Toward an Integrated and Sustainable Water Resources Management in Structurally-Controlled Watersheds in Desert Environments Using Geophysical and Remote Sensing Methods
Abstract
:1. Introduction
2. Site Description
3. Materials and Methods
3.1. Approach Overview
3.2. Extraction of Surface Hydrological Parameters (Stage I)
3.3. Subsurface Data Acquisition/DCR Inversion (Stage II)
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ligi, M.; Bonatti, E.; Bosworth, W.; Cai, Y.; Cipriani, A.; Palmiotto, C.; Ronca, S.; Seyler, M. Birth of an ocean in the red sea: Oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Res. 2018, 54, 150–160. [Google Scholar] [CrossRef]
- Sultan, M.; Yousef, A.F.; Metwally, S.E.; Becker, R.; Milewski, A.; Sauck, W.; Sturchio, N.C.; Mohamed, A.; Wagdy, A.; El Alfy, Z. Red sea rifting controls on aquifer distribution: Constraints from geochemical, geophysical, and remote sensing data. GSA Bull. 2011, 123, 911–924. [Google Scholar] [CrossRef]
- Ahmed, M.; Sauck, W.; Sultan, M.; Yan, E.; Soliman, F.; Rashed, M. Geophysical constraints on the hydrogeologic and structural settings of the Gulf of Suez rift-related basins: Case study from the El Qaa plain, Sinai, Egypt. Surv. Geophys. 2014, 35, 415–430. [Google Scholar] [CrossRef]
- Yousif, M.; Hussien, H.M.; Abotalib, A.Z. The respective roles of modern and paleo recharge to alluvium aquifers in continental rift basins: A case study from El Qaa plain, Sinai, Egypt. Sci. Total Environ. 2020, 739, 139927. [Google Scholar] [CrossRef]
- Abotalib, A.Z.; Mohamed, R.S. Surface evidences supporting a probable new concept for the river systems evolution in Egypt: A remote sensing overview. Environ. Earth Sci. 2013, 69, 1621–1635. [Google Scholar] [CrossRef]
- Bojar, A.; Fritz, H.; Kargl, S.; Unzog, W. Phanerozoic tectonothermal history of the Arabian–Nubian shield in the Eastern Desert of Egypt: Evidence from fission track and paleostress data. J. Afr. Earth Sci. 2002, 34, 191–202. [Google Scholar] [CrossRef]
- Elhebiry, M.S.; Sultan, M.; Abu El-Leil, I.; Kehew, A.E.; Bekiet, M.H.; Abdel Shahid, I.; Soliman, N.M.; Abotalib, A.Z.; Emil, M. Paleozoic glaciation in NE Africa: Field and remote sensing-based evidence from the South Eastern Desert of Egypt. Int. Geol. Rev. 2020, 62, 1187–1204. [Google Scholar] [CrossRef] [Green Version]
- Abotalib, A.Z.; Heggy, E.; Scabbia, G.; Mazzoni, A. Groundwater dynamics in fossil fractured carbonate aquifers in Eastern Arabian Peninsula: A preliminary investigation. J. Hydrol. 2019, 571, 460–470. [Google Scholar] [CrossRef]
- Szymanski, E.; Stockli, D.F.; Johnson, P.R.; Hager, C. Thermochronometric evidence for diffuse extension and two-phase rifting within the Central Arabian margin of the Red Sea rift. Tectonics 2016, 35, 2863–2895. [Google Scholar] [CrossRef]
- Elkadiri, R.; Manche, C.; Sultan, M.; Al-Dousari, A.; Uddin, S.; Chouinard, K.; Abotalib, A.Z. Development of a coupled spatiotemporal algal bloom model for coastal areas: A remote sensing and data mining-based approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 5159–5171. [Google Scholar] [CrossRef]
- Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ. 2020, 729, 138868. [Google Scholar] [CrossRef]
- Hegazy, D.; Abotalib, A.Z.; El-Bastaweesy, M.; El-Said, M.A.; Melegy, A.; Garamoon, H. Geo-environmental impacts of hydrogeological setting and anthropogenic activities on water quality in the Quaternary aquifer southeast of the Nile Delta. Egypt. J. Afr. Earth Sci. 2020, 172, 103947. [Google Scholar] [CrossRef]
- El Bastawesy, M.; Cherif, O.H.; Sultan, M. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images. J. Afr. Earth Sci. 2017, 136, 252–261. [Google Scholar] [CrossRef]
- El-Saadawy, O.; Gaber, A.; Othman, A.; Abotalib, A.Z.; El Bastawesy, M.; Attwa, M. Modeling flash floods and induced recharge into alluvial aquifers using multi-temporal remote sensing and electrical resistivity imaging. Sustainability 2020, 12, 10204. [Google Scholar] [CrossRef]
- Wade, A.J.; Black, E.; Brayshaw, D.J.; El-Bastawesy, M.; Holmes, P.A.C.; Butterfield, D.; Nuimat, S.; Jamjoum, K. A model-based assessment of the effects of projected climate change on the water resources of Jordan. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2010, 368, 5151–5172. [Google Scholar] [CrossRef] [Green Version]
- Gabr, S.; El Bastawesy, M. Estimating the flash flood quantitative parameters affecting the oil-fields infrastructures in Ras Sudr, Sinai, Egypt, during the January 2010 event. Egypt J. Remote. Sens. Space Sci. 2015, 18, 137–149. [Google Scholar] [CrossRef] [Green Version]
- El Bastawesy, M.; White, K.; Nasr, A. Integration of remote sensing and GIS for modelling flash floods in Wadi Hudain catchment, Egypt. Hydrol. Process. Int. J. 2009, 23, 1359–1368. [Google Scholar] [CrossRef]
- Gabale, S.M.; Pawar, N.R. Quantitative morphometric analysis of AmbilOdha (Rivulet) in Pune, Maharashtra, India. IOSR J.Environ. Sci. Toxicol. Food Technol. 2015, 9, 41–48. [Google Scholar]
- Kant, S.; Meshram, S.; Dohare, R.; Singh, S. Morphometric analysis of sonar sub-basin using SRTM data and geographical information system (GIS). Afr. J. Agric. Res. 2015, 10, 1401–1406. [Google Scholar]
- Naghibi, S.A.; Pourghasemi, H.R.; Abbaspour, K. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor. Appl. Climatol. 2018, 131, 967–984. [Google Scholar] [CrossRef]
- Khakhar, M.; Ruparelia, J.P.; Vyas, A. Assessing groundwater vulnerability using GIS-Based DRASTIC model for Ahmedabad District, India. Environ. Earth Sci. 2017, 76, 1–18. [Google Scholar] [CrossRef]
- Othman, A.; Abotalib, A.Z. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: Case study from Central Saudi Arabia. Environ. Earth Sci. 2019, 78, 243. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Watershed morphometric analysis of Wadi Baish Dam catchment area using integrated GIS-based approach. Arab. J. Geosci. 2017, 10, 1–11. [Google Scholar] [CrossRef]
- Attwa, M.; Günther, T.; Grinat, M.; Binot, F. Transmissivity Estimation from Sounding Data of Holocene Tidal Deposits in the North Eastern Part of Cuxhaven, Germany. In Proceedings of the Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists and Engineers (EAGE), Dublin, Ireland, 7–9 September 2009; p. cp-00111. [Google Scholar]
- Maurya, P.K.; Rønde, V.K.; Fiandaca, G.; Balbarini, N.; Auken, E.; Bjerg, P.L.; Christiansen, A.V. Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography-with correlation to ionic strength measured in screens. J. Appl. Geophys. 2017, 138, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Attwa, M.; Günther, T. Application of spectral induced polarization (SIP) imaging for characterizing the near-surface geology: An environmental case study at Schillerslage, Germany. Aust. J. Basic Appl. Sci. 2012, 6, 693–701. [Google Scholar]
- Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricius, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B.D.; et al. Complex conductivity of soils. water resources. Research 2017, 53, 7121–7147. [Google Scholar]
- Anomohanran, O.; Orhiunu, M.E. Assessment of groundwater occurrence in Olomoro, Nigeria using borehole logging and electrical resistivity methods. Arab. J. Geosci. 2018, 11, 1–9. [Google Scholar] [CrossRef]
- AL-Menshed, F.H.; Thabit, J.M. Comparison between VES and 2D imaging techniques for delineating subsurface plume of hydrocarbon contaminated water Southeast of Karbala City, Iraq. Arab. J. Geosci. 2018, 11, 1–9. [Google Scholar] [CrossRef]
- Hermans, T.; Irving, J. Facies discrimination with electrical resistivity tomography using a probabilistic methodology: Effect of sensitivity and regularisation. Near Surf. Geophys. 2017, 15, 13–25. [Google Scholar] [CrossRef]
- Attwa, M.; Gemail, K.S.; Eleraki, M. Use of salinity and resistivity measurements to study the coastal aquifer salinization in a semi-arid region: A case study in Northeast Nile Delta, Egypt. Environ. Earth Sci. 2016, 75, 784. [Google Scholar] [CrossRef]
- Goebel, T.; Weingarten, M.; Chen, X.; Haffener, J.; Brodsky, E.E. The 2016 Mw5. 1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth Planet. Sci. Lett. 2017, 472, 50–61. [Google Scholar] [CrossRef]
- Abotalib, A.Z.; Sultan, M.; Elkadiri, R. Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments. Earth Sci. Rev. 2016, 156, 108–136. [Google Scholar] [CrossRef] [Green Version]
- Hussien, H.M.; Kehew, A.E.; Aggour, T.; Korany, E.; Abotalib, A.Z.; Hassanein, A.; Morsy, S. An integrated approach for identification of potential aquifer zones in structurally controlled terrain: Wadi Qena Basin, Egypt. Catena 2017, 149, 73–85. [Google Scholar] [CrossRef]
- Yousif, M.; Sracek, O. Integration of geological investigations with multi-GIS data layers for water resources assessment in arid regions: El Ambagi Basin, Eastern Desert, Egypt. Environ. Earth Sci. 2016, 75, 1–25. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Gaber, A.; Buchroithner, M.F. Geomorphological hazard analysis along the Egyptian Red Sea coast between Safaga and Quseir. Nat. Hazards Earth Syst. Sci. 2009, 9, 751–766. [Google Scholar] [CrossRef]
- Amer, R.; Kusky, T.; El Mezayen, A. Remote sensing detection of gold related alteration zones in Um Rus Area, Central Eastern Desert of Egypt. Adv. Space Res. 2012, 49, 121–134. [Google Scholar] [CrossRef]
- El Ramly, M.F. The Occurrence of Gold in the Eastern Desert of Egypt. Stud. Some Miner. Depos. Egypt Geol. Surv. Egypt 1970, 53–64. [Google Scholar]
- Mohamed, L.; Sultan, M.; Ahmed, M.; Zaki, A.; Sauck, W.; Soliman, F.; Yan, E.; Elkadiri, R.; Abouelmagd, A. Structural controls on groundwater flow in basement terrains: Geophysical, remote sensing, and field investigations in Sinai. Surv. Geophys. 2015, 36, 717–742. [Google Scholar] [CrossRef]
- Conoco. Geological Map of Egypt, Scale. 1987, 1: 500,000, 36; Egyptian Petroleum Authority: Cairo, Egypt, 1987. [Google Scholar]
- Attwa, M.; Henaish, A. Regional structural mapping using a combined geological and geophysical approach—A preliminary study at Cairo-Suez District, Egypt. J. Afr. Earth Sci. 2018, 144, 104–121. [Google Scholar] [CrossRef]
- Başokur, A.T. Automated 1D interpretation of resistivity soundings by simultaneous use of the direct and iterative methods. Geophys. Prospect. 1999, 47, 149–177. [Google Scholar] [CrossRef]
- Başokur, A.T.; Akca, I.; Siyam, N.W. Hybrid genetic algorithms in view of the evolution theories with application for the electrical sounding method. Geophys. Prospect. 2007, 55, 393–406. [Google Scholar] [CrossRef]
- Akça, I.; Basokur, A.T. Extraction of structure-based geoelectric models by hybrid genetic algorithms. Geophysic 2010, 75, F15–F22. [Google Scholar] [CrossRef]
- Attwa, M.; Akca, I.; Basokur, A.T.; Günther, T. Structure-based geoelectrical models derived from genetic algorithms: A case study for hydrogeological investigations along Elbe River coastal area, Germany. J. Appl. Geophys. 2014, 103, 57–70. [Google Scholar] [CrossRef]
- Attwa, M.; Basokur, A.T.; Akca, I. Hydraulic conductivity estimation using direct current (DC) sounding data: A case study in East Nile Delta, Egypt. Hydrogeol. J. 2014, 22, 1163–1178. [Google Scholar] [CrossRef]
- Hellman, K.; Johansson, S.J.; Olsson, P.O.; Dahlin, T.D. Resistivity Inversion Software Comparison. In Proceedings of the Near Surface Geoscience 2016-22nd European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists and Engineers (EAGE), Barcelona, Spain, 4–8 September 2016; p. cp-00115. [Google Scholar]
- Günther, T.; Rücker, C. A General Approach for Introducing Information into Inversion and Examples from Dc Resistivity Inversion. In Proceedings of the Near Surface 2006-12th EAGE European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists and Engineers (EAGE), Helsinki, Finland, 4–6 September 2006; p. cp-00060. [Google Scholar]
- Rücker, C.; Günther, T.; Spitzer, K. Three-dimensional modelling and inversion of Dc resistivity data incorporating topography—I. modelling. Geophys. J. Int. 2006, 166, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. Desert Hydrology. In Encyclopedia of Hydrology and Lakes. Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998; pp. 176–183. [Google Scholar]
- Sharon, D. The distribution of rainfall in space and time in the Namib desert. J. Climatol. 1981, 1, 69–75. [Google Scholar] [CrossRef]
- Maidment, D.R. GIS and Hydrologic Modeling. In Environmental Modeling with GIS; Goodchild, M.F., Parks, B.O., Eds.; Oxford University Press Inc.: New York, NY, USA, 1993; pp. 147–167. [Google Scholar]
- Beven, K. Runoff Generation in Semi-Arid Areas. In Dryland Rivers, Hydrology and Geomorphology of Semi-Arid Channels; Bull, L.J., Kirkby, M.J., Eds.; John Wiley and Sons: Chichester, UK, 2002; pp. 57–105. [Google Scholar]
- Cooke, R.; Brunsden, D.; Doornkamp, J.C. Urban Geomorphology in Drylands; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Mabbutt, J.A. Desert Landforms; MIT Press: Cambridge, MA, USA, 1979; p. 340. [Google Scholar]
- Henaish, A.; Attwa, M. Internal structural architecture of a soft-linkage transfer zone using outcrop and DC resistivity data: Implications for preliminary engineering assessment. Eng. Geol. 2018, 244, 1–13. [Google Scholar] [CrossRef]
- Milewski, A.; Sultan, M.; Yan, E.; Becker, R.; Abdeldayem, A.; Soliman, F.; Gelil, K.A. A remote sensing solution for estimating runoff and recharge in arid environments. J. Hydrol. 2009, 373, 1–14. [Google Scholar] [CrossRef]
Name | Area (km2) | Total Discharge (m3) | Flow Duration (hours) | Peak Discharge Rate (m3/s) | Time to Peak (hour) | Impact |
---|---|---|---|---|---|---|
Wadi Abu-Ziran | 615.6 | 6,349,995 | 12 | 119.835 | 9 | Quseir-Qift road |
WadiKarim | 571.5 | 5,899,392 | 13 | 134.1563 | 8 | Quseir-Qift road |
Wadian_Nakhil | 111.5 | 1,153,116 | 6 | 56.05875 | 3 | Quseir-Qift road |
Wadi Mahasen | 137.8 | 1,427,868 | 6 | 60.46875 | 3 | Quseir-Qift road |
Wadi Bayda al Atshan | 25.1 | 259,524 | 4 | 19.08 | 2 | Quseir-Qift road |
Total: Al-Ambagi Basin | 1524.7 | 15,757,000 | 15 | 231.525 | 10 | Quseir City |
Dams | Storage Capacity (m3) | Total Storage Capacity (m3) | Estimated Total Discharge (m3) | Required Storage Capacity (m3) |
---|---|---|---|---|
Dam-1 | 402,268 | 5,519,417 | 15,757,092 | 10,237,675 |
Dam-2 | 1,695,956 | |||
Dam-3 | 2,701,193 | |||
Pool | 720,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attwa, M.; El Bastawesy, M.; Ragab, D.; Othman, A.; Assaggaf, H.M.; Abotalib, A.Z. Toward an Integrated and Sustainable Water Resources Management in Structurally-Controlled Watersheds in Desert Environments Using Geophysical and Remote Sensing Methods. Sustainability 2021, 13, 4004. https://doi.org/10.3390/su13074004
Attwa M, El Bastawesy M, Ragab D, Othman A, Assaggaf HM, Abotalib AZ. Toward an Integrated and Sustainable Water Resources Management in Structurally-Controlled Watersheds in Desert Environments Using Geophysical and Remote Sensing Methods. Sustainability. 2021; 13(7):4004. https://doi.org/10.3390/su13074004
Chicago/Turabian StyleAttwa, Mohamed, Mohammed El Bastawesy, Dina Ragab, Abdullah Othman, Hamza M. Assaggaf, and Abotalib Z. Abotalib. 2021. "Toward an Integrated and Sustainable Water Resources Management in Structurally-Controlled Watersheds in Desert Environments Using Geophysical and Remote Sensing Methods" Sustainability 13, no. 7: 4004. https://doi.org/10.3390/su13074004
APA StyleAttwa, M., El Bastawesy, M., Ragab, D., Othman, A., Assaggaf, H. M., & Abotalib, A. Z. (2021). Toward an Integrated and Sustainable Water Resources Management in Structurally-Controlled Watersheds in Desert Environments Using Geophysical and Remote Sensing Methods. Sustainability, 13(7), 4004. https://doi.org/10.3390/su13074004