Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus
Abstract
:1. Introduction
2. Materials and Methods
- Empirically validated (+) where papers provided empirical field data from existing FPV installations.
- Theoretically validated (T) where mention of a co-benefit was supported by modeling analysis but no empirical field data.
- Unclear or understudied (0) where mention of a co-benefit was supported by a self-citing data sources or no data or citation.
3. Results
4. Discussion
4.1. Site-Specific Power Generation Co-Benefits
4.2. Water-Related Co-Benefits
4.3. Land Use-Related Co-Benefits
4.4. Cost and Installation Co-Benefits
4.5. FPV-Hydropower Hybrid-Related Co-Benefits
4.6. Reliability, Degradation, and Environmental Impact
4.7. Policy and Planning Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Y.; Li, G.; Yao, Y.; Zhang, L.; Yu, C. Quantifying the Water-Energy-Food Nexus: Current Status and Trends. Energies 2016, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Renewable Energy in the Water, Energy and Food Nexus. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_Water_Energy_Food_Nexus_2015.pdf (accessed on 22 June 2020).
- Al-Saidi, M.; Elagib, N.A. Towards Understanding the Integrative Approach of the Water, Energy and Food Nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef]
- Semertzidis, T. Can Energy Systems Models Address the Resource Nexus? Energy Procedia 2015, 83, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- WWAP (UNESCO World Water Assessment Programme). The United Nations World Water Development Report 2019: Leaving No One Behind; UNESCO: Paris, France, 2019. [Google Scholar]
- Borowski, P.F.; Borowski, P.F. Nexus between Water, Energy, Food and Climate Change as Challenges Facing the Modern Global, European and Polish Economy. AIMS Geosci. 2020, 6, 397–421. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 1–6. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Wiberg, D.; Leduc, S.; Riahi, K. Power-Generation System Vulnerability and Adaptation to Changes in Climate and Water Resources. Nature Clim. Chang. 2016, 6, 375–380. [Google Scholar] [CrossRef]
- IEA. World Gross Electricity Production, by Source, 2018—Charts—Data & Statistics. Available online: https://www.iea.org/data-and-statistics/charts/world-gross-electricity-production-by-source-2018 (accessed on 28 October 2020).
- Miara, A.; Cohen, S.M.; Macknick, J.; Vörösmarty, C.J.; Corsi, F.; Sun, Y.; Tidwell, V.C.; Newmark, R.; Fekete, B.M. Climate-Water Adaptation for Future US Electricity Infrastructure. Environ. Sci. Technol. 2019, 53, 14029–14040. [Google Scholar] [CrossRef]
- Sanders, K.T. Critical Review: Uncharted Waters? The Future of the Electricity-Water Nexus. Environ. Sci. Technol. 2015, 49, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Coffel, E.D.; Mankin, J.S. Thermal Power Generation Is Disadvantaged in a Warming World. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.; Kao, S.-C. The Implications of Future Climate Change on the Blue Water Footprint of Hydropower in the Contiguous US. Environ. Res. Lett. 2021, 16, 034003. [Google Scholar] [CrossRef]
- Gonzalez Sanchez, R.; Seliger, R.; Fahl, F.; De Felice, L.; Ouarda, T.B.M.J.; Farinosi, F. Freshwater Use of the Energy Sector in Africa. Appl. Energy 2020, 270, 115171. [Google Scholar] [CrossRef]
- Putra, M.P.I.F.; Pradhan, P.; Kropp, J.P. A Systematic Analysis of Water-Energy-Food Security Nexus: A South Asian Case Study. Sci. Total Environ. 2020, 728, 138451. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.T.H.; Yearsley, J.R.; Ludwig, F.; Vögele, S.; Lettenmaier, D.P.; Kabat, P. Vulnerability of US and European Electricity Supply to Climate Change. Nat. Clim. Chang. 2012, 2, 676–681. [Google Scholar] [CrossRef]
- Liao, X.; Hall, J.W.; Eyre, N. Water Use in China’s Thermoelectric Power Sector. Glob. Environ. Chang. 2016, 41, 142–152. [Google Scholar] [CrossRef]
- Bazmi, A. Nexus in South Asia: The Water, Food and Energy Nexus in Pakistan. Available online: https://www.water-energy-food.org/news/nexus-in-south-asia-the-water-food-and-energy-nexus-in-pakistan/ (accessed on 28 October 2020).
- Harvey, M.; Pilgrim, S. The New Competition for Land: Food, Energy, and Climate Change. Food Policy 2011, 36, S40–S51. [Google Scholar] [CrossRef]
- Kleemann, J.; Baysal, G.; Bulley, H.N.N.; Fürst, C. Assessing Driving Forces of Land Use and Land Cover Change by a Mixed-Method Approach in North-Eastern Ghana, West Africa. J. Environ. Manag. 2017, 196, 411–442. [Google Scholar] [CrossRef] [PubMed]
- van Ruijven, B.J.; De Cian, E.; Sue Wing, I. Amplification of Future Energy Demand Growth Due to Climate Change. Nat. Commun. 2019, 10, 2762. [Google Scholar] [CrossRef] [Green Version]
- Trainor, A.M.; McDonald, R.I.; Fargione, J. Energy Sprawl Is the Largest Driver of Land Use Change in United States. PLoS ONE 2016, 11, e0162269. [Google Scholar] [CrossRef] [PubMed]
- Tröndle, T. Supply-Side Options to Reduce Land Requirements of Fully Renewable Electricity in Europe. PLoS ONE 2020, 15, e0236958. [Google Scholar] [CrossRef]
- Fritsche, U.R.; Berndes, G.; Cowie, A.L.; Dale, V.H.; Kline, K.L.; Johnson, F.X.; Langeveld, H.; Sharma, N.; Watson, H.; Woods, J. Global Land Outlook Working Paper: Energy and Land Use. United Nations Convention to Combat Desertification, International Renewable Energy Agency . Available online: https://knowledge.unccd.int/sites/default/files/2018-06/2.%20Fritsche%2Bet%2Bal%2B%282017%29%2BEnergy%2Band%2BLand%2BUse%2B-%2BGLO%2Bpaper-corr.pdf (accessed on 7 December 2020).
- Parish, E.S.; Kline, K.L.; Dale, V.H.; Efroymson, R.A.; McBride, A.C.; Johnson, T.L.; Hilliard, M.R.; Bielicki, J.M. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production. Environ. Manag. 2013, 51, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.S.; Siregar, I.Z.; Ravi, S. Reframing the Competition for Land between Food and Energy Production in Indonesia. In Land Cover and Land Use Change on Islands: Social & Ecological Threats to Sustainability; Walsh, S.J., Riveros-Iregui, D., Arce-Nazario, J., Page, P.H., Eds.; Social and Ecological Interactions in the Galapagos Islands; Springer International Publishing: Cham, Switzerland, 2020; pp. 241–260. ISBN 978-3-030-43973-6. [Google Scholar]
- Hoffacker, M.K.; Allen, M.F.; Hernandez, R.R. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States. Environ. Sci. Technol. 2017, 51, 14472–14482. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Macknick, J.; Lobell, D.; Field, C.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B. Colocation Opportunities for Large Solar Infrastructures and Agriculture in Drylands. Appl. Energy 2016, 165, 383–392. [Google Scholar] [CrossRef] [Green Version]
- U.S Environmental Protection Agency (EPA); NREL. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. Available online: https://www.epa.gov/sites/production/files/2015-03/documents/best_practices_siting_solar_photovoltaic_final.pdf (accessed on 4 January 2021).
- Cox, M. Floating Solar Landscape 2019; Wood Mackenzie Power & Renewables. Available online: https://www.woodmac.com/our-expertise/focus/Power--Renewables/floating-solar-2019/?utm_source=gtmarticle&utm_medium=web&utm_campaign=wmpr_floatingsolar (accessed on 11 December 2019).
- Cazzaniga, R.; Rosa-Clot, M. The Booming of Floating PV. Sol. Energy 2020. [Google Scholar] [CrossRef]
- Spencer, R.S.; Macknick, J.; Aznar, A.; Warren, A.; Reese, M.O. Floating Photovoltaic Systems: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental United States. Environ. Sci. Technol. 2019, 53, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group; ESMAP; SERIS. Where Sun Meets Water: Floating Solar Market Report—Executive Summary. The World Bank. pp. 1–24. Available online: http://documents1.worldbank.org/curated/en/579941540407455831/pdf/Floating-Solar-Market-Report-Executive-Summary.pdf (accessed on 31 January 2019).
- Ciel et Terre. Applications Compatible with Floating PV and Benefits. Ciel et Terre International. Available online: https://www.ciel-et-terre.net/floating-pv-applications/ (accessed on 11 December 2019).
- Trapani, K.; Redón Santafé, M. A Review of Floating Photovoltaic Installations: 2007–2013. Prog. Photovolt Res. Appl. 2015, 23, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating Photovoltaic Power Plant: A Review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–Ecological Synergies of Solar Energy for Global Sustainability. Nat. Sustain. 2019, 2, 560–568. [Google Scholar] [CrossRef]
- Rosa-Clot, M.; Tina, G.M.; Nizetic, S. Floating Photovoltaic Plants and Wastewater Basins: An Australian Project. Energy Procedia 2017, 134, 664–674. [Google Scholar] [CrossRef]
- Chandran, R. In Land-Scarce Southeast Asia, Solar Panels Float on Water. Available online: http://news.trust.org/item/20190208102615-bye4f/ (accessed on 30 April 2019).
- Pringle, A.M.; Handler, R.M.; Pearce, J.M. Aquavoltaics: Synergies for Dual Use of Water Area for Solar Photovoltaic Electricity Generation and Aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Floating Solar. Benefits of Floating Solar. Available online: https://www.floatingsolar.co.za/benefits/ (accessed on 7 December 2020).
- Ranjbaran, P.; Yousefi, H.; Gharehpetian, G.B.; Astaraei, F.R. A Review on Floating Photovoltaic (FPV) Power Generation Units. Renew. Sustain. Energy Rev. 2019, 110, 332–347. [Google Scholar] [CrossRef]
- Farfan, J.; Breyer, C. Combining Floating Solar Photovoltaic Power Plants and Hydropower Reservoirs: A Virtual Battery of Great Global Potential. Energy Procedia 2018, 155, 403–411. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Q.; Li, H.; Yin, H.; Ren, X.; Wennersten, R. Evaluating the Benefits of Integrating Floating Photovoltaic and Pumped Storage Power System. Energy Convers. Manag. 2019, 194, 173–185. [Google Scholar] [CrossRef]
- An, Y.; Fang, W.; Ming, B.; Huang, Q. Theories and Methodology of Complementary Hydro/Photovoltaic Operation: Applications to Short-Term Scheduling. J. Renew. Sustain. Energy 2015, 7, 063133. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Cheng, L.; Zhou, Y.; Wang, X. Optimal Daily Generation Scheduling of Large Hydro–Photovoltaic Hybrid Power Plants. Energy Convers. Manag. 2018, 171, 528–540. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M. Integration of PV Floating with Hydroelectric Power Plants. Heliyon 2019, 5, e01918. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Grunwald, U.; Rosenlieb, E.; Mirletz, H.; Aznar, A.; Spencer, R.; Cox, S. Hybrid Floating Solar Photovoltaics-Hydropower Systems: Benefits and Global Assessment of Technical Potential. Renew. Energy 2020, 162, 1415–1427. [Google Scholar] [CrossRef]
- Gonzalez Sanchez, R.; Kougias, I.; Moner-Girona, M.; Fahl, F.; Jäger-Waldau, A. Assessment of Floating Solar Photovoltaics Potential in Existing Hydropower Reservoirs in Africa. Renew. Energy 2021, 169, 687–699. [Google Scholar] [CrossRef]
- Cagle, A.E.; Armstrong, A.; Exley, G.; Grodsky, S.M.; Macknick, J.; Sherwin, J.; Hernandez, R.R. The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations. Sustainability 2020, 12, 8154. [Google Scholar] [CrossRef]
- Campana, P.E.; Wästhage, L.; Nookuea, W.; Tan, Y.; Yan, J. Optimization and Assessment of Floating and Floating-Tracking PV Systems Integrated in on- and off-Grid Hybrid Energy Systems. Sol. Energy 2019, 177, 782–795. [Google Scholar] [CrossRef]
- Gamarra, C.; Ronk, J.J. Floating Solar: An Emerging Opportunity at the Energy-Water Nexus. Tex. Water J. 2019, 10, 32–45. [Google Scholar]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental Impacts of Utility-Scale Solar Energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Santafé, M.R.; Ferrer Gisbert, P.S.; Sánchez Romero, F.J.; Torregrosa Soler, J.B.; Ferrán Gozálvez, J.J.; Ferrer Gisbert, C.M. Implementation of a Photovoltaic Floating Cover for Irrigation Reservoirs. J. Clean. Prod. 2014, 66, 568–570. [Google Scholar] [CrossRef] [Green Version]
- Sulaeman, S.; Brown, E.; Quispe-Abad, R.; Müller, N. Floating PV System as an Alternative Pathway to the Amazon Dam Underproduction. Renew. Sustain. Energy Rev. 2021, 135, 110082. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Lee, W.-D.; Huang, A.; Xu, C.-Y.; Guo, S. An Advanced Complementary Scheme of Floating Photovoltaic and Hydropower Generation Flourishing Water-Food-Energy Nexus Synergies. Appl. Energy 2020, 275. [Google Scholar] [CrossRef]
- Reindl, D.T.; Paton, C. Where Sun Meet Water: Global Market Status; Project Database and Economics; Solar Energy Research Institute of Singapore, National University of Singapore: Singapore, 2020. [Google Scholar]
- PV Magazine. Floating Solar Nearing Price Parity with Land-Based US Solar. Available online: https://www.pv-magazine.com/2020/10/07/floating-solar-nearing-price-parity-with-land-based-us-solar/ (accessed on 10 December 2020).
- Esteves Galdino, M.A.; de Almeida Olivieri, M.M. Some Remarks about the Deployment of Floating PV Systems in Brazil. J. Electr. Eng. 2017, 5, 10–19. [Google Scholar]
- Liu, H.; Krishna, V.; Lun Leung, J.; Reindl, T.; Zhao, L. Field Experience and Performance Analysis of Floating PV Technologies in the Tropics. Prog. Photovolt. Res. Appl. 2018, 26, 957–967. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M. Floating Tracking Cooling Concentrating (FTCC) Systems. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 514–519. [Google Scholar]
- Ferrer-Gisbert, C.; Ferrán-Gozálvez, J.J.; Redón-Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.J.; Torregrosa-Soler, J.B. A New Photovoltaic Floating Cover System for Water Reservoirs. Renew. Energy 2013, 60, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Trapani, K.; Millar, D.L. Proposing Offshore Photovoltaic (PV) Technology to the Energy Mix of the Maltese Islands. Energy Convers. Manag. 2013, 67, 18–26. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Lee, N.-H.; Kim, K.-J. Empirical Research on the Efficiency of Floating PV Systems Compared with Overland PV Systems. In Proceedings of the 3rd International Conference on Circuits, Control, Communication, Electricity, Electronics, Energy, System, Signal and Simulation, Guam, USA, 18–20 July 2013; Volume 25, pp. 284–289. [Google Scholar]
- Redón Santafé, M.; Torregrosa Soler, J.B.; Sánchez Romero, F.J.; Ferrer Gisbert, P.S.; Ferrán Gozálvez, J.J.; Ferrer Gisbert, C.M. Theoretical and Experimental Analysis of a Floating Photovoltaic Cover for Water Irrigation Reservoirs. Energy 2014, 67, 246–255. [Google Scholar] [CrossRef]
- Perez, M.; Perez, R.; Ferguson, C.R.; Schlemmer, J. Deploying Effectively Dispatchable PV on Reservoirs: Comparing Floating PV to Other Renewable Technologies. Sol. Energy 2018, 837–847. [Google Scholar] [CrossRef]
- Smyth, M.; Russell, J.; Milanowski, T. Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 978-0-85729-844-7. Available online: https://www.springer.com/gp/book/9780857298430 (accessed on 12 December 2019).
- SPG Solar. Evaporation Reduction via Floatovoltaics Systems; Colorado River Basin, USBR. Available online: https://www.usbr.gov/lc/region/programs/crbstudy/1_Evaporation_Reduction_via_Floatovoltaics_Systems.pdf (accessed on 9 October 2019).
- World Bank Group; Energy Sector Management Assistance Program (ESMAP); Solar Energy Research Institute of Singapore (SERIS). Where Sun Meets Water: Floating Solar Handbook for Practitioners. Available online: http://documents.worldbank.org/curated/en/418961572293438109/pdf/Where-Sun-Meets-Water-Floating-Solar-Handbook-for-Practitioners.pdf (accessed on 21 November 2019).
- Craig, I.; Green, A.; Scobie, M.; Schmidt, E. Controlling Evaporation Loss from Water Storages; University of Southern Queensland, National Centre for Engineering in Agriculture: Toowoomba, Qld, Australia, 2005. [Google Scholar]
- Alam, M.Z.B.; Ohgaki, S. Evaluation of UV-radiation and its residual effect for algal growth control. In Advances in Water and Wastewater Treatment Technology; Matsuo, T., Hanaki, K., Takizawa, S., Satoh, H., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2001; pp. 109–117. ISBN 978-0-444-50563-7. [Google Scholar]
- Haas, J.; Khalighi, J.; de la Fuente, A.; Gerbersdorf, S.U.; Nowak, W.; Chen, P.-J. Floating Photovoltaic Plants: Ecological Impacts versus Hydropower Operation Flexibility. Energy Convers. Manag. 2020, 206, 112414. [Google Scholar] [CrossRef]
- Silvério, N.M.; Barros, R.M.; Tiago Filho, G.L.; Redón-Santafé, M.; dos Santos, I.F.S.; de Mello Valério, V.E. Use of Floating PV Plants for Coordinated Operation with Hydropower Plants: Case Study of the Hydroelectric Plants of the São Francisco River Basin. Energy Convers. Manag. 2018, 171, 339–349. [Google Scholar] [CrossRef]
- Peschel, T. Floating Photovoltaic Installations in Japan. Available online: https://www.sunwindenergy.com/photovoltaics/floating-photovoltaic-installations-japan (accessed on 11 December 2019).
- Mancheva, M. Kyocera, Century Tokyo Complete 2.9 MW of Japanese Floating PV. Available online: https://renewablesnow.com/news/kyocera-century-tokyo-complete-29-mw-of-japanese-floating-pv-473131/ (accessed on 11 December 2019).
- Aghahosseini, A.; Bogdanov, D.; Breyer, C. A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions. Energies 2017, 10, 1171. [Google Scholar] [CrossRef] [Green Version]
- Rogner, M. Case Study: Solar PV–Hydro Hybrid System at Longyangxia, China. Available online: https://www.hydropower.org/blog/case-study-solar-pv%E2%80%93hydro-hybrid-system-at-longyangxia-china (accessed on 4 December 2020).
- Majid, Z.A.A.; Ruslan, M.H.; Sopian, K.; Othman, M.Y.; Azmi, M.S.M. Study on Performance of 80 Watt Floating Photovoltaic Panel. J. Mech. Eng. Sci. 2014, 7, 1150–1156. [Google Scholar] [CrossRef]
- Allen, G. Floating Solar at Far Niente, Correspondence with Winemaker. (Email exchange on 15 November 2019).
- Chengaev, A.I. Reducing Evaporation at California Aqueduct by Using Floating Photovoltaic System; California State University: Sacramento, CA, USA, 2019. [Google Scholar]
- Ibeke, M.; Miller, E.; Sarkisian, D.; Gold, J.; Johnson, S.; Wade, K. Floating Photovoltaics in California—Project Final Report|Tomkat. Available online: https://tomkat.stanford.edu/floating-photovoltaics-california-project-final-report (accessed on 7 March 2018).
- Zhang, N.; Chen, G.; Xu, Y.; Xu, X.; Yu, L. Power Generation, Evaporation Mitigation, and Thermal Insulation of Semitransparent Polymer Solar Cells: A Potential for Floating Photovoltaic Applications. ACS Appl. Energy Mater. 2019, 2, 6060–6070. [Google Scholar] [CrossRef]
- Taboada, M.E.; Cáceres, L.; Graber, T.A.; Galleguillos, H.R.; Cabeza, L.F.; Rojas, R. Solar Water Heating System and Photovoltaic Floating Cover to Reduce Evaporation: Experimental Results and Modeling. Renew. Energy 2017, 105, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Liber, W.; Bartle, C.; Spencer, R.S.; Macknick, J.; Cagle, A.E.; Lewis, T. Statewide Potential Study for the Implementation of Floating Solar Arrays. Ciel et Terre, National Renewable Energy Laboratory, Colorado Energy Office. Available online: https://drive.google.com/file/d/1PjrwsUeXygNyW7xBBvcZyxTRT8aB19N3/view?usp=drive_open&usp=embed_facebook (accessed on 10 April 2020).
- Pickerel, K. What to Consider When Installing a Floating Solar Array. Available online: https://www.solarpowerworldonline.com/2016/06/consider-installing-floating-solar-array/ (accessed on 6 March 2018).
- U.S. Department of Energy Office of Indian Energy. The Five-Step Development Process, Step 5: Project Operations and Maintenance. Available online: https://www.energy.gov/sites/prod/files/2015/06/f23/7a%20Step%205%20Project%20Operations%20and%20Maintenance.pdf (accessed on 8 January 2021).
- EnergySage. Solar Panel Warranties: What You Need to Know. Available online: https://news.energysage.com/shopping-solar-panels-pay-attention-to-solar-panels-warranty/ (accessed on 8 January 2021).
- Fauzan, N.; Yacob, M.E.; Mokhtar, M.N.; Hizam, H. Development of Coconut-Based Floating Structure for Stand-Alone Solar PV System in the Tropics. Acta Hortic. 2017, 1152, 95–100. [Google Scholar] [CrossRef]
- Jones, J.S. Floating Solar Powers Seaweed Farming. In Smart Energy International. Available online: https://www.smart-energy.com/renewable-energy/floating-solar-powers-seaweed-farming/ (accessed on 4 April 2021).
- Inhabit. Chinese Fishery Installs Immense Floating Solar Farm for Extra Income. Available online: https://inhabitat.com/immense-floating-solar-farm-at-chinese-fishery-replaces-7-4-tons-of-coal/ (accessed on 4 April 2021).
- Middleton, C.; Allouche, J.; Gyawali, D.; Allen, S. The Rise and Implications of the Water-Energy-Food Nexus in Southeast Asia through an Environmental Justice Lens. Water Altern. 2015, 8, 627–654. [Google Scholar]
Social | Economic | Energy | Water | Food or Land |
---|---|---|---|---|
Reduces land use (S, H) | Increases ease of installation (S, H) | Increases panel efficiency (S) | Reduces evaporation (S, H) | Reduces land use (S, H) |
Repurposes otherwise unusable land (S, H) | Reduces site preparation (S, H) | Increases panel packing density (S, H) | Reduces algae growth and improves water quality (S, H) | Repurposes otherwise unusable land (S, H) |
Preserves valuable land and water for other uses (S, H) | Modular (S, H) | Reduces shading (S, H) | Reduces water temperature (S, H) | Increases energy sources near demand or population centers (S, H) |
Avoids or reduces conflicts over land and water use (S, H) | Uses existing electrical transmission infrastructure (S, H) | Increases panel efficiency (H) | Provides power during drought (H) | |
Reduces or avoids power-generation related air-pollution (S, H) | Reduces curtailment (H) | Improves power quality (H) | Reduces wave formation (S, H) | |
Reduces displacement of local communities for energy development (S, H) | Improves power quality (H) | |||
Improves power sector resilience (S, H) | Extends system life (S, H) |
Co-Benefit | FPV | FPV-Hydropower Hybrid | Values Reported | References |
---|---|---|---|---|
Site-specific Power Generation | ||||
Increased panel efficiency (lower operating temperature) | + | T * | 5–11%, >5 °C | [61,62,63,64,65] |
Pack PV panels more densely | + | + | 8° tilt for density ** | [64,66,67] |
Reduced shading | + | + | [34,61,68] | |
Water | ||||
Reduced evaporation | T | T | 50%, 70%, >90%, 680–1850 mm/yr | [28,33,34,35,37,38,39,50,55,61,63,64,67,69,70,71] |
Reduced algae growth/improved water quality | T | 0 | [33,34,35,37,69,71,72,73] | |
Lower water temperature | 0 | 0 | [35,69] | |
Power during drought | 0 | 0 | [31,69,74] | |
Reduced wave formation | 0 | 0 | [35,37,67] | |
Land | ||||
Reduced land use/repurposed bad land | + | T * | Land sparing ration of 2.7:1 m2 (i.e., land required for land-based PV system compared to similar sized FPV system) | [28,33,34,35,51,64] |
Location near demand/population centers | T | T | [28,33,34,64] | |
Cost and other | ||||
Ease of installation | + | + | 1.2 + 1.7 MWp installed <1 year | [34,75,76] |
Reduced site preparation | T | T | [31,34,35] | |
Modularity | + | + | [34,35,37] | |
Extends system life | 0 | 0 | [40,69] | |
Hybrid with hydroelectric dam | ||||
Use existing electrical transmission infrastructure | T | [31,34,44,45,46,47,48,61,77,78] | ||
Reduced curtailment | T | [31,34,44,45,46,47,48,61,77,78] | ||
Improved power quality | T | [31,34,44,45,46,47,48,61,77,78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadzanku, S.; Mirletz, H.; Lee, N.; Daw, J.; Warren, A. Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus. Sustainability 2021, 13, 4317. https://doi.org/10.3390/su13084317
Gadzanku S, Mirletz H, Lee N, Daw J, Warren A. Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus. Sustainability. 2021; 13(8):4317. https://doi.org/10.3390/su13084317
Chicago/Turabian StyleGadzanku, Sika, Heather Mirletz, Nathan Lee, Jennifer Daw, and Adam Warren. 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus" Sustainability 13, no. 8: 4317. https://doi.org/10.3390/su13084317
APA StyleGadzanku, S., Mirletz, H., Lee, N., Daw, J., & Warren, A. (2021). Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus. Sustainability, 13(8), 4317. https://doi.org/10.3390/su13084317