Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Seasonal Results for Environmental Impact Assessment (Winter, January)
3.2. Seasonal Results for Environmental Impact Assessment (Spring, April)
3.3. Seasonal Results for Environmental Impact Assessment (Summer, July)
3.4. Seasonal Results for Environmental Impact Assessment (Autumn, October)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Hand, J.L.; Schichtel, B.A.; Pitchford, M.; Malm, W.C.; Frank, N.H. Seasonal composition of remote and urban fine particulate matter in the United States. J. Geophys. Res. Atmos. Phys. 2012, 117. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Fang, G.-C.; Lee, W.-J.; Lee, J.-F.; Chang, C.-C.; Lee, C.-Z. A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. J. Hazard. Mater. 2007, 143, 511–515. [Google Scholar] [CrossRef]
- Duplissy, J.; De Carlo, P.F.; Dommen, J.; Alfarra, M.R.; Metzger, A.; Barmpadimos, I.; Prevot, A.S.H.; Weingartner, E.; Tritscher, T.; Gysel, M.; et al. Relating hygroscopicity and composition of organic aerosol particulate matter. Atmos. Chem. Phys. Discuss. 2011, 11, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Paulin, L.; Hansel, N. Particulate air pollution and impaired lung function. F1000Research 2016, 5, 201. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [PubMed]
- Hu, J.; Huang, L.; Chen, M.; Liao, H.; Zhang, H.; Wang, S.; Zhang, Q.; Ying, Q. Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. Environ. Sci. Technol. 2017, 51, 9950–9959. [Google Scholar] [CrossRef]
- Giani, P.; Anav, A.; De Marco, A.; Feng, Z.; Crippa, P. Exploring sources of uncertainty in premature mortality estimates from fine particulate matter: The case of China. Environ. Res. Lett. 2020, 15, 064027. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Canals, L.M.I.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018, 23, 2189–2207. [Google Scholar] [CrossRef] [Green Version]
- Faust, J.A.; Wong, J.P.S.; Lee, A.K.Y.; Abbatt, J.P.D. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.H.; Bahadori, T.; Vallarino, J.; Spengler, J.D. Criteria air pollutants and toxic air pollutants. Environ. Health Perspect. 2000, 108, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-H.; Iraqui, O.; Gu, Y.; Yim, S.H.-L.; Chulakadabba, A.; Tonks, A.Y.-M.; Yang, Z.; Wang, C. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia. Atmos. Chem. Phys. Discuss. 2018, 18, 6141–6156. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Li, Y.; Cui, L. Critical review of condensable particulate matter. Fuel 2018, 224, 801–813. [Google Scholar] [CrossRef]
- Corio, L.A.; Sherwell, J. In-stack condensible particulate matter measurements and issues. J. Air Waste Manag. Assoc. 2000, 50, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Estimation of the Importance of Condensed Particulate Matter to Ambient Particulate Levels; PB84-102565; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1983.
- Website of the U.S. Environmental Protection Agency, the United States of America. Method 202-Determination of Conden-sable Particulate Emissions from Stationary Sources. Available online: https://www.epa.gov/emc/method-202-condensable-particulate-matter (accessed on 25 March 2021).
- Yao, Q.; Li, S.-Q.; Xu, H.-W.; Zhuo, J.-K.; Song, Q. Studies on formation and control of combustion particulate matter in China: A review. Energy 2009, 34, 1296–1309. [Google Scholar] [CrossRef]
- Cano, M.; Vega, F.; Navarrete, B.; Plumed, A.; Camino, J.A. Characterization of Emissions of Condensable Particulate Matter in Clinker Kilns Using a Dilution Sampling System. Energy Fuels 2017, 31, 7831–7838. [Google Scholar] [CrossRef]
- Li, X.; Zhou, C.; Li, J.; Lu, S.; Yan, J. Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator. Environ. Sci. Pollut. Res. 2019, 26, 12798–12806. [Google Scholar] [CrossRef]
- Wu, B.; Bai, X.; Liu, W.; Lin, S.; Liu, S.; Luo, L.; Guo, Z.; Zhao, S.; Lv, Y.; Zhu, C.; et al. Non-Negligible Stack Emissions of Noncriteria Air Pollutants from Coal-Fired Power Plants in China: Condensable Particulate Matter and Sulfur Trioxide. Environ. Sci. Technol. 2020, 54, 6540–6550. [Google Scholar] [CrossRef] [PubMed]
- Morino, Y.; Chatani, S.; Tanabe, K.; Fujitani, Y.; Morikawa, T.; Takahashi, K.; Sato, K.; Sugata, S. Contributions of Condensable Particulate Matter to Atmospheric Organic Aerosol over Japan. Environ. Sci. Technol. 2018, 52, 8456–8466. [Google Scholar] [CrossRef]
- Tartakovsky, D.; Stern, E.; Broday, D.M. Comparison of dry deposition estimates of AERMOD and CALPUFF from area sources in flat terrain. Atmos. Environ. 2016, 142, 430–432. [Google Scholar] [CrossRef]
- Barjoee, S.S.; Azimzadeh, H.; Kuchakzadeh, M.; MoslehArani, A.; Sodaiezadeh, H. Dispersion and Health Risk Assessment of PM10 Emitted from the Stacks of a Ceramic and Tile industry in Ardakan, Yazd, Iran, Using the AERMOD Model. Iran. South Med. J. 2019, 22, 317–332. [Google Scholar] [CrossRef]
- Hadlocon, L.S.; Zhao, L.Y.; Bohrer, G.; Kenny, W.; Garrity, S.R.; Wang, J.; Wyslouzil, B.; Upadhyay, J. Modeling of particulate matter dispersion from a poultry facility using AERMOD. J. Air Waste Manag. Assoc. 2015, 65, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Jittra, N.; Pinthong, N.; Thepanondh, S. Performance Evaluation of AERMOD and CALPUFF Air Dispersion Models in Industrial Complex Area. Air Soil Water Res. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Holnicki, P.; Kałuszko, A.; Trapp, W. An urban scale application and validation of the CALPUFF model. Atmos. Pollut. Res. 2016, 7, 393–402. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Bae, C.; Cho, J.H.; Kim, B.-U.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. Discuss. 2017, 17, 10315–10332. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, M.; Wu, F.; Sun, Y.; Tang, G. Assessment of the impacts of aromatic VOC emissions and yields of SOA on SOA concentrations with the air quality model RAMS-CMAQ. Atmos. Environ. 2017, 158, 105–115. [Google Scholar] [CrossRef]
- Gong, B.; Kim, J.; Kim, H.; Lee, S.; Kim, H.; Jo, J.; Kim, J.; Gang, D.; Park, J.M.; Hong, J. A Study on the Characteristics of Condensable Fine Particles in Flue Gas. J. Korean Soc. Atmos. Environ. 2016, 32, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Norkko, J.; Thrush, S.F. Ecophysiology in environmental impact assessment: Implications of spatial differences in seasonal variability of bivalve condition. Mar. Ecol. Prog. Ser. 2006, 326, 175–186. [Google Scholar] [CrossRef]
- Venugopal, T.; Giridharan, L.; Jayaprakash, M.; Periakali, P. Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of River Adyar, Chennai, India. Environ. Monit. Assess. 2008, 149, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, K.; Cayetano, M.G.; Batmunkh, T.; Kim, Y.J. Optical and hygroscopic properties of long-range transported haze plumes observed at Deokjeok Island off the west coast of the Korean Peninsula under the Asian continental outflows. J. Geophys. Res. Atmos. 2015, 120, 8861–8877. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Jang, M.; Kim, S.; Bae, C.; Koo, B.; Beardsley, R.; Park, J.; Chang, L.S.; Lee, H.C.; Lim, Y.-K.; et al. Simulating the Impact of Long-Range-Transported Asian Mineral Dust on the Formation of Sulfate and Nitrate during the KORUS-AQ Campaign. ACS Earth Space Chem. 2020, 4, 1039–1049. [Google Scholar] [CrossRef]
- Ghim, Y.S.; Choi, Y.; Kim, S.; Bae, C.H.; Park, J.; Shin, H.J. Model Performance Evaluation and Bias Correction Effect Analysis for Forecasting PM2.5 Concentrations. J. Korean Soc. Atmos. Environ. 2017, 33, 11–18. [Google Scholar] [CrossRef]
- Yang, H.-H.; Lee, K.-T.; Hsieh, Y.-S.; Luo, S.-W.; Huang, R.-J. Emission Characteristics and Chemical Compositions of both Filterable and Condensable Fine Particulate from Steel Plants. Aerosol Air Qual. Res. 2015, 15, 1672–1680. [Google Scholar] [CrossRef] [Green Version]
- Interim Guidance on the Treatment of Condensable Particulate Matter Test Results in the Prevention of Significant Deterioration and Nonattainment New Source Review Permitting Programs. Available online: https://www.epa.gov/nsr/interim-guidance-treatment-condensable-particulate-matter-test-results-prevention-significant (accessed on 9 April 2021).
Fuel Type | TPM | FPM | CPM | Note |
---|---|---|---|---|
LNG boiler (mg/m3) | 206.67 | 3.79 | 202.88 | uncontrolled |
Light oil boiler (mg/L) | 65.78 | 3.38 | 62.40 | uncontrolled |
B-C oil boiler (mg/L) | 371.47 | 143.83 | 227.64 | uncontrolled |
Bituminous power plant (g/ton) | 71.65 | 6.55 | 65.10 | uncontrolled |
(Unit: µg/m3) | Deokjeok | Seogwipo | Seosan |
---|---|---|---|
Winter | 47.26 ± 26.56 | 31.55 ± 19.48 | 41.77 ± 27.62 |
Spring | 43.73 ± 22.65 | 58.67 ± 29.75 | 44.53 ± 18.12 |
Summer | 23.45 ± 6.80 | 34.58 ± 6.88 | 23.79 ± 7.32 |
Autumn | 30.45 ± 12.33 | 28.19 ± 9.63 | 29.53 ± 13.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.S.; Youn, J.-S.; Lee, I.H.; Choi, B.J.; Jeon, K.-J. Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment. Sustainability 2021, 13, 4470. https://doi.org/10.3390/su13084470
Choi DS, Youn J-S, Lee IH, Choi BJ, Jeon K-J. Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment. Sustainability. 2021; 13(8):4470. https://doi.org/10.3390/su13084470
Chicago/Turabian StyleChoi, Doo Sung, Jong-Sang Youn, Im Hack Lee, Byung Jin Choi, and Ki-Joon Jeon. 2021. "Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment" Sustainability 13, no. 8: 4470. https://doi.org/10.3390/su13084470
APA StyleChoi, D. S., Youn, J. -S., Lee, I. H., Choi, B. J., & Jeon, K. -J. (2021). Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment. Sustainability, 13(8), 4470. https://doi.org/10.3390/su13084470