CrossRef]
- Burge, H.A. An update on pollen and fungal spore aerobiology. J. Allergy Clin. Immunol. 2002, 110, 544–552. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Monti, P.; Cattani, G.; Boccuni, F.; Cacciani, M.; Canepari, S.; Capone, P.; Catrambone, M.; Cusano, M.; D’Ovidio, M.C.; et al. Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project. Sustainability 2020, 12, 9758. [Google Scholar] [CrossRef]
- Dobell, C. Antony Van Leewenhoek and His ‘Little Animals; Bale & Danielsson: London, UK, 1932. [Google Scholar]
- Buller, A.H.R. Micheli and the discovery of reproduction in fungi. Trans. R. Soc. Can. 1915, 9, 1–25. [Google Scholar]
- Moreau, R. The origin of aerobiology. J. Aerosol Sci. 1994, 25, 109–110. [Google Scholar] [CrossRef]
- Maddox, R.L. On an Apparatus for collecting Atmospheric Particles. Mon. Microsc. J. 1870, 3, 286–290. [Google Scholar] [CrossRef]
- Cunningham, D.D. Microscopic Examinations of Air; Government Printer: Calcutta, India, 1873.
- Miquel, P. Les Organismes Vivants de l’Atmosphère; Gauthier-Villars: Paris, France, 1883. [Google Scholar]
- Blackley, C. Experimental Researches On the Cause and Nature Of Catarrhus Aestivus (Hay Fever, Hay Asthma); Balliere, Tindall & Cox: London, UK, 1873. [Google Scholar]
- Hesse, W. Ueber quantitative Bestimmung der in der luft enthaltenen mikroorganismen. Mitth. Kaiserl. Gesundh. 1884, 2, 182–207. [Google Scholar]
- Hesse, W. Bemerkungen zur quantitative bestimmung der mikroorganismen in der luft. Z. Hyg. InfektKrankh. 1888, 4, 182–207. [Google Scholar]
- Frankland, P.F. The distribution of microorganisms in air. Proc. R. Soc. 1886, 40, 506–526. [Google Scholar] [CrossRef] [Green Version]
- Frankland, P.F.; Hart, T.G. Further experiments on the distribution of microorganisms in air (by Hesse’s method). Proc. R. Soc. 1887, 42, 267–282. [Google Scholar] [CrossRef]
- Durham, O.C. Air-borne fungus spores as allergens. In Aerobiology; Moulton, F.R., Ed.; American Association for the Advancement of Science: Washington, DC, USA, 1942; pp. 32–47. [Google Scholar]
- Boehm, G. Aerobiology—Its Past and its Future. Galanin 1987, 51, 3–8. [Google Scholar] [CrossRef]
- Haskell, R.J.; Barss, H.P. Fred Campbell Meier, 1893–1938. Phytopathology 1939, 29, 293–302. [Google Scholar]
- Moulton, F.R. Foreword. In Aerobiology; Moulton, F.R., Ed.; American Association for the Advancement of Science: Washington DC, USA, 1942; p. iii. [Google Scholar]
- Hyde, H. Volumetric counts of pollen grains at Cardiff, 1954–1957. J. Allergy 1959, 30, 219–234. [Google Scholar] [CrossRef]
- Hyde, H. Studies in atmospheric pollen. IV. Pollen deposition in Great Britain, 1943. Part II. The composition of the pollen catch. New Phytol. 1950, 49, 407–420. [Google Scholar] [CrossRef]
- Hyde, H.; Williams, D. Studies in atmospheric pollen. II: Diurnal variation in the incidence of grass pollen. New Phytol. 1945, 44, 83–94. [Google Scholar] [CrossRef]
- Gregory, P.H. Spore Content of the Atmosphere Near the Ground. Nat. Cell Biol. 1952, 170, 475–477. [Google Scholar] [CrossRef]
- Hirst, J.M. Philip Herries Gregory: 24 July 1907–February 1986. Biog. Mems. Fell. R. Soc. Lond 1990, 35, 153–177. [Google Scholar] [CrossRef] [Green Version]
- Hirst, J.M. Biography of an aerobiologist: P.H. Gregory (1907–1986). Aerobiologia 1992, 8, 209–218. [Google Scholar] [CrossRef]
- Gregory, P. The dispersion of air-borne spores. Trans. Br. Mycol. Soc. 1945, 28, 26–72. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 259–265. [Google Scholar] [CrossRef]
- Perkins, W.A. The Rotorod Sampler, 2nd ed.; Semiannual Report; Aerosol Laboratory, Department of Chemistry and Chemical Engineering, Stanford University: Stanford, CA, USA, 1957. [Google Scholar]
- Buters, J.T.; Antunes, C.; Galveias, A.; Bergmann, K.C.; Thibaudon, M.; Galán, C.; Schmidt-Weber, C.; Oteros, J. Pollen and spore monitoring in the world. Clin. Transl. Allergy 2018, 8, 9. [Google Scholar] [CrossRef]
- Brennan, G.L.; Potter, C.; de Vere, N.; Griffith, G.W.; Skjøth, C.A.; Osborne, N.J.; Wheeler, B.W.; McInnes, R.N.; Clewlow, Y.; Barber, A. Temperate airborne grass pollen defined by spatiotemporal shifts in community composition. Nat. Ecol. Evol. 2019, 3, 750–754. [Google Scholar] [CrossRef] [Green Version]
- Calderon, C.; Ward, E.; Freeman, J.; McCartney, H.A. Detection of airborne fungal spores sampled by rotating-arm and Hirst-type spore traps using polymerase chain reaction assays. J. Aerosol Sci. 2002, 33, 283–296. [Google Scholar] [CrossRef]
- Williams, R.H.; Ward, E.; McCartney, H.A. Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl. Environ. Microbiol. 2001, 67, 2453–2459. [Google Scholar] [CrossRef] [Green Version]
- Albertini, R.; Ugolotti, M.; Buters, J.; Weber, B.; Thibaudon, M.; Smith, M.; Galan, C.; Brandao, R.; Antunes, C.; Grewling, L.; et al. The European project HIALINE (health impacts of airborne allergen information network): Results of pollen and allergen of Betula monitoring in Parma (2009). Rev. Allergy Clin. Immunol. 2013, 23, 14–20. [Google Scholar]
- Buters, J.T.M.; Thibaudon, M.; Smith, M.; Kennedy, R.; Rantio-Lehtimaki, A.; Albertini, R.; Reese, G.; Weber, B.; Galan, C.; Brandao, R.; et al. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE Study. Atmos. Environ. 2012, 55, 496–505. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.J.; Healy, D.A.; Hellebust, S.; Buters, J.T.; Sodeau, J.R. Using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique for the on-line detection of pollen grains. Aerosol Sci. Technol. 2014, 48, 341–349. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Daly, S.M.; Sodeau, J.R. On-line monitoring of airborne bioaerosols released from a composting/green waste site. Waste Manag. 2015, 42, 23–30. [Google Scholar] [CrossRef]
- Fennelly, M.J.; Sewell, G.; Prentice, M.B.; O’Connor, D.J.; Sodeau, J.R. The use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmosphere 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Crouzy, B.; Stella, M.; Konzelmann, T.; Calpini, B.; Clot, B. All-optical automatic pollen identification: Towards an operational system. Atmos. Environ. 2016, 140, 202–212. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Barr, E.B.; Fan, B.J.; Hargis, P.J.; Rader, D.J.; O’Hern, T.J.; Torczynski, J.R.; Tisone, G.C.; Preppernau, B.L.; Young, S.A.; et al. Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy. Aerosol Sci. Technol. 1999, 30, 186–201. [Google Scholar] [CrossRef]
- Eversole, J.D.; Cary, W.K.; Scotto, C.S.; Pierson, R.; Spence, M.; Campillo, A.J. Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results. Field Anat. Chem. Technol. 2001, 5, 205–212. [Google Scholar] [CrossRef]
- Huffman, J.A.; Perring, A.E.; Savage, N.J.; Clot, B.; Crouzy, B.; Tummon, F.; Shoshanim, O.; Damit, B.; Schneider, J.; Sivaprakasam, V.; et al. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 2020, 54, 465–495. [Google Scholar] [CrossRef] [Green Version]
- Heikkinen, M.S.A.; Hjelmroos-Koski, M.K.; Häggblom, M.M.; Macher, J.M. Bioaerosols. In Aerosols Handbook: Measurment, Dosimetry and Health Effects; Ruzer, L.S., Harley, N.H., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 291–342. [Google Scholar] [CrossRef]
- Andersen, A.A. New sampler for the collection, sizing and enumeration of viable airborne particles. J. Bacteriol. 1958, 76, 471. [Google Scholar] [CrossRef] [Green Version]
- Willeke, K.; Lin, X.; Grinshpun, S.A. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci. Technol. 1998, 28, 439. [Google Scholar] [CrossRef] [Green Version]
- Emberlin, J.; Baboonian, C. The development of a new method of sampling air-borne particles for immunological analysis. In Proceedings I: Proceedings of the Plenary Sessions, Main Symposia and Afternoon Symposia, Proceedings II: Proceedings of the Free Communications, Proceedings of the XVI European Congress of Allergology and Clinical Immunology, Madrid, Spain, 25–30 June 1995; Basomba, A., Hernandez, M.D., de Rojas, F., Eds.; Monduzzi Editore: Bologna, Italy, 1995; pp. 39–43. [Google Scholar]
- Aizenberg, V.; Bidinger, E.; Grinshpun, S.A.; Willeke, K.; Hamed, A.; Tabakoff, W. Airflow and particle velocities near a personal aerosol sampler with a curved, porous aerosol sampling surface. Aerosol Sci. Technol. 1998, 18, 247. [Google Scholar] [CrossRef]
- Mainelis, G.; Willeke, K.; Baron, P.; Grinshpun, S.A.; Reponen, T. Induction charging and electrostatic classification of micrometer-size particles for investigating the electrobiological properties of airborne microorganisms. Aerosol Sci. Technol. 2002, 36, 479. [Google Scholar] [CrossRef] [Green Version]
- Mainelis, G.; Willeke, K.; Adhikari, A.; Reponen, T.; and Grinshpun, S.A. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol Sci. Technol. 2002, 36, 1073. [Google Scholar] [CrossRef]
- Meima, M.; Kuijpers, E.; van den Berg, C.; Kruizinga, A.; van Kesteren, N.; Spaan, S. Biological Agents and Prevention of Work-Related Diseases: A Review; European Agency for Safety and Health at Work (EU-OSHA): Bilbao, Spain, 2020. [Google Scholar] [CrossRef]
- Kasprzyk, I. Aeromycology—Main research fields of interest during the last 25 years. Ann. Agr. Env. Med. 2008, 15, 1–7. [Google Scholar]
- Cariñanos, P.; Alcazar, P.; Galan, C.; Navarro, R.; Dominguez, E. Aerobiology as a tool to help in episodes of occupational allergy in work places. J. Invest. Allergol. Clin. Immunol. 2004, 14, 300–308. [Google Scholar]
- Crook, B. Aerobiological investigation of occupational respiratory allergy in agriculture in the UK. Grana 1994, 33, 81–84. [Google Scholar] [CrossRef]
- Lee, S.A.; Liao, C.H. Size-selective assessment of agricultural workers’ personal exposure to airborne fungi and fungal fragments. Sci. Total Environ. 2014, 466–467, 725–732. [Google Scholar] [CrossRef]
- Damialis, A.; Konstantinou, G.N. Cereal pollen sensitisation in pollen allergic patients: To treat or not to treat? Eur. Ann. Allergy Clin. Immunol. 2011, 43, 36–44. [Google Scholar]
- Ercilla-Montserrat, M.; Izquierdo, R.; Belmonte, J.; Montero, J.I.; Muñoz, P.; de Linares, C.; Rieradevall, J. Building-integrated agriculture: A first assessment of aerobiological air quality in rooftop greenhouses (i-RTGs). Sci. Total Environ. 2017, 598, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.; Sen, M.M.; Gupta-Bhattacharya, S.; Chanda, S. Studies on airborne fungal spores from two indoor cowsheds of suburban and rural areas of West Bengal, India. Indoor Built Environ. 1999, 8, 221–229. [Google Scholar] [CrossRef]
- Campbell, A.R.; Swanson, M.C.; Fernandez-Caldas, E.; Reed, C.E.; May, J.J.; Pratt, D.S. Aeroallergens in Dairy Barns near Cooperstown, New York and Rochester, Minnesota. Am. Rev. Respir. Dis. 1989, 140, 317–320. [Google Scholar] [CrossRef]
- Letourneau, V.; Meriaux, A.; Goyer, N.; Chakir, J.; Cormier, Y.; Duchaine, C. Biological activities of respirable dust from eastern canadian peat moss factories. Toxicol. Vitro 2010, 24, 1273–1278. [Google Scholar] [CrossRef]
- Swan, J.R.M.; Kelsey, A.; Crook, B.; Gilbert, E.J. Occupational and Environmental Exposure to Bioaerosols from Composts and Potential Health Effects—A Critical Review of Published Data; Health and Safety Executive (HSE) Books: Sudbury, UK, 2003. [Google Scholar]
- Raulf, M.; Buters, J.; Chapman, M.; Cecchi, L.; de Blay, F.; Doekes, G.; Eduard, W.; Heederik, D.; Jeebhay, M.F.; Kespohl, S.; et al. Monitoring of occupational and environmental aeroallergens—EAACI position paper concerted action of the EAACI IG occupational allergy and aerobiology & air Pollution. Allergy 2014, 69, 1280–1299. [Google Scholar] [CrossRef]
- Taytard, A.; Tessier, J.F.; Faugere, J.G.; Vergeret, J.; Freour, P. Respiratory function and bronchial reactivity in mill workers. Eur. J. Epidemiol. 1988, 4, 326–330. [Google Scholar] [CrossRef]
- Just, N.; Duchaine, C.; Singh, B. An aerobiological perspective of dust in cage-housed and floor-housed poultry operations. J. Occup. Med. Toxicol. 2009, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Rodolfi, M.; Lorenzi, E.; Picco, A.M. Study of the occurrence of greenhouse microfungi in a botanical garden. J. Phytopathol. 2003, 151, 591–599. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Pedersen, E.; Persson, R.; Nordquist, B.; Stålne, K.; Gao, C.; Harderup, L.E.; Borell, J.; Caltenco, H.; Ness, B.; et al. Healthy indoor environments: The need for a holistic approach. Int. J. Environ. Res. Public Health 2018, 15, 1874. [Google Scholar] [CrossRef] [Green Version]
- Radulescu, H.C.; Rosu, G.; Popescu, C.; Ispas, A.; Ghituleasa, P.C.; Lazar, V. A microbial survey of the museal airborne fungal biodeteriogens. Ge-Conservation 2017, 11, 86–94. [Google Scholar]
- Sommerstein, R.; Fux, C.A.; Vuichard-Gysin, D.; Abbas, M.; Marschall, J.; Balmelli, C.; Troillet, N.; Harbarth, S.; Schlegel, M.; Widmer, A.; et al. Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrob. Resist. Infect. Control. 2020, 9, 100. [Google Scholar] [CrossRef]
- Chen, C. Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA. 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. The structure and dynamics of scientific knowledge. In Mapping Scientific Frontiers; Springer: London, UK, 2013; pp. 163–199. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2002, 7, 373–397. [Google Scholar] [CrossRef]
- R.H.O. Aerobiology studies pests that come with the wind. J. Frankl. Inst. 1938, 226, 571–572. [Google Scholar] [CrossRef]
- Chen, C. The CiteSpace Manual 2014. Available online: https://www.researchgate.net/profile/Arsev_Aydinoglu/publication/274377526_Collaborative_interdisciplinary_astrobiology_research_a_bibliometric_study_of_the_NASA_Astrobiology_Institute/links/5670463b08ae0d8b0cc0e112.pdf (accessed on 5 February 2021).
- Sun, Y.; Wu, S.; Gong, G. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997–2017. Trends Food Sci. Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Xiao, F.; Li, C.; Sun, J.; Zhang, L. Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on CiteSpace analysis. Front. Chem. 2017, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 29 November 2020).
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global wWarming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (accessed on 29 November 2020).
- Chiabai, A.; Quiroga, S.; Martinez-Juarez, P.; Higgins, S.; Taylor, T. The nexus between climate change, ecosystem services and human health: Towards a conceptual framework. Sci. Total Environ. 2018, 635, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- McGushin, A.; Tcholakov, Y.; Hajat, S. Climate change and human health: Health impacts of warming of 1.5 °C and 2 °C. Int. J. Environ. Res. Public Health 2018, 15, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patz, J.A.; Thomson, M.C. Climate change and health: Moving from theory to practice. PLoS Med. 2018, 15, e1002628. [Google Scholar] [CrossRef]
- Schulte, P.A.; Bhattacharya, A.; Butler, C.R.; Chun, H.K.; Jacklitsch, B.; Jacobs, T.; Kiefer, M.; Lincoln, J.; Pendergrass, S.; Shire, J.; et al. Advancing the framework for considering the effects of climate change on worker safety and health. J. Occup. Environ. Hyg. 2016, 13, 847–865. [Google Scholar] [CrossRef] [Green Version]
- Applebaum, K.M.; Graham, J.; Gray, G.M.; la Puma, P.; McCormick, S.A.; Northcross, A.; Perry, M.J. An overview of occupational risks from climate change. Curr. Environ. Health Rep. 2016, 3, 13–22. [Google Scholar] [CrossRef]
- Marchetti, E.; Capone, P.; Freda, D. Climate change impact on microclimate of work environment related to occupational health and productivity. Ann. Ist. Super. Sanità 2016, 52, 338–342. [Google Scholar] [CrossRef]
- Levi, M.; Kjellstrom, T.; Baldasseroni, A. Impact of climate change on occupational health and productivity: A systematic literature review focusing on workplace heat. Med. Lav. 2018, 109, 163–179. [Google Scholar] [CrossRef]
- Bonafede, M.; Marinaccio, A.; Asta, F.; Schifano, P.; Michelozzi, P.; Vecchi, S. The association between extreme weather conditions and work-related injuries and diseases. A systematic review of epidemiological studies. Ann. Ist. Super. Sanità 2016, 52, 357–367. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; Grandi, C.; Marchetti, E.; Polichetti, A.; Iavicoli, S. Preface. Climate change and occupational health. Ann. Ist. Super. Sanità 2016, 52, 323–324. [Google Scholar] [CrossRef]
- Grandi, C.; D’Ovidio, M.C. Balance between health risks and benefits for outdoor workers exposed to solar radiation: An overview on the role of near infrared radiation alone and in combination with other solar spectral bands. Int. J. Environ. Res. Public Health 2020, 17, 1357. [Google Scholar] [CrossRef] [Green Version]
- Vonesch, N.; D’Ovidio, M.C.; Melis, P.; Remoli, M.E.; Ciufolini, M.G.; Tomao, P. Climate change, vector-borne diseases and working population. Ann. Ist. Super. Sanità 2016, 52, 397–405. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; Annesi-Maesano, I.; D’Amato, G.; Cecchi, L. Climate change and occupational allergies: An overview on biological pollution, exposure and prevention. Ann. Ist. Super. Sanità 2016, 52, 406–414. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- Siroux, V.; Agier, L.; Slama, R. The exposome concept: A challenge and a potential driver for environmental health research. Eur. Respir. Rev. 2016, 25, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Holland, N. Future of environmental research in the age of epigenomics and exposomics. Rev. Environ. Health 2017, 32, 45–54. [Google Scholar] [CrossRef]
- Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; Dehghan, A.; Mudway, I.; Dagnino, S. What is new in the exposome? Environ. Int. 2020, 143, 105887. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insight. 2020, 14, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, G.T.; Kim, K.-P.; Kim, K. How to interpret and integrate multi-omics data at systems level. Anim. Cells Syst. 2020, 24, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Li, S.; Kulkarni, A.S.; Huang, L.; Cao, J.; Qian, K.; Wan, J. Single Cell Omics: From Assay Design to Biomedical Application. Biotechnol. J. 2020, 15, 1900262. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, J.; Trigo, M.D.M.; Recio, M. Extraction and quantification of Ole e 1 from atmospheric air samples: An optimized protocol. Chemosphere 2019, 225, 490–496. [Google Scholar] [CrossRef]
- Banchi, E.; Ametrano, C.G.; Tordoni, E.; Stanković, D.; Ongaro, S.; Tretiach, M.; Pallavicini, A.; Muggia, L.; ARPA Working Group. Environmental DNA assessment of airborne plant and fungal seasonal diversity. Sci. Total Environ. 2020, 738, 140249. [Google Scholar] [CrossRef]
- Rojo, J.; Nunez, A.; Lara, B.; Sanchez-Parra, B.; Moreno, D.A.; Perez-Badia, R. Comprehensive analysis of different adhesives in aerobiological sampling using optical microscopy and high-throughput DNA sequencing. J. Environ. Manag. 2019, 240, 441–450. [Google Scholar] [CrossRef]
- Fernandez, M.O.; Thomas, R.J.; Garton, N.J.; Hudson, A.; Haddrell, A.; Reid, J.P. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. R. Soc. Interface 2019, 16, 20180779. [Google Scholar] [CrossRef] [Green Version]
- Emmerson, K.M.; Silver, J.D.; Newbigin, E.; Lampugnani, E.R.; Suphioglu, C.; Wain, A.; Ebert, E. Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0. Geosci. Model. Dev. 2019, 12, 2195–2214. [Google Scholar] [CrossRef] [Green Version]
- Ruga, L.; Orlandi, F.; Fornaciari, M. Preventive conservation of cultural heritage: Biodeteriogens control by aerobiological monitoring. Sensors 2019, 19, 3647. [Google Scholar] [CrossRef] [Green Version]
- Dommergue, A.; Amato, P.; Tignat-Perrier, R.; Magand, O.; Thollot, A.; Joly, M.; Bouvier, L.; Sellegri, K.; Vogel, T.; Sonke, J.E.; et al. Methods to investigate the global atmospheric microbiome. Front. Microbiol. 2019, 10, 243. [Google Scholar] [CrossRef]
- De Weger, L.A.; Molster, F.; de Raat, K.; den Haan, J.; J Romein, J.; van Leeuwen, W.; de Groot d, H.; Mostert, M.; Hiemstra, P.S. A new portable sampler to monitor pollen at street level in the environment of patients. Sci. Total Environ. 2020, 741, 140404. [Google Scholar] [CrossRef]
- Oteros, J.; Weber, A.; Kutzora, S.; Rojo, J.; Heinze, S.; Herr, C.; Gebauer, R.; Schmidt-Weber, C.B.; Buters, J.T.M. An operational robotic pollen monitoring network based on automatic image recognition. Environ. Res. 2020, 191, 110031. [Google Scholar] [CrossRef]
- Fiorina, A.; Scordamaglia, A.; Fumagalli, F.; Canonica, G.W.; Passalacqua, G. Aerobiological diagnosis of respiratory allergy by a personal sampler: Two case reports. J. Investig. Allergol. Clin. Immunol. 2003, 13, 284–285. [Google Scholar]
- Fiorina, A.; Scordamaglia, A.; Mincarini, M.; Fregonese, L.; Canonica, G.W. Aerobiologic particle sampling by a new personal collector (Partrap FA52) in comparison to the Hirst (Burkard) sampler. Allergy 1997, 52, 1026–1030. [Google Scholar] [CrossRef]
- Kron, P.; Loureiro, J.; Castro, S.; Čertner, M. Flow cytometric analysis of pollen and spores: An overview of applications and methodology. Cytometry A. 2021. [Google Scholar] [CrossRef]
- Dunker, S.; Motivans, E.; Rakosy, D.; Boho, D.; Mäder, P.; Hornick, T.; Knight, T.M. Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 2021, 229, 593–606. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; di Renzi, S.; Capone, P.; Pelliccioni, A. Pollen and fungal spores evaluation in relation to occupants and microclimate in indoor workplaces. Sustainability 2021, 13, 3154. [Google Scholar] [CrossRef]
- Damialis, A.; Gilles, S.; Sofiev, M.; Sofieva, V.; Kolek, F.; Bayr, D.; Plaza, M.P.; Leier-Wirtz, V.; Kaschuba, S.; Ziska, L.H.; et al. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc. Natl. Acad. Sci. USA 2021, 18, e2019034118. [Google Scholar] [CrossRef]
- Lam, H.C.Y.; Jarvis, D.; Fuertes, E. Interactive effects of allergens and air pollution on respiratory health: A systematic review. Sci. Total Environ. 2021, 757, 143924. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Lu, S.; Yao, C.; Zhang, L.; Rao, L.; Liu, X.; Zhang, W.; Li, S.; Wang, W.; et al. Characterization of allergenicity of Platanus pollen allergen a 3 (Pla a 3) after exposure to NO2 and O3. Environ. Pollut. 2021, 278, 116913. [Google Scholar] [CrossRef]
- Cariñanos, P.; Foyo-Moreno, I.; Alados, I.; Guerrero-Rascado, J.L.; Ruiz-Peñuela, S.; Titos, G.; Cazorla, A.; Alados-Arboledas, L.; Díaz de la Guardia, C. Bioaerosols in urban environments: Trends and interactions with pollutants and meteorological variables based on quasi-climatological series. J. Environ. Manag. 2021, 282, 111963. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Haines, S.; Wang, E.; Nassikas, N.; Kinney, P.L. Synergistic health effects of air pollution, temperature, and pollen exposure: A systematic review of epidemiological evidence. Environ. Health 2020, 19, 130. [Google Scholar] [CrossRef]
- Ortega-Rosas, C.I.; Meza-Figueroa, D.; Vidal-Solano, J.R.; González-Grijalva, B.; Schiavo, B. Association of airborne particulate matter with pollen, fungal spores, and allergic symptoms in an arid urbanized area. Environ. Geochem. Health 2020. [Google Scholar] [CrossRef]
- Hugg, T.T.; Hjort, J.; Antikainen, H.; Rusanen, J.; Tuokila, M.; Korkonen, S.; Weckström, J.; Jaakkola, M.S.; Jaakkola, J.J.K. Urbanity as a determinant of exposure to grass pollen in Helsinki Metropolitan area, Finland. PLoS ONE 2017, 12, e0186348. [Google Scholar] [CrossRef]
- Idrose, N.S.; Walters, E.H.; Zhang, J.; Vicendese, D.; Newbigin, E.J.; Douglass, J.A.; Erbas, B.; Lowe, A.J.; Perret, J.L.; Lodge, C.J.; et al. Outdoor pollen-related changes in lung function and markers of airway inflammation: A systematic review and meta-analysis. Clin. Exp. Allergy 2021. [CrossRef]
- Hoogeveen, M.J.; van Gorp, E.C.M.; Hoogeveen, E.K. Can pollen explain the seasonality of flu-like illnesses in the Netherlands? . Sci. Total Environ. 2021, 755, 143182. [Google Scholar] [CrossRef]
- Hoogeveen, M.J. Pollen likely seasonal factor in inhibiting flu-like epidemics. A Dutch study into the inverse relation between pollen counts, hay fever and flu-like incidence 2016–2019. Sci. Total Environ. 2020, 727, 138543. [Google Scholar] [CrossRef]
- Awaya, A.; Kuroiwa, Y. The relationship between annual airborne pollen levels and occurrence of all cancers, and lung, stomach, colorectal, pancreatic and breast cancers: A retrospective study from the National Registry Database of cancer incidence in Japan, 1975–2015. Int. J. Environ. Res. Public Health 2020, 17, 3950. [Google Scholar] [CrossRef]
- McInnes, R.N.; Hemming, D.; Burgess, P.; Lyndsay, D.; Osborne, N.J.; Skjøth, C.A.; Thomas, S.; Vardoulakis, S. Mapping allergenic pollen vegetation in UK to study environmental exposure and human health. Sci. Total Environ. 2017, 599, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Maya-Manzano, J.M.; Sadyś, M.; Tormo-Molina, R.; Fernández-Rodríguez, S.; Oteros, J.; Silva-Palacios, I.; Gonzalo-Garijo, A. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Sci. Total Environ. 2017, 584, 603–613. [Google Scholar] [CrossRef]
- Devadas, R.; Huete, A.R.; Vicendese, D.; Erbas, B.; Beggs, P.J.; Medek, D.; Haberle, S.G.; Newnham, R.M.; Johnston, F.H.; Jaggard, A.K.; et al. Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen. Sci. Total Environ. 2018, 633, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Gernes, R.; Brokamp, C.; Rice, G.E.; Wright, J.M.; Kondo, M.C.; Michael, Y.L.; Kondo, M.C.; Michael, Y.L.; Donovan, G.H.; Gatziolis, D.; et al. Using high-resolution residential greenspace measures in an urban environment to assess risks of allergy outcomes in children. Sci. Total Environ. 2019, 668, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bui, D.S.; Perret, J.L.; Lowe, A.J.; Lodge, C.J.; Markevych, I.; Heinrich, J.; Bloom, M.S.; Knibbs, L.D.; Jalaludin, B.; et al. Greenness may improve lung health in low–moderate but not high air pollution areas: Even Northeastern Cities’ study. Thorax 2021. [Google Scholar] [CrossRef] [PubMed]
- Stas, M.; Aerts, R.; Hendrickx, M.; Delcloo, A.; Dendoncker, N.; Dujardin, S.; Linard, C.; Nawrot, T.; van Nieuwenhuyse, A.; Aerts, J.-M.; et al. Exposure to green space and pollen allergy symptom severity: A case-crossover study in Belgium. Sci. Total Environ. 2021, 781, 146682. [Google Scholar] [CrossRef] [PubMed]
Search Input | Scopus | WoS | PubMed |
---|---|---|---|
aerobiology | 1257 | 898 | 295 |
aerobiology AND pollen | 825 | 521 | 136 |
aerobiology AND environmental | 416 | 139 | 52 |
aerobiology AND fungi | 321 | 116 | 23 |
aerobiology AND climate | 208 | 152 | 33 |
aerobiology AND (bacteria OR virus) | 236 | 101 | 33 |
aerobiology AND weather | 188 | 123 | 35 |
aerobiology AND pollution | 208 | 78 | 12 |
aerobiology AND “fungal spores” | 158 | 114 | 10 |
aerobiology AND indoor | 113 | 66 | 21 |
aerobiology AND “climate change” | 82 | 91 | 17 |
aerobiology AND outdoor | 87 | 58 | 18 |
aerobiology AND meteorology | 123 | 32 | 7 |
aerobiology AND methodology | 90 | 54 | 15 |
aerobiology AND animal | 77 | 29 | 13 |
aerobiology AND occupational | 29 | 18 | 7 |
Database | Pre–1990 | 1990–1999 | 2000–2009 | 2010–2019 |
---|---|---|---|---|
Scopus | 136 (9.58%) | 305 (21.48%) | 411 (28.94%) | 568 (40%) |
WoS | 15 (1.72%) | 118 (13.5%) | 245 (28.03%) | 496 (56.75%) |
PubMed | 52 (18.44%) | 20 (7.09) | 46 (16.31%) | 164 (58.16%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lancia, A.; Capone, P.; Vonesch, N.; Pelliccioni, A.; Grandi, C.; Magri, D.; D’Ovidio, M.C. Research Progress on Aerobiology in the Last 30 Years: A Focus on Methodology and Occupational Health. Sustainability 2021, 13, 4337. https://doi.org/10.3390/su13084337
Lancia A, Capone P, Vonesch N, Pelliccioni A, Grandi C, Magri D, D’Ovidio MC. Research Progress on Aerobiology in the Last 30 Years: A Focus on Methodology and Occupational Health. Sustainability. 2021; 13(8):4337. https://doi.org/10.3390/su13084337
Chicago/Turabian StyleLancia, Andrea, Pasquale Capone, Nicoletta Vonesch, Armando Pelliccioni, Carlo Grandi, Donatella Magri, and Maria Concetta D’Ovidio. 2021. "Research Progress on Aerobiology in the Last 30 Years: A Focus on Methodology and Occupational Health" Sustainability 13, no. 8: 4337. https://doi.org/10.3390/su13084337
APA StyleLancia, A., Capone, P., Vonesch, N., Pelliccioni, A., Grandi, C., Magri, D., & D’Ovidio, M. C. (2021). Research Progress on Aerobiology in the Last 30 Years: A Focus on Methodology and Occupational Health. Sustainability, 13(8), 4337. https://doi.org/10.3390/su13084337