Bus Rapid Transit System Introduction in Johor Bahru: A Simulation-Based Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection
2.3. Base Model Development
2.4. Bus Rapid Transit (BRT) Scenario Model Development
3. Results and Discussion
3.1. Vehicle Delay
3.2. Economic Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Joewono, T.B. Safety and security improvement in public transportation based on public perception. Transportation 2006, 30, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Eboli, L.; Mazzulla, G. A new customer satisfaction index for evaluating transit service quality. Transit 2009, 12, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Hashim, R.; Haron, S.; Mohamad, S.; Hassan, F. Assessment of campus bus service efficacy: An application towards green environment. Proc. Soc. Behav. Sci. 2013, 105, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Joewono, T.B.; Tarigan, A.K.M.; Susilo, Y.O. Road-based public transportation in urban areas of Indonesia: What policies do users expect to improve the service quality? Transp. Policy 2016, 49, 114–124. [Google Scholar] [CrossRef]
- Minhans, A.; Shahid, S.; Hassan, S.A. Assessment of bus service-quality using passengers’ perceptions. J. Teknol. 2015, 73, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Kamba, A.N.; Rahmat, R.A.O.K.; Ismail, A. Why do people use their cars: A case study in Malaysia. J. Soc. Sc. 2007, 3, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Minhans, A.; Shahid, S.; Ahmed, I. An investigation into qualitative differences between bus users and operators for intercity travel in Malaysia. J. Teknol. 2014, 70, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Fujii, S.; Van, H.T. Psychological determinants of the intention to use the bus in Ho Chi Minh City. J. Public Transp. 2009, 12, 97–110. [Google Scholar] [CrossRef]
- Bull, A.; Cepal, N. Traffic Congestion: The Problem and How to Deal with I; ECLAC: Santiago, Chile, 2003. [Google Scholar]
- Asri, D.U.; Hidayat, B. Current transportation issues in Jakarta and its impact on environment. East. Asia Soc. Transp. Stud. 2005, 5, 1792–1798. [Google Scholar]
- Papageorgiou, G.; Maimaris, A. Planning for effective bus rapid transit systems: A scenario simulation modelling based approach. In Proceedings of the IFAC Symposium on Control in Transportation Systems, The International Federation of Automatic Control, Sofia, Bulgari, 12–14 September 2012. [Google Scholar] [CrossRef]
- Mohamad, J.; Kiggundu, A.T. The rise of the private car in Kuala Lumpur, Malaysia-assessing the policy options. IATSS Res. 2007, 31, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Transport. Transport Statistics Malaysia; Ministry of Transport Malaysia: Putrajaya, Malaysia, 2016.
- Musa, M.F.; Hassan, S.A.; Mashros, N. The impact of roadway conditions towards accident severity on federal roads in Malaysia. PLoS ONE 2020, 15, e0235564. [Google Scholar] [CrossRef]
- Ghose, M.K.; Paul, R.; Banerjee, S.K. Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: The case of Kolkata (Calcutta). Environ. Sci. Policy 2004, 7, 345–351. [Google Scholar] [CrossRef]
- Kakouei, A.; Vatani, A.; Idris, A.K.B. An estimation of traffic related CO2 emissions from motor vehicles in the capital city of, Iran. Iran. J. Environ. Health Sci. Eng. 2012, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, E.E.; Hidalgo, D. TransMilenio: A high capacity-low cost bus rapid transit system developed for Bogotá, Colombia. In Proceedings of the Second International Conference in Urban Public Transportation Systems, Alexandria, VA, USA, 14–18 April 2002; pp. 37–49. [Google Scholar] [CrossRef] [Green Version]
- Ernst, J.P. Initiating bus rapid transit in Jakarta, Indonesia. Transp. Res. Rec. 2005, 1903, 20–26. [Google Scholar] [CrossRef]
- Deng, T.; Nelson, J.D. Recent developments in bus rapid transit: A review of the literature. Transp. Rev. 2011, 31, 69–96. [Google Scholar] [CrossRef]
- Alpkokin, P.; Ergun, M. Istanbul Metrobüs: First intercontinental bus rapid transit. J. Transp. Geogr. 2012, 24, 58–66. [Google Scholar] [CrossRef]
- Deng, T.; Nelson, J.D. Bus Rapid Transit implementation in Beijing: An evaluation of performance and impacts. Res. Transp. Econ. 2013, 39, 108–113. [Google Scholar] [CrossRef]
- Wan, D.; Kamga, C.; Liu, J.; Sugiura, A.; Beaton, E.B. Rider perception of a “light” bus rapid transit system-The New York City select bus service. Transp. Policy 2016, 49, 41–55. [Google Scholar] [CrossRef]
- Zolnik, E.J.; Malik, A.; Irvin-Erickson, Y. Who benefits from bus rapid transit? Evidence from the Metro Bus System (MBS) in Lahore. J. Transp. Geogr. 2018, 71, 139–149. [Google Scholar] [CrossRef]
- Matsumoto, N. Analysis of Policy Processes to Introduce Bus Rapid Transit Systems in Asian Cities from the Perspective of Cases of Jakarta, Seoul, and Beijing; Better Air Quality Workshop: Yogyakarta, Indonesia, 2006. [Google Scholar]
- Dong, X.; Lin, Y.; Shen, D.; Li, Z.; Zhu, F.; Hu, B.; Xiong, G. A Parallel transportation management and control system for bus rapid transit using the ACP approach. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2569–2574. [Google Scholar] [CrossRef]
- Basso, L.J.; Feres, F.; Silva, H.E. The efficiency of bus rapid transit (BRT) systems: A dynamic congestion approach. Transp. Res. Part B Methodol. 2019, 127, 47–71. [Google Scholar] [CrossRef]
- Pereira, R.H.M. Future accessibility impacts of transport policy scenarios: Equity and sensitivity to travel time thresholds for Bus Rapid Transit expansion in Rio de Janeiro. J. Transp. Geogr. 2019, 74, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Krüger, F.; Titz, A.; Arndt, R.; Groß, F.; Mehrbach, F.; Pajung, V.; Suda, L.; Wadenstorfer, M.; Wimmer, L. The Bus Rapid Transit (BRT) in Dar es Salaam: A pilot study on critical infrastructure, sustainable urban development and livelihoods. Sustainability 2021, 13, 1058. [Google Scholar] [CrossRef]
- Satiennam, T.; Jaensirisak, S.; Satiennam, W.; Detdamrong, S. Potential for modal shift by passenger car and motorcycle users towards Bus Rapid Transit (BRT) in an Asian developing city. IATSS Res. 2016, 39, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, A.; Satiennam, T.; Oshima, R. A study on the introduction of bus rapid transit system in Asian developing cities. IATSS Res. 2006, 30. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Ma, M.; Nelson, J.D. Measuring the impacts of Bus Rapid Transit on residential property values: The Beijing case. Res. Transp. Econ. 2016, 60, 54–61. [Google Scholar] [CrossRef]
- Dubé, J.; Andrianary, E.; Assad-Déry, F.; Poupart, J.; Simard, J. Exploring difference in value uplift resulting from new bus rapid transit routes within a medium size metropolitan area. J. Transp. Geogr. 2018, 72, 258–269. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.W.; Chu, X. Accessibility-based premiums and proximity-induced discounts stemming from bus rapid transit in China: Empirical evidence and policy implications. Sustain. Cities Soc. 2019, 48, 101561. [Google Scholar] [CrossRef]
- Basheer, M.A.; Boelens, L.; Bijl, R.V.D. Bus rapid transit system: A study of sustainable land-use transformation, urban density and economic impacts. Sustainability 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.K.; Swami, B.L. Optimizing performance of at-grade intersection with bus rapid transit corridor and heterogeneous traffic. Int. J. Transp. Sci. Technol. 2012, 1, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Al-deek, H.; Sandt, A.; Alomari, A.; Hussain, O.; Author, C. A technical note on evaluating the effectivess of bus rapid transit with transit signal priority. J. Intell. Transp. Syst. 2017, 21, 227–238. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Liu, Y. Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. Int. J. Transp. Sci. Technol. 2017, 6, 99–109. [Google Scholar] [CrossRef]
- Ni, Y.C.; Lo, H.H.; Hsu, Y.T.; Huang, H.J. Exploring the effects of passive transit signal priority design on bus rapid transit operation: A microsimulation-based optimization approach. Transp. Lett. 2020, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Zhu, L.; Yu, L.; Guo, J. Microscopic simulation approach to effectiveness analysis of transit signal priority for bus rapid transit a case study in Beijing. Transp. Res. Rec. 2008, 2072, 64–76. [Google Scholar] [CrossRef]
- Ye, Z.; Xu, M. Decision model for resolving conflicting transit signal priority requests. IEEE Trans. Intell. Transp. Syst. 2017, 18, 59–68. [Google Scholar] [CrossRef]
- Islam, T.; Vu, H.L.; Hoang, N.H.; Cricenti, A. A linear bus rapid transit with transit signal priority formulation. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 163–184. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, J.; Yang, Q.; Ye, J. Threshold determination for sharing bus rapid transit-exclusive lanes with conventional buses. Sustainability 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Perbadanan Pengangkutan Awam Johor. Pelan Induk Pengangkutan Awam (2015–2045)—Volume 1; Perbadanan Pengangkutan Awam Johor: Johor, Malaysia, 2016. [Google Scholar]
- Malaysian Institute of Road Safety Research. General Road Accident Data in Malaysia (1997–2016); Department of Statistics Malaysia: Putrajaya, Malaysia, 2017. [Google Scholar]
- Department of Statistics Malaysia. Statistik Penduduk. Malaysia. 2019. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthree&menu_id=UmtzQ1pKZHBjY1hVZE95R3RnR0Y4QT09 (accessed on 5 April 2021).
- Road Traffic Volume Malaysia (RTVM) 2019; Ministry of Works Malaysia: Putrajaya, Malaysia, 2019.
- Perbadanan Pengangkutan Awam Johor. Pelan Induk Pengangkutan Awam (2015–2045)—Volume 2; Perbadanan Pengangkutan Awam Johor: Johor, Malaysia, 2016. [Google Scholar]
- Washington State Department of Transportation. Protocol for VISSIM Simulation; Washington State Department of Transportation: Washington, DC, USA, 2014.
- Virginia Department of Transportation. VDOT VISSIM User Guide Version 2.0; Virginia Department of Transportation: Richmond, VA, USA, 2020.
- TfL. Traffic Modelling Guidelines TfL Traffic Manager and Network Performance Best Practice Version 3.0; Transport for London: London, UK, 2010. [Google Scholar]
- Maheshwary, P.; Bhattacharyya, K.; Maitra, B.; Boltze, M. A methodology for calibration of traffic micro-simulator for urban heterogeneous traffic operations. J. Traffic Transp. Eng. (English Edition) 2020, 7, 507–519. [Google Scholar] [CrossRef]
- Jehn, N.L.; Turochy, R.E. Calibration of vissim models for rural freeway lane closures: Novel approach to the modification of key parameters. Transp. Res. Rec. 2019, 2673, 574–583. [Google Scholar] [CrossRef]
- Arafat, M.; Nafis, S.R.; Sadeghvaziri, E.; Tousif, F. A data-driven approach to calibrate microsimulation models based on the degree of saturation at signalized intersections. Transp. Res. Interdiscip. Perspect. 2020, 8. [Google Scholar] [CrossRef]
- Arkatkar, S.; Velmurugan, S.; Puvvala, R.; Ponnu, B.; Narula, S. Methodology for simulating heterogeneous traffic on expressways in developing countries: A case study in India. Transp. Lett. 2016, 8, 61–76. [Google Scholar] [CrossRef]
- Bharadwaj, N.; Mathew, S.; Pani, A.; Arkatkar, S.; Joshi, G.; Ravinder, K. Effect of traffic composition and emergency lane on capacity: A case study of intercity expressway in India. Transp. Lett. 2018, 10, 316–332. [Google Scholar] [CrossRef]
- Hassan, S.A.; Hounsell, N.B.; Shrestha, B.P. Verification of puffin modelling using VISSIM. J. Teknol. 2013, 65, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Puan, O.C.; Hassan, S.A.; Mashros, N. Calibration of microsimulation model for tight urban diamond interchange under heterogeneous traffic. IOP Conf. Ser. Mater. Sci. Eng. 2019, 527. [Google Scholar] [CrossRef]
- Blueprint 2010–2030 for Iskandar Malaysia; Iskandar Regional Development Authority (IRDA): Johor Bahru, Malaysia, 2011.
- The World Bank. Malaysia Economic Monitor Transforming Urban Transport; Southeast Asia Country Management Unit: Bangkok, Thailand, 2015. [Google Scholar]
Direction | Turning Volume (veh/h) | |||
---|---|---|---|---|
Left-Turn | Through | Right-Turn | Total | |
North | 512 | - | 994 | 1506 |
South-West | 478 | 1589 | - | 2067 |
North-East | - | 814 | 267 | 1081 |
Total | 4654 |
Parameters | Value (s) |
---|---|
Minimum Green | 5 |
Maximum Green | 40 |
Minimum Intergreen | 4 |
Minimum Amber | 3 |
Minimum Red | 1 |
Parameters | Look Ahead Distance (m) | Look Back Distance (m) | Standstill Distance, CC0 (m) | Following Distance, CC1 (s) | Longitudinal Oscillation, CC2 (m) | ||
---|---|---|---|---|---|---|---|
Min | Max | Min | Max | ||||
Default | 0.00 | 250.00 | 0.00 | 150.00 | 1.50 | 0.9 | 4.00 |
Modified | 0.00 | 267.06 | 0.00 | 147.64 | 1.22 | 0.9 | 2.00 |
Lane Change | Default | Min | Max | Modified |
---|---|---|---|---|
Max. deceleration—own (m/s) | −4.00 | −4.57 | −3.66 | −4.50 |
Accepted deceleration—own (m/s) | −1.00 | −0.76 | −1.22 | −1.00 |
Max. deceleration—trailing (m/s) | −3.00 | −3.66 | −2.44 | −3.66 |
Min. headway (front/rear) (s) | 0.50 | 0.46 | 1.83 | 0.50 |
Waiting time before diffusion (s) | 60 | - | - | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.A.; Hamzani, I.N.S.; Sabli, A.R.; Sukor, N.S.A. Bus Rapid Transit System Introduction in Johor Bahru: A Simulation-Based Assessment. Sustainability 2021, 13, 4437. https://doi.org/10.3390/su13084437
Hassan SA, Hamzani INS, Sabli AR, Sukor NSA. Bus Rapid Transit System Introduction in Johor Bahru: A Simulation-Based Assessment. Sustainability. 2021; 13(8):4437. https://doi.org/10.3390/su13084437
Chicago/Turabian StyleHassan, Sitti Asmah, Intan Nurfauzirah Shafiqah Hamzani, Abd. Ramzi Sabli, and Nur Sabahiah Abdul Sukor. 2021. "Bus Rapid Transit System Introduction in Johor Bahru: A Simulation-Based Assessment" Sustainability 13, no. 8: 4437. https://doi.org/10.3390/su13084437
APA StyleHassan, S. A., Hamzani, I. N. S., Sabli, A. R., & Sukor, N. S. A. (2021). Bus Rapid Transit System Introduction in Johor Bahru: A Simulation-Based Assessment. Sustainability, 13(8), 4437. https://doi.org/10.3390/su13084437