Use of Simulated and Observed Meteorology for Air Quality Modeling and Source Ranking for an Industrial Region
Abstract
:1. Introduction
2. Study Area
3. Methodology and Data
4. Meteorological Model
5. Dispersion Model
6. Emission and Concentration Data
7. Results and Discussion
8. Validation of Wind and Temperature Time Series
8.1. Validation of Temperature
8.2. Validation of Wind
9. Validation of NOx and PM10
9.1. Results of Industrial Sources
9.2. Contribution of NOx and PM10 Concentration by Industries
9.3. Results of Line Sources
9.4. NOx and PM10 Concentration Contribution by Vehicles
9.5. NOx and PM10 Concentration Modeling by Diesel Car and LDDV
10. Summary and Conclusions
- ⮚
- Amongst total emissions, PM10 emission load was 3%, and NOx emission load was 17% from vehicles. Industr sources contributed 64% and 94% of NOx and PM10 load, respectively. The domestic sector contributed significantly to NOx emission as 18% of total emission load.
- ⮚
- NOx emission load of industries was 64% of the total emission load, but it contributed only 25–30% of NOx concentration in the ambient air.
- ⮚
- There was 94% contribution to total emission load of PM10 from industries in the study domain, but only 57% contribution to ambient air quality level.
- ⮚
- NOx emission contribution from vehicles was 17% of total emission, but in ambient air quality it contributed only 26% of the total because it is a ground level source.
- ⮚
- Vehicular PM10 emission contribution was 3% of the total emission load, but in ambient air quality it contributed 25% of the total ambient PM10 concentration.
- ⮚
- At ambient concentration of NOx, diesel cars and LDDVs contributed one fourth of the line sources for this study domain.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huff, G.; Angeles, L. Globalization, industrialization and urbanization in Pre-World War II Southeast Asia. Explor. Econ. Hist. 2011, 48, 20–36. [Google Scholar] [CrossRef]
- DeFries, R.; Pandey, D. Urbanization, the energy ladder and forest transitions in India’s emerging economy. Land Use Policy 2011, 27, 130–138. [Google Scholar] [CrossRef]
- Duh, J.-D.; Shandas, V.; Chang, H.; George, L.A. Rates of urbanisation and the resiliency of air and water quality. Sci. Total. Environ. 2008, 400, 238–256. [Google Scholar] [CrossRef]
- Patankar, A.; Trivedi, P. Monetary burden of health impacts of air pollution in Mumbai, India: Implications for public health policy. Public Health 2011, 125, 157–164. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). World Health Statistics, Department of Public Health, Environmental and Social Determinants of Health; WHO Press: Geneva, Switzerland, 2014. [Google Scholar]
- Kumar, A.; Gupta, I.; Brandt, J.; Kumar, R.; Kumar, A.; Patil, R.S. Air quality mapping using GIS and economic evalu-ation of health impact for Mumbai city, India. J. Air Waste Manag. Assoc. 2016, 66, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, T.; Barman, S.; Srivastava, R. Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar. Environ. Pollut. 2011, 159, 865–875. [Google Scholar] [CrossRef]
- Kumar, A.; Dikshit, A.K.; Fatima, S.; Patil, R.S. Application of WRF Model for Vehicular Pollution Modelling Using AERMOD. Atmos. Clim. Sci. 2015, 5, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Islam, S.; Kumar, R. Evaluation of control strategies for industrial air pollution sources using American Meteorological Society/Environmental Protection Agency Regulatory Model with simulated meteorology by Weather Research and Forecasting Model. J. Clean. Prod. 2016, 116, 110–117. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R. Comparison of predicted vehicular pollution concentration with air quality standards for different time periods. Clean Technol. Environ. Policy 2016, 18, 2293–2303. [Google Scholar] [CrossRef]
- Madala, S.; Satyanarayana, A.; Srinivas, C.; Kumar, M. Mesoscale atmospheric flow-field simulations for air quality modeling over complex terrain region of Ranchi in eastern India using WRF. Atmos. Environ. 2015, 107, 315–328. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Thunis, P.; Degraeuwe, B.; Pisoni, E.; Trombetti, M.; Peduzzi, E.; Belis, C.; Wilson, J.; Clappier, A.; Vignati, E. PM2.5 source allocation in European cities: A SHERPA modelling study. Atmos. Environ. 2018, 187, 93–106. [Google Scholar] [CrossRef]
- Abhijith, K.; Gokhale, S. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons. Environ. Pollut. 2015, 204, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Gulia, S.; Shrivastava, A.; Nema, A.K.; Khare, M. Assessment of Urban Air Quality around a Heritage Site Using AERMOD: A Case Study of Amritsar City, India. Environ. Model. Assess. 2015, 20, 599–608. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, P.; Jorba, O.; Baldasano, J.M.; Gassó, S. The use of a modelling system as a tool for air quality management: Annual high-resolution simulations and evaluation. Sci. Total. Environ. 2008, 390, 323–340. [Google Scholar] [CrossRef]
- Kumar, A.; Ketzel, M.; Patil, R.S.; Dikshit, A.K.; Hertel, O. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India). Environ. Monit. Assess. 2016, 188, 349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R.; Brandt, J.; Hertel, O. Assessment of impact of unaccounted emission on ambient concentration using DEHM and AERMOD in combination with WRF. Atmos. Environ. 2016, 142, 406–413. [Google Scholar] [CrossRef]
- Mumovic, D.; Crowther, J.; Stevanovic, Z. Integrated air quality modelling for a designated air quality management area in Glasgow. Build. Environ. 2006, 41, 1703–1712. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R. Assessment of Spatial Ambient Concentration of NH3 and its Health Impact for Mumbai City. Asia J. Atmos. Environ. 2019, 13, 11–19. [Google Scholar] [CrossRef]
- Patil, R.S.; Kumar, R.; Menon, R.; Kumar, M.; Sethi, V. Development of particulate matter speciation profiles for major sources in six cities in India. Atmos. Res. 2013, 132–133, 1–11. [Google Scholar] [CrossRef]
- Mohan, M.; Bhati, S.; Sreenivas, A.; Marrapu, P. Performance Evaluation of AERMOD and ADMS-Urban for Total Suspended Particulate Matter Concentrations in Megacity Delhi. Aerosol Air Qual. Res. 2011, 11, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Seaman, N.L. Meteorological modeling for air-quality assessments. Atmos. Environ. 2000, 34, 2231–2259. [Google Scholar] [CrossRef]
- Sistla, G.; Zhou, N.; Hao, W.; Ku, J.-Y.; Rao, S.; Bornstein, R.; Freedman, F.; Thunis, P. Effects of uncertainties in meteorological inputs on urban airshed model predictions and ozone control strategies. Atmos. Environ. 1996, 30, 2011–2025. [Google Scholar] [CrossRef]
- Russell, A.; Dennis, R. NARSTO critical review of photo-chemical models and modelling. Atmos. Environ. 2000, 34, 2283–2324. [Google Scholar] [CrossRef]
- Gilliam, R.C.; Hogrefe, C.; Rao, S.T. New methods for evaluating meteorological models used in air quality applications. Atmos. Environ. 2006, 40, 5073–5086. [Google Scholar] [CrossRef]
- Borge, R.; Alexandrov, V.N.; Del Vas, J.J.; Lumbreras, J.; Rodríguez, E. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ. 2008, 42, 8560–8574. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R. Application of WRF Model for Air Quality Modelling and AERMOD—A Survey. Aerosol Air Qual. Res. 2017, 17, 1925–1937. [Google Scholar] [CrossRef] [Green Version]
- Kesarkar, A.P.; Dalvi, M.; Kaginalkar, A.; Ojha, A. Coupling of the Weather Research Forecasting Model with AERMOD for pollutant dispersion modelling. A case study for PM10 dispersion over the Pune City. Atmos. Environ. 2006, 41, 1976–1988. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R. Application of AERMOD for short-term air quality prediction with forecasted meteorology using WRF model. Clean Technol. Environ. Policy 2017, 19, 1955–1965. [Google Scholar] [CrossRef]
- Myers-Cook, T.; Mallard, J.; Mao, Q. Development of a WRF-AERMOD Tool for Use in Regulatory Application. In Proceedings of the 16th Conference on Air Pollution Meteorology, American Meteorological Society, Atlanta, GA, USA, 16–21 January 2010; pp. 1–10. [Google Scholar]
- Ground Water Information, Greater Mumbai District, Maharashtra; 1618/DB/20; Ministry of Water Resources, Central Ground Water Board: New Delhi, India, 2009.
- Gupta, I.; Kumar, R. Trends of particulate matter in four cities in India. Atmos. Environ. 2006, 40, 2552–2566. [Google Scholar] [CrossRef]
- Comprehensive Environmental Pollution Index (CEPI); Central Pollution Control Board, Ministry of Environment and Forests: New Delhi, India, 2010.
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-45; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Henmi, T.; Flanigan, R.; Padilla, R. Development and Application of an Evaluation Method for the WRF Mesoscale Model; ARL-TR3657; Army Research Laboratory: Adelphi, MD, USA, 2005. [Google Scholar]
- National Center for Atmospheric Research (NCAR). University Corporation for Atmospheric Research (UCAR), Research Data Achieve (RDA), USA. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 15 January 2020).
- Kumar, P.; Kishtawal, C.M.; Pal, P.K. Impact of satellite rainfall assimilation on Weather Research and Forecasting model predictions over the Indian region. J. Geophys. Res. Atmos. 2014, 119, 2017–2031. [Google Scholar] [CrossRef]
- Kumar, P.; Bhattacharya, B.K.; Nigam, R.; Kishtawal, C.M.; Pal, P.K. Impact of Kalpana-1 derived land surface albedo on short-range weather forecasting over the Indian subcontinent. J. Geophys. Res. Atmos. 2014, 119, 2764–2780. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kishtawal, C.M.; Pal, P.K. Skill of regional and global model forecast over Indian region. Theor. Appl. Clim. 2016, 123, 629–636. [Google Scholar] [CrossRef]
- Sax, T.; Isakov, V. A case study for assessing uncertainty in local-scale regulatory air quality modeling applications. Atmos. Environ. 2003, 37, 3481–3489. [Google Scholar] [CrossRef]
- Singh, N.P.; Gokhale, S. A method to estimate spatiotemporal air quality in an urban traffic corridor. Sci. Total. Environ. 2015, 538, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Thunis, P.; Georgieva, E.; Pederzoli, A. A tool to evaluate air quality model performances in regulatory applications. Environ. Model. Softw. 2012, 38, 220–230. [Google Scholar] [CrossRef]
- User’s Guide for Industrial Source Complex (ISC3) Dispersion Models, Volume I—User Instructions; EPA-454/B-95-003a; United State Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Division, Research Triangle Park: Piedmont, NC, USA, 1999.
- Bandyopadhyay, A. Prediction of ground level concentration of sulfur dioxide using ISCST3 model in Mangalore industrial region of India. Clean Technol. Environ. Policy 2009, 11, 173–188. [Google Scholar] [CrossRef]
- Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson Robert, B.; Lee, R.F.; Peters, W.D.; Brode, R.W.; Paumier, J.O. AERMOD: Description of Model Formulation; EPA-454/R-03-004; USEPA: Washington, DC, USA, 2004. [Google Scholar]
- Bhardwaj, K.S. Examination of the Sensitivity of Land Use Parameters and Population on the Performance of the AERMOD Model for and Urban Area. Civil Engineering. Master’s Thesis, University of Toledo, Toledo, OH, USA, 2005. [Google Scholar]
- Venkatram, A.; Brode, R.; Cimorelli, A.; Lee, R.; Paine, R.; Perry, S.; Peters, W.; Weil, J.; Wilson, R. A complex terrain dispersion model for regulatory applications. Atmos. Environ. 2001, 35, 4211–4221. [Google Scholar] [CrossRef]
- Venkatram, A.; Isakov, V.; Yuan, J.; Pankratz, D. Modeling dispersion at distances of meters from urban sources. Atmos. Environ. 2004, 38, 4633–4641. [Google Scholar] [CrossRef]
- Zou, B.; Zhan, F.B.; Wilson, J.G.; Zeng, Y. Performance of AERMOD at different time scales. Simul. Model. Pract. Theory 2010, 18, 612–623. [Google Scholar] [CrossRef]
- Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y. Spatially differentiated and source-specific population exposure to ambient urban air pollution. Atmos. Environ. 2009, 43, 3981–3988. [Google Scholar] [CrossRef]
- Air Quality Assessment, Emission Inventory and Source Apportionment Studies: Mumbai; National Environmental Engineering Research Institute, CPCB: New Delhi, India, 2010.
- Air Quality Monitoring Project-Indian Clean Air Programme (ICAP). Emission Factor development for Indian Vehicles; Automotive Research Association of India CPCB-MoEF: New Delhi, India, 2008. [Google Scholar]
- Fedoseeva, E.V. An Estimate of the Error of Measurements of Radio Brightness Temperature in Radio-Heat Meteorological Parameters with Background Noise Compensation. Meas. Tech. 2015, 57, 1463–1468. [Google Scholar] [CrossRef]
- Finkelstein, P.L.; Sims, P.F. Sampling error in eddy correlation flux measurements. J. Geophys. Res. 2001, 106, 3503–3509. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Lee, L.G. Rainfall Measurement Error by WSR-88D Radars due to Variations in Z–R Law Parameters and the Radar Constant. J. Atmos. Ocean. Technol. 1999, 16, 1017–1024. [Google Scholar] [CrossRef]
- Sonawane, N.V.; Patil, R.S.; Sethi, V. Health benefit modelling and optimization of vehicular pollution control strategies. Atmos. Environ. 2012, 60, 193–201. [Google Scholar] [CrossRef]
Month-Location | NOx | PM10 | ||||
---|---|---|---|---|---|---|
Simulated | Observed | % Error | Simulated | Observed | % Error | |
Jan-BPCL | 29 | 26 | 11.5 | 53 | 62 | −14.5 |
Jan-HPCL | 36 | 22 | 63.6 | 55 | 65 | −15.4 |
Feb-BPCL | 36 | 34 | 5.9 | 54 | 54 | 0.0 |
Feb-HPCL | 43 | 28 | 53.6 | 57 | 68 | −16.2 |
Mar-BPCL | 28 | 27 | 3.7 | 53 | 56 | −5.4 |
Mar-HPCL | 39 | 25 | 56.0 | 56 | 64 | −12.5 |
Apr-BPCL | 31 | 34 | −8.8 | 60 | 55 | 9.1 |
Apr-HPCL | 27 | 28 | −3.6 | 65 | 54 | 20.4 |
May-BPCL | 21 | 32 | −34.4 | 51 | 58 | −12.1 |
May-HPCL | 28 | 23 | 21.7 | 55 | 56 | −1.8 |
Jun-BPCL | 15 | 16 | −6.3 | 51 | 35 | 45.7 |
Jun-HPCL | 21 | 26 | −19.2 | 55 | 58 | −5.2 |
Jul-BPCL | 8 | 20 | −60.0 | 49 | 43 | 14.0 |
Jul-HPCL | 15 | 18 | −16.7 | 53 | 50 | 6.0 |
Aug-BPCL | 7 | 20 | −65.0 | 49 | 43 | 14.0 |
Aug-HPCL | 18 | 17 | 5.9 | 55 | 48 | 14.6 |
Sep-BPCL | 22 | 19 | 15.8 | 51 | 41 | 24.4 |
Sep-HPCL | 26 | 21 | 23.8 | 54 | 54 | 0.0 |
Oct-BPCL | 39 | 25 | 56.0 | 52 | 42 | 23.8 |
Oct-HPCL | 40 | 32 | 25.0 | 55 | 55 | 0.0 |
Nov-BPCL | 31 | 24 | 29.2 | 55 | 53 | 3.8 |
Nov-HPCL | 23 | 26 | −11.5 | 50 | 59 | −15.3 |
Dec-BPCL | 28 | 25 | 12.0 | 56 | 56 | 0.0 |
Dec-HPCL | 15 | 21 | −28.6 | 49 | 62 | −21.0 |
Annual-BPCL | 24.6 | 25.2 | −3.4 | 52.8 | 49.8 | 8.6 |
Annual-HPCL | 27.6 | 23.9 | 14.2 | 54.9 | 57.8 | −3.9 |
Pollutant | Location | Simulated Concentration for Industries (µg/m3) | Ambient Simulated Concentration (µg/m3) | Contribution of Industrial Source to Ambient Air Quality |
---|---|---|---|---|
NOx | BPCL | 4.8 | 28.2 | 17% |
HPCL | 6.1 | 21.7 | 28% | |
PM10 | BPCL | 35.5 | 56.9 | 62% |
HPCL | 33.2 | 52.1 | 64% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Dikshit, A.K.; Patil, R.S. Use of Simulated and Observed Meteorology for Air Quality Modeling and Source Ranking for an Industrial Region. Sustainability 2021, 13, 4276. https://doi.org/10.3390/su13084276
Kumar A, Dikshit AK, Patil RS. Use of Simulated and Observed Meteorology for Air Quality Modeling and Source Ranking for an Industrial Region. Sustainability. 2021; 13(8):4276. https://doi.org/10.3390/su13084276
Chicago/Turabian StyleKumar, Awkash, Anil Kumar Dikshit, and Rashmi S. Patil. 2021. "Use of Simulated and Observed Meteorology for Air Quality Modeling and Source Ranking for an Industrial Region" Sustainability 13, no. 8: 4276. https://doi.org/10.3390/su13084276
APA StyleKumar, A., Dikshit, A. K., & Patil, R. S. (2021). Use of Simulated and Observed Meteorology for Air Quality Modeling and Source Ranking for an Industrial Region. Sustainability, 13(8), 4276. https://doi.org/10.3390/su13084276