Morpho-Biometrical, Nutritional and Phytochemical Characterization of Carrot Landraces from Puglia Region (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Collecting Site and Sampling
2.2. Morphological Measurements and Physicochemical Analysis
2.3. Chemical Analysis
2.3.1. Minerals
2.3.2. The Simple Carbohydrates and the Sweetness Index
2.3.3. Organic Acids
2.3.4. Phenolic Compounds
2.3.5. Antioxidant Capacity
2.3.6. ß-Carotene
2.4. Statistical Analysis
3. Results and Discussion
3.1. Morphological and Physicochemical Features of Carrot Genotypes
3.2. Nutritional and Nutraceutical Features of Carrot Genotypes
3.2.1. Minerals
3.2.2. Simple Carbohydrates
3.2.3. Organic Acids
3.2.4. Phenols
3.2.5. ß-Carotene
3.2.6. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steier, G.; Cianci, A.G. Environmental Resilience and Food Law: Agrobiodiversity and Agroecology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Zeven, A.C. Landraces: A Review of Definitions and Classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Negri, V.; Maxted, N.; Veteläinen, M. European landrace conservation: An introduction. In European landraces: On-Farm Conservation, Management and Use; Veteläinen, V., Negri, N., Maxted, N., Eds.; Biodiversity Technical Bulletin No. 15; Biodiversity International: Rome, Italy, 2009; pp. 1–22. [Google Scholar]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Ficiciyan, A.; Loos, J.; Sievers-Glotzbach, S.; Tscharntke, T. More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited. Sustainability 2018, 10, 2834. [Google Scholar] [CrossRef] [Green Version]
- Chable, V.; Nuijten, E.; Costanzo, A.; Goldringer, I.; Bocci, R.; Oehen, B.; Rey, F.; Fasoula, D.; Feher, J.; Keskitalo, M.; et al. Embedding Cultivated Diversity in Society for Agro-Ecological Transition. Sustainability 2020, 12, 784. [Google Scholar] [CrossRef] [Green Version]
- Cefola, M.; Pace, B.; Renna, M.; Santamaria, P.; Signore, A.; Serio, F. Compositional Analysis and Antioxidant Profile of Yellow, Orange and Purple Polignano Carrots. Ital. J. Food Sci. 2012, 24, 284–291. [Google Scholar]
- Renna, M.; Serio, F.; Signore, A.; Santamaria, P. The Yellow—Purple Polignano Carrot (Daucus Carota L.): A Multicoloured Landrace from the Puglia Region (Southern Italy) at Risk of Genetic Erosion. Genet. Resour. Crop Evol. 2014, 61, 1611–1619. [Google Scholar] [CrossRef]
- Scarano, A.; Gerardi, C.; D’Amico, L.; Accogli, R.; Santino, A. Phytochemical Analysis and Antioxidant Properties in Colored Tiggiano Carrots. Agriculture 2018, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Blando, F.; Marchello, S.; Maiorano, G.; Durante, M.; Signore, A.; Laus, M.N.; Soccio, M.; Mita, G. Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace “Polignano” Carrot. Plants 2021, 10, 564. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; La Rotonda, P.; Elia, A. Nutritional Characterization of Two Rare Landraces of Turnip (Brassica rapa. var. rapa) Tops and Their On-Farm Conservation in Foggia Province. Sustainability 2020, 12, 3842. [Google Scholar]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Loizzo, P.; Gambacorta, G.; Elia, A. Evaluation of Garlic Landraces from Foggia Province (Puglia Region; Italy). Foods 2020, 9, 850. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and Their Health Benefits—Review Article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumalan, R.M.; Ciulca, S.I.; Poiana, M.A.; Moigradean, D.; Radulov, I.; Negrea, M.; Crisan, M.E.; Copolovici, L.; Sumalan, R.L. The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value. Agronomy 2020, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Van de Wouw, M.; Kik, C.; Van Hintum, T.; Van Treuren, R.; Visser, B. Genetic Erosion in Crops: Concept, Research Results and Challenges. Plant Genet. Resour. 2010, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hammer, K.; Laghetti, G. Genetic Erosion—Examples from Italy. Genet. Resour. Crop Evol. 2005, 52, 629–634. [Google Scholar] [CrossRef]
- Elia, A.; Santamaria, P. Biodiversity in Vegetable Crops, a Heritage to Save: The Case of the Puglia Region. Ital. J. Agron. 2013, 8, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Montesano, F.F.; Signore, A.; Gonnella, M.; Santamaria, P. BiodiverSO: A Case Study of Integrated Project to Preserve the Biodiversity of Vegetable Crops in Puglia (Southern Italy). Agriculture 2018, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Cifarelli, S.; Losavio, F.; Sonnante, G.; Elia, A. Exploring On-Farm Agro-Biodiversity: A Study Case of Vegetable Landraces from Puglia Region (Italy). Biodivers. Conserv. 2020, 29, 747–770. [Google Scholar] [CrossRef]
- Regional Territorial Landscape Plan (RTLP). Apulia Regional Territorial Landscape Plan. Landscape Areas. 2015. Available online: https://www.paesaggiopuglia.it/pptr/ambiti-paesaggistici.html (accessed on 4 May 2020).
- Caldara, M.; Pennetta, L.; Simone, O. Holocene Evolution of the Salpi Lagoon (Puglia, Italy). J. Coast. Res. 2002, 36, 124–133. [Google Scholar] [CrossRef]
- Signore, A.; Renna, M.; D’Imperio, M.; Serio, F.; Santamaria, P. Preliminary Evidences of Biofortification with Iodine of “Carota Di Polignano”, An Italian Carrot Landrace. Front. Plant Sci. 2018, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Rohrer, J. Analysis of Carbohydrates by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD); Technical Note 20; Thermo Fisher Scientific: Sunnyvale, CA, USA, 2013. [Google Scholar]
- González-Castro, M.J.; Oruña-Concha, M.J.; López-Hernández, J.; Simal-Lozano, J. Effects of freezing on the organic acid content of frozen green beans and Padrón peppers. J. Food Insp. Res. A 1997, 204, 365–368. [Google Scholar] [CrossRef]
- Pasqualone, A.; Punzi, R.; Trani, A.; Summo, C.; Paradiso, V.M.; Caponio, F.; Gambacorta, G. Enrichment of Fresh Pasta with Antioxidant Extracts Obtained from Artichoke Canning By-Products by Ultrasound-Assisted Technology and Quality Characterisation of the End Product. Int. J. Food Sci. Technol. 2017, 52, 2078–2087. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Taungbodhitham, A.K.; Jones, G.P.; Wahlqvist, M.L.; Briggs, D.R. Evaluation of extraction method for the analysis of carotenoids in fruits and vegetables. Food Chem. 1998, 63, 577–584. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Grzebelus, D.; Iorizzo, M.; Senalik, D.; Ellison, S.; Cavagnaro, P.; Macko-Podgorni, A.; Heller-Uszynska, K.; Kilian, A.; Nothnagel, T.; Allender, C.; et al. Diversity, Genetic Mapping, and Signatures of Domestication in the Carrot (Daucus carota L.) Genome, as Revealed by Diversity Arrays Technology (DArT) Markers. Mol. Breed. 2013, 33, 625–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabor, G.; Yesuf, M.; Haile, M.; Kebede, G.; Tilahun, S. Performance of Some Asian Carrot (Daucus Carota L. ssp. sativa Hoffm.) Cultivars under Ethiopian Conditions: Carrot and Seed Yields. Sci. Hortic. 2016, 207, 176–182. [Google Scholar]
- Nielsen, S.S. Food Analysis Laboratory Manual, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2010. [Google Scholar]
- Salunkhe, D.K.; Kadam, S.S. Handbook of Fruit Science and Technology Production, Composition, Storage, and Processing, 1st ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Magwaza, L.S.; Opara, U.L. Analytical Methods for Determination of Sugars and Sweetness of Horticultural Products—A Review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Abbaspour-Gilandeh, Y.; Gundoshmian, T.M. Determination of Physical and Mechanical Properties of Carrot in Order to Reduce Waste during Harvesting and Post-harvesting. Food Sci. Nutr. 2018, 6, 1898–1903. [Google Scholar] [CrossRef]
- Rakcejeva, T.; Augšpole, I.; Dukaļska, L.; Dimiņš, F. Chemical Composition of Variety “Nante” Hybrid Carrots Cultivated in Latvia. World Acad. Sci. Eng. Technol. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2012, 6, 188–194. [Google Scholar]
- Rashidi, M.; Ranjbar, I.; Gholami, M.; Abbassi, S. Prediction of Total Soluble Solids and Firmness of Carrot Based on Carrot Water Content. Int. J. Agric. Biol. 2010, 12, 237–240. [Google Scholar]
- Hunt, B.D.; Cappuccio, F.P. Potassium Intake and Stroke Risk: A Review of the Evidence and Practical Considerations for Achieving a Minimum Target. Stroke 2014, 45, 1519–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kwock, C.K.; Yang, Y.J. The Effect of the Sodium to Potassium Ratio on Hypertension Prevalence: A Propensity Score Matching Approach. Nutrients 2016, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Centro di Ricerca per l’Agricoltura e l’Analisi dell’Economia Agraria (INRAN-CREA). Tabelle di Composizione degli Alimenti. Alimenti Nutrizione. Available online: https://www.alimentinutrizione.it/tabelle-nutrizionali/005150 (accessed on 4 May 2020).
- European Food Safety Authority. Food Composition Database (EFSA). Available online: https://www.efsa.europa.eu/en/microstrategy/food-composition-data (accessed on 4 May 2020).
- United States Department of Agriculture Agricultural Research Service (USDA). Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170393/nutrients (accessed on 4 May 2020).
- Zaccari, F.; Cabrera, M.C.; Ramos, A.; Saadoun, A. In Vitro Bioaccessibility of β-Carotene, Ca, Mg and Zn in Landrace Carrots (Daucus carota, L.). Food Chem. 2015, 166, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Stefanson, A.L.; Tsao, R.; Liu, R.; Duizer, L.; Bakovic, M.; Martin, R.C. Effect of Variety, Soil Fertility Status and Agronomic Treatments on Carrot Mineral and Phytochemical Composition and Consumer Liking of Flavor Traits. J. Sci. Food Agric. 2019, 99, 5457–5474. [Google Scholar] [CrossRef] [PubMed]
- Kafkafi, U.; Siddiqi, M.Y.; Ritchie, R.J.; Glass, A.D.M.; Ruth, T.J. Reduction Of Nitrate (13NO3) Influx and Nitrogen (13N) Translocation by Tomato and Melon Varieties after Short Exposure to Calcium and Potassium Chloride Salts. J. Plant Nutr. 1992, 15, 959–975. [Google Scholar] [CrossRef]
- Van der Boon, J.; Steenhuizen, J.W.; Steingrover, E.G. Growth and Nitrate Concentration of Lettuce as Affected by Total Nitrogen and Chloride Concentration, NH4/NO3 Ratio and Temperature of the Recirculating Nutrient Solution. J. Hortic. Sci. 1990, 65, 309–321. [Google Scholar] [CrossRef]
- Sękara, A.; Pohl, A.; Kalisz, A.; Grabowska, A.; Cebula, S. Evaluation of Selected Polish Carrot Cultivars for Nutritive Value and Processing—A Preliminary Study. Ann. Wars. Univ. Life Sci. SGGW Hortic. Landsc. Archit. 2014, 35, 3–14. [Google Scholar]
- Kmecl, V.; Knap, T.; Žnidarčič, D. Evaluation of the Nitrate and Nitrite Content of Vegetables Commonly Grown in Slovenia. Ital. J. Agron. 2017, 12, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.S.; Iqbal, M. Nitrate Accumulation in Plants, Factors Affecting The Process, and Human Health Implications. A Review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar]
- Boem, F.H.G.; Lavado, R.S.; Porcelli, C.A. Note on the Effects of Winter and Spring Waterlogging on Growth, Chemical Composition and Yield of Rapeseed. Field Crop. Res. 1996, 47, 175–179. [Google Scholar] [CrossRef]
- Wright, J.P.; Sutton-Grier, A. Does the Leaf Economic Spectrum Hold within Local Species Pools across Varying Environmental Conditions? Funct. Ecol. 2012, 26, 1390–1398. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, R.; Xiao, W.; Guo, Q.; Wang, N. Effect of Off-Season Flooding on Growth, Photosynthesis, Carbohydrate Partitioning, and Nutrient Uptake in Distylium chinense. PLoS ONE 2014, 9, e107636. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A Survey of Nitrate And Oxalate Content in Retail Fresh Vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.-J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in Fruits and Vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.W.; Iorizzo, M.; Grzebelus, D.; Baranski, R. The Carrot Genome. Series: Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Kjellenberg, L.; Johansson, E.; Gustavsson, K.-E.; Olsson, M.E. Polyacetylenes in Fresh and Stored Carrots (Daucus carota): Relations to Root Morphology and Sugar Content. J. Sci. Food Agric. 2012, 92, 1748–1754. [Google Scholar] [CrossRef]
- Šink, N.; Petkovsek, M.M.; Veberič, R.; Maršić, N.K. Chemical Composition and Morphometric Traits and Yield of carrots Grown in Organic and Integrated Farming Systems. Turk. J. Agric. For. 2017, 41, 452–462. [Google Scholar] [CrossRef]
- Paoletti, F.; Raffo, A.; Kristensen, H.L.; Thorup-Kristensen, K.; Seljåsen, R.; Torp, T.; Busscher, N.; Ploeger, A.; Kahl, J. Multi-Method Comparison of Carrot Quality from a Conventional and Three Organic Cropping Systems with Increasing Levels of Nutrient Recycling. J. Sci. Food Agric. 2012, 92, 2855–2869. [Google Scholar] [CrossRef] [PubMed]
- Baranski, R.; Allender, C.; Klimek-Chodacka, M. Towards Better Tasting and More Nutritious Carrots: Carotenoid and Sugar Content Variation in Carrot Genetic Resources. Food Res. Int. 2012, 47, 182–187. [Google Scholar] [CrossRef]
- Zavadska, O.; Bobos, I.; Fedosiy, I.; Podpryatov, G.; Olt, J. Studying the Storage and Processing Quality of the Carrot Taproots (Daucus carota) of Various Hybrids. Agron. Res. 2020, 18, 2271–2284. [Google Scholar]
- Benamor, J.; Mezghani, N.; Periago, M.J.; Navarro-González, I.; Elvira-Torales, L.I.; Mezghani, N.; Ouakrim, Y.; Tarchoun, N. Variations in the Sugars and Antioxidant Compounds Related to Root Colour in Tunisian Carrot (Daucus carota subsp sativus) Landraces. Ital. J. Food Sci. 2020, 32, 654–673. [Google Scholar]
- Suojala, T. Variation in Sugar Content and Composition of Carrot Storage Roots at Harvest and during Storage. Sci. Hortic. 2000, 85, 1–19. [Google Scholar] [CrossRef]
- Seljåsen, R.; Kristensen, H.L.; Lauridsen, C.; Wyss, G.S.; Kretzschmar, U.; Birlouez-Aragone, I.; Kahl, J. Quality of Carrots as Affected by Pre- and Postharvest Factors and Processing. J. Sci. Food Agric. 2013, 93, 2611–2626. [Google Scholar] [CrossRef] [Green Version]
- Sairam, R.K.; Dharmar, K.; Chinnusamy, V.; Meena, R.C. Waterlogging-Induced Increase in Sugar Mobilization, Fermentation, and Related Gene Expression in the Roots of Mung Bean (Vigna radiata). J. Plant Physiol. 2009, 166, 602–616. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, M.; Joshi, R.; Sairam, R.K. Yield, Growth and Physiological Responses of Mung Bean [Vigna radiata (L.) Wilczek] Genotypes to Waterlogging at Vegetative Stage. Physiol. Mol. Biol. Plants 2013, 19, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Barickman, T.C.; Simpson, C.R.; Sams, C.E. Waterlogging Causes Early Modification in the Physiological Performance, Carotenoids, Chlorophylls, Proline, and Soluble Sugars of Cucumber Plants. Plants 2019, 8, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalra, C.L.; Kulkarni, S.G.; Berry, S.K. The carrot—A most popular root vegetable. Indian Food Pack. 1987, 41, 46–73. [Google Scholar]
- Rosenfeld, H.J.; Aaby, K.; Lea, P. Influence of Temperature and Plant Density on Sensory Quality and Volatile Terpenoids of Carrot (Daucus carota L.) Root. J. Sci. Food Agric. 2002, 82, 1384–1390. [Google Scholar] [CrossRef]
- Soria, A.C.; Sanz, M.L.; Villamiel, M. Determination of Minor Carbohydrates in Carrot (Daucus carota L.) by GC—MS. Food Chem. 2009, 114, 758–762. [Google Scholar] [CrossRef]
- Daie, J. Characterization of sugar transport in storage tissue of carrot. J. Am. Soc. Hortic. Sci. 1984, 109, 718–722. [Google Scholar]
- Kjellenberg, L.; Johansson, E.; Gustavsson, K.-E.; Granstedt, A.; Olsson, M.E. Correlations between Polyacetylene Concentrations in Carrot (Daucus carota L.) and Various Soil Parameters. Foods 2016, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieciņa, L.; Kārkliņa, D. Composition of Major Organic Acids in Vegetables and Spices. CBU Int. Conf. Proc. 2015, 3, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Schaller, R.G.; Schnitzler, W.H. Nitrogen Nutrition and Flavour Compounds of Carrots (Daucus carota L.) Cultivated in Mitscherlich Pots. J. Sci. Food Agric. 2000, 80, 49–56. [Google Scholar] [CrossRef]
- Ruhl, I.; Herrmann, K. Organic acids in vegetables. I. Brassica, Leaf and Bulb Vegetables as well as Carrots and Celery. J. Food Study Res. 1985, 180, 215–220. [Google Scholar]
- Prieciņa, L.; Kārkliņa, D. Influence of Steam Treatment and Drying on Carrots Composition and Concentration of Phenolics, Organic Acids and Carotenoids. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2018, 72, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Vandoorne, B.; Descamps, C.; Mathieu, A.S.; Van den Ende, W.; Vergauwen, R.; Javaux, M.; Lutts, S. Long term intermittent flooding stress affects plant growth and inulin synthesis of Cichorium intybus (var. sativum). Plant Soil 2014, 376, 291–305. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Zhao, B.; Zhao-Wilson, X. Quinic Acid Could Be a Potential Rejuvenating Natural Compound by Improving Survival of Caenorhabditis elegans under Deleterious Conditions. Rejuvenation Res. 2012, 15, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Sinha, K.; Khare, V. Review on: Antinutritional Factors in Vegetable Crops. Pharma Innov. J. 2017, 6, 353–358. [Google Scholar]
- Morales, P.; Ferreira, I.C.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean Non-Cultivated Vegetables as Dietary Sources of Compounds with Antioxidant and Biological Activity. LWT Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.S.; Israr, B.; Bhatty, N.; Ali, A. Effect of Cooking on Soluble and Insoluble Oxalate Contents in Selected Pakistani Vegetables and Beans. Int. J. Food Prop. 2011, 14, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Giménez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Singh, P.P. The oxalic acid content of Indian foods. Plant Food Hum. Nutr. 1973, 22, 335–347. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Biesiada, A.; Tomczak, A. Biotic and Abiotic Factors Affecting the Content of the Chosen Antioxidant Compounds in Vegetables. Veg. Crop. Res. Bull. 2012, 76, 55–78. [Google Scholar] [CrossRef]
- Ullah, I.; Waqas, M.; Khan, M.A.; Lee, I.-J.; Kim, W.-C. Exogenous Ascorbic Acid Mitigates Flood Stress Damages of Vigna angularis. Appl. Biol. Chem. 2017, 60, 603–614. [Google Scholar] [CrossRef]
- Ma, T.; Tian, C.; Luo, J.; Zhou, R.; Sun, X.; Ma, J. Influence of Technical Processing Units on Polyphenols and Antioxidant Capacity of Carrot (Daucus carrot L.) Juice. Food Chem. 2013, 141, 1637–1644. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolic Compounds and Their Antioxidant Properties in Different Tissues of Carrots (Daucus carota L.). J. Food Agric. Environ. 2004, 2, 95–100. [Google Scholar]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Grebenstein, C.; Choi, Y.H.; Rong, J.; De Jong, T.J.; Tamis, W.L.M. Metabolic Fingerprinting Reveals Differences between Shoots of Wild and Cultivated Carrot (Daucus carota L.) and Suggests Maternal Inheritance or Wild Trait Dominance in Hybrids. Phytochemistry 2011, 72, 1341–1347. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The Role of Carotenoids in the Prevention of Human Pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.-A.; Biesalski, H.K. β-carotene is an important vitamin A source for humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, A.; Vyas, K.S. A global clinical view on vitamin A and carotenoids. Am. J. Clin. Nutr. 2012, 96, 1204S–1206S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, M.B. Interactions Between Iron and Vitamin A, Riboflavin, Copper, and Zinc in the Etiology of Anemia. In Nutritional Anemia; Kraemer, K., Zimmermann, M.B., Eds.; Sight and Life Press: Basel, Switzerland, 2007; pp. 199–214. [Google Scholar]
- Ciccone, M.M.; Cortese, F.; Gesualdo, M.; Carbonara, S.; Zito, A.; Ricci, G.; De Pascalis, F.; Scicchitano, P.; Riccioni, G. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care. Mediat. Inflamm. 2013, 2013, 782137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabacak, Ç.E.; Karabacak, H. Factors Affecting Carotenoid Amount in Carrots (Daucus carota). Ecol. Life Sci. 2019, 14, 29–39. [Google Scholar] [CrossRef]
- Ball, G.F.M. Vitamins in Foods: Analysis, Bioavailability, and Stability; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Institute of Medicine, Food and Nutrition Board (IMFNB). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Brahmkshatriya, P.P.; Brahmkshatriya, P. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2665–2691. [Google Scholar]
Fresh Weight | Equatorial Diameter | Length | Dry Matter | L* | C* | h° | pH | TSS 3 | TA 4 | |
---|---|---|---|---|---|---|---|---|---|---|
(g) | (mm) | (mm) | (g kg−1 fw) | (°Brix) | (g 100 g−1 fw) 5 | |||||
CPL 1 | 72.4 ± 6.7 b | 23.0 ± 1.1 b | 177 ± 6 b | 97.8 ± 0.9 c | 72.0 ± 0.4 a | 27.6 ± 0.6 b | 51.5 ± 0.3 b | 6.4 ± 0.03 b | 4.5 ± 0.1 c | 0.13 ± 0.0 ab |
CPT 1 | 52.2 ± 6.7 b | 24.6 ± 1.3 b | 158 ± 7 c | 165.5 ± 3.2 a | 64.8 ± 1.0 b | 32.8 ± 1.2 a | 56.4 ± 0.6 a | 6.4 ± 0.02 b | 7.3 ± 0.5 a | 0.14 ± 0.01 a |
CG 1 | 151.3 ± 10.2 a | 31.0 ± 1.2 a | 226 ± 6 a | 114.8 ± 1.5 b | 65.8 ± 0.6 b | 33.0 ± 0.9 a | 50.5 ± 0.5 b | 6.6 ± 0.02 a | 5.5 ± 0.2 b | 0.12 ± 0.0 b |
Significance 2 | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** |
Genotype 1 | Ashes | Cations | Anions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | K | Ca | Na | Mg | Total | Cl | PO4 | SO4 | NO3 | ||
CPL | 637 ± 26 b | 261 ± 11 b | 183 ± 11 b | 50 ± 1 c | 26.1 ± 1.7 b | 2.0 ± 0.1 b | 92.9 ± 5.1 a | 36.7 ± 2.3 b | 16.2 ± 1.2 c | 3.8 ± 0.4 c | 36.2 ± 3.3 a |
CPT | 1041 ± 29 a | 449 ± 9 a | 277 ± 11 a | 109 ± 6 a | 60.1 ± 6.5 a | 1.9 ± 0.3 b | 88.1 ± 2.6 a | 50.5 ± 3.1 a | 22.0 ± 1.9 b | 15.1 ± 0.5 a | 0.5 ± 0.1. b |
CG | 604 ± 16 b | 249 ± 8 b | 144 ± 6 c | 75 ± 4 b | 27.2 ± 1.4 b | 2.7 ± 0.2 a | 88.4 ± 4.3 a | 49.7 ± 1.2 a | 28.4 ± 1.4 a | 7.9 ± 0.8 b | 2.5 ± 0.2 b |
Significance 2 | *** | *** | *** | *** | *** | * | ns | *** | *** | *** | *** |
Genotype 1 | Sweetness Index | Simple Carbohydrates | |||
---|---|---|---|---|---|
Total | Sucrose | Glucose | Fructose | ||
CPL | 3.4±0.5 b 3 | 2.5 ± 0.4 b | 2.2 ± 0.4 b | 0.19 ± 0.020 a | 0.14 ± 0.01 b |
CPT | 5.4 ± 0.5 a | 3.8 ± 0.3 a | 3.3 ± 0.3 a | 0.13 ± 0.020 b | 0.34 ± 0.05 a |
CG | 0.8 ± 0.2 c | 0.6 ± 0.1 c | 0.5 ± 0.1 c | 0.02 ± 0.004 c | 0.05 ± 0.02 c |
Significance 2 | *** | *** | *** | *** | *** |
Genotype 1 | Organic Acids | ||||
---|---|---|---|---|---|
Total | Quinic Acid | Malic Acid | Ascorbic Acid | Oxalic Acid | |
CPL | 333.5 ± 18 a | 64.7 ± 5.0 a | 266.2 ± 17.2 a | 2.6 ± 0.1 b | 0.0 ± 0.0 b |
CPT | 142.9 ± 5.7 b | 16.9 ± 0.5 b | 109.5 ± 5.9 b | 11.1 ± 0.4 a | 5.4 ± 0.6 a |
CG | 48.5 ± 10.6 c | 13.5 ± 3.0 b | 26.0 ± 5.0 c | 3.8 ± 0.8 b | 5.2 ± 1.1 a |
Significance 2 | *** | *** | *** | *** | *** |
Phenols | RT (min) | UV Max (nm) | [M-H]− | m/z Ions | Genotype | Significance 1 | ||
---|---|---|---|---|---|---|---|---|
“Carota a Punta Lunga” | “Carota a Punta Tonda” | Commercial Genotype | ||||||
chlorogenic acid | 3.54 | 324 | 353 | 191-179 | 15.2 ± 3.1 b | 75.6 ± 16.7 a | 13.3 ± 1.0 b | * |
caffeic acid | 5.26 | 321 | 387 | 341 | 0.10 ± 0.06 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | ns |
5-p-coumaroyl-quinic acid | 7.01 | 312 | 337 | 191-163 | 4.70 ± 2.45 b | 9.38 ± 1.99 a | 1.00 ± 0.12 b | * |
5-feruloyl-quinic acid | 8.19 | 325 | 367 | 191-193 | 3.25 ± 0.50 b | 11.8 ± 5.0 a | 8.67 ± 0.89 b | * |
caffeic acid derivate1 | 8.64 | 326 | 365 | 202-185-179 | 11.9 ± 2.4 b | 33.4 ± 10.6 a | 5.40 ± 0.39 b | * |
caffeic acid hexoxide | 9.75 | 327 | 341 | 179-135 | 0.30 ± 0.04 a | 0.47 ± 0.13 a | 0.35 ± 0.05 a | ns |
ferulic acid derivative | 10.95 | 327 | 379 | 185-141 | 3.70 ± 0.45 b | 9.77 ± 4.66 a | 3.82 ± 0.44 b | * |
di-caffeoyl-quinic acid | 11.9 | 324 | 515 | 353-354-191 | 0.52 ± 0.23 a | 0.60 ± 0.09 a | 0.62 ± 0.21 a | ns |
di-caffeic acid derivative | 12.26 | 327 | 527 | 365 | 42.9 ± 10.8 b | 60.7 ± 21.6 a | 31.6 ± 3.6 b | * |
caffeic acid derivative2 | 12.7 | 328 | 515 | 353-185 | 2.87 ± 0.75 b | 1.53 ± 0.57 b | 8.90 ± 0.59 a | ** |
caffeic/ferulic acid derivative | 14.4 | 326 | 541 | 379 | 4.77 ± 0.81 b | 6.50 ± 2.16 b | 9.22 ± 0.96 a | * |
Total phenols | 90.3 ± 11.6 b | 209.8 ± 54.5 a | 82.9 ± 4.1 b | * |
Genotype 1 | ß-Carotene | Antioxidant Capacity (AC) | ||
---|---|---|---|---|
Hydrophilic (H-AC) | Lipophilic (L-AC) | Total (T-AC) | ||
(µg 100 g−1 fw) | (µmol T.E. kg−1 fw) 3 | |||
CPL | 18,202 ± 2038 b | 577 ± 35 c | 288 ± 17 b | 865 ± 52 c |
CPT | 21,512 ± 706 a | 1458 ± 114 a | 200 ± 31 c | 1659 ± 121 a |
CG | 16,746 ± 1029 b | 806 ± 53 b | 403 ± 26 a | 1209 ± 80 b |
Significance 2 | ** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonasia, A.; Conversa, G.; Lazzizera, C.; Gambacorta, G.; Elia, A. Morpho-Biometrical, Nutritional and Phytochemical Characterization of Carrot Landraces from Puglia Region (Southern Italy). Sustainability 2021, 13, 3940. https://doi.org/10.3390/su13073940
Bonasia A, Conversa G, Lazzizera C, Gambacorta G, Elia A. Morpho-Biometrical, Nutritional and Phytochemical Characterization of Carrot Landraces from Puglia Region (Southern Italy). Sustainability. 2021; 13(7):3940. https://doi.org/10.3390/su13073940
Chicago/Turabian StyleBonasia, Anna, Giulia Conversa, Corrado Lazzizera, Giuseppe Gambacorta, and Antonio Elia. 2021. "Morpho-Biometrical, Nutritional and Phytochemical Characterization of Carrot Landraces from Puglia Region (Southern Italy)" Sustainability 13, no. 7: 3940. https://doi.org/10.3390/su13073940
APA StyleBonasia, A., Conversa, G., Lazzizera, C., Gambacorta, G., & Elia, A. (2021). Morpho-Biometrical, Nutritional and Phytochemical Characterization of Carrot Landraces from Puglia Region (Southern Italy). Sustainability, 13(7), 3940. https://doi.org/10.3390/su13073940