Critical Determinants of Household Electricity Consumption in a Rapidly Growing City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Design and Data Collection
2.3. Data Analysis
3. Results
3.1. Demographic Background
3.2. Measuring Electricity Consumption
Pattern and Flows of Consumption
3.3. Measuring Relationship
3.3.1. Socioeconomic Profile vs Electricity Consumption
3.3.2. Housing Characteristics vs Electricity Consumption
3.3.3. Socioeconomic Profile and Housing Characteristics vs Electricity Consumption
3.4. Determining Critical Factor
4. Discussion
4.1. Summary and Relation to Previous Study
4.2. Comparison with Other Countries and Cities
4.3. Implications of the Study Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, S.S.S.; Razman, M.R.; Awang, A. The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. Int. J. Energy Econ. Policy 2020, 10, 84–89. [Google Scholar] [CrossRef]
- Tan, C.S.; Maragatham, K.; Leong, Y.P. Electricity energy outlook in Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 012126. [Google Scholar] [CrossRef]
- Ali, S.S.S.; Razman, M.R.; Awang, A. The estimation and relationship of domestic electricity consumption and appliances ownership in Malaysia’s intermediate city. Int. J. Energy Econ. Policy 2020, 10, 116–122. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Razman, M.R. Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020, 41, 2917–2932. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose 2021, 28, 2675–2695. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Our World in Data: CO₂ and Greenhouse Gas Emissions. Creative Commons: England, United Kingdom. 2020. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#citation (accessed on 15 April 2021).
- Sandu, S.; Yang, M.; Mahlia, T.M.I.; Wongsapai, W.; Ong, H.C.; Putra, N.; Ashrafur Rahman, S.M. Energy-related CO2 emissions growth in ASEAN countries: Trends, drivers and policy implications. Energies 2019, 12, 4650. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Geng, Y.; Lu, Y.; Wilson, J.; Sun, L.; Satoshi, O.; Geldron, A.; Qian, Y. Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways. Energy 2018, 155, 887–898. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. J. Mater. Res. Technol. 2019, 8, 5647–5658. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. J. Mater. Res. Technol. 2020, 9, 2357–2368. [Google Scholar] [CrossRef]
- Facchini, A.; Kennedy, C.; Stewart, I.; Mele, R. The energy metabolism of megacities. Appl. Energy 2017, 186, 86–95. [Google Scholar] [CrossRef]
- Wakabayashi, M.; Kimura, O. The impact of the Tokyo Metropolitan Emissions Trading Scheme on reducing greenhouse gas emissions: Findings from a facility-based study. Clim. Policy 2018, 18, 1028–1043. [Google Scholar] [CrossRef]
- Energy Commission. Malaysia Energy Statistics Handbook; Energy Commission: Putrajaya, Malaysia, 2019. [Google Scholar]
- APERC. APEC Energy Demand and Supply Outlook, 6th ed.; APERC: Tokyo, Japan, 2016. [Google Scholar]
- Yun, G.Y.; Steemers, K. Behavioural, physical and socio-economic factors in household cooling energy consumption. Appl. Energy 2011, 88, 2191–2200. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Steemers, K. A statistical analysis of a residential energy consumption survey study in Hangzhou, China. Energy Build. 2013, 66, 193–202. [Google Scholar] [CrossRef]
- Tewathia, N. Determinants of the household electricity consumption: A case study of Delhi. Int. J. Energy Econ. Policy 2014, 4, 337–348. [Google Scholar]
- Rahut, D.B.; Das, S.; De Groote, H.; Behera, B. Determinants of household energy use in Bhutan. Energy 2014, 69, 661–672. [Google Scholar] [CrossRef]
- Zheng, X.; Wei, C.; Qin, P.; Guo, J.; Yu, Y.; Song, F.; Chen, Z. Characteristics of residential energy consumption in China: Findings from a household survey. Energy Policy 2014, 75, 126–135. [Google Scholar] [CrossRef]
- Huang, W.H. The determinants of household electricity consumption in Taiwan: Evidence from quantile regression. Energy 2015, 87, 120–133. [Google Scholar] [CrossRef]
- Hu, Y.C. Electricity consumption prediction using a neural-network-based grey forecasting approach. J. Oper. Res. Soc. 2017, 68, 1259–1264. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. Residential energy consumption patterns and the overall housing energy requirements of urban and rural households in Finland. Energy Build. 2014, 76, 295–303. [Google Scholar] [CrossRef]
- Kavousian, A.; Rajagopal, R.; Fischer, M. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants’ behavior. Energy 2013, 55, 184–194. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consuption of building. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Rafidah, M.; Ilyas, R.A.; Razman, M.R. Potential application of green composites for cross arm component in transmission tower: A brief review. Int. J. Polym. Sci. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Shiu, A.; Lam, P.L. Electricity consumption and economic growth in China. Energy Policy 2004, 32, 47–54. [Google Scholar] [CrossRef]
- Wolde-Rufael, Y. Electricity consumption and economic growth: A time series experience for 17 African countries. Energy Policy 2006, 34, 1106–1114. [Google Scholar] [CrossRef]
- Yoo, S.-H. The causal relationship between electricity consumption and economic growth in the ASEAN countries. Energy Policy 2006, 34, 3573–3582. [Google Scholar] [CrossRef]
- Vassileva, I.; Wallin, F.; Dahlquist, E. Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments. Appl. Energy 2012, 90, 182–188. [Google Scholar] [CrossRef]
- Jaafar, M.H.; Arifin, K.; Aiyub, K.; Razman, M.R.; Ishak, M.I.S.; Samsurijan, M.S. Occupational safety and health management in the construction industry: A review. Int. J. Occup. Saf. Ergon. 2018, 24, 493–506. [Google Scholar] [CrossRef]
- Arham, A.F.; Razman, M.R.; Amin, L.; Mahadi, Z.; Ern, L.K.; Zakaria, S.Z.S.; Mokhtar, M. Integrated research framework approaches to the control of dengue diseases for achieving sustainable development goals in Malaysia. Indian J. Public Health Res. Dev. 2018, 9, 1231. [Google Scholar] [CrossRef]
- Cayla, J.M.; Maizi, N.; Marchand, C. The role of income in energy consumption behaviour: Evidence from French households data. Energy Policy 2011, 39, 7874–7883. [Google Scholar] [CrossRef]
- Kowsari, R.; Zerriffi, H. Three dimensional energy profile: A conceptual framework for assessing household energy use. Energy Policy 2011, 39, 7505–7517. [Google Scholar] [CrossRef]
- Özcan, K.M.; Gülay, E.; Üçdoǧruk, Ş. Economic and demographic determinants of household energy use in Turkey. Energy Policy 2013, 60, 550–557. [Google Scholar] [CrossRef]
- Huebner, G.M.; Hamilton, I.; Chalabi, Z.; Shipworth, D.; Oreszczyn, T. Explaining domestic energy consumption—The comparative contribution of building factors, socio-demographics, behaviours and attitudes. Appl. Energy 2015, 159, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, J.H.; Balubaid, S.; Zakari, N.M.; Ituma, E.E. Dwelling factors effect on residential building energy consumption. J. Teknol. 2015, 77, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Uwasu, M.; Kishita, Y.; Takeda, H. Determinant factors of residential consumption and perception of energy conservation: Time-series analysis by large-scale questionnaire in Suita, Japan. Energy Policy 2015, 87, 240–249. [Google Scholar] [CrossRef]
- Wahlström, M.H.; Hårsman, B. Residential energy consumption and conservation. Energy Build. 2015, 102, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Liddle, B. Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses. Popul. Environ. 2014, 35, 286–304. [Google Scholar] [CrossRef] [Green Version]
- Liddle, B.; Lung, S. Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Popul. Environ. 2010, 31, 317–343. [Google Scholar] [CrossRef] [Green Version]
- Brounen, D.; Kok, N.; Quigley, J.M. Energy literacy, awareness, and conservation behavior of residential households. Energy Econ. 2013, 38, 42–50. [Google Scholar] [CrossRef]
- Ntona, E.; Arabatzis, G.; Kyriakopoulos, G.L. Energy saving: Views and attitudes of students in secondary education. Renew. Sustain. Energy Rev. 2015, 46, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.T. The factors affecting electricity consumption and the consumption characteristics in the residential sector—a case example of Taiwan. Sustainability 2017, 9, 1484. [Google Scholar] [CrossRef] [Green Version]
- Desipri, K.; Legaki, N.Z.; Assimakopoulos, V. Determinants of domestic electricity consumption and energy behavior: A Greek case study. In Proceedings of the IISA 2014—5th International Conference on Information, Intelligence, Systems and Applications, Chania, Greece, 7–9 July 2014. [Google Scholar]
- Yalcintas, M.; Kaya, A. Roles of income, price and household size on residential electricity consumption: Comparison of Hawaii with similar climate zone states. Energy Reports 2017, 3, 109–118. [Google Scholar] [CrossRef]
- Wijaya, M.E.; Tezuka, T. A comparative study of households’ electricity consumption characteristics in Indonesia: A techno-socioeconomic analysis. Energy Sustain. Dev. 2013, 17, 596–604. [Google Scholar] [CrossRef]
- Jabatan Perangkaan Malaysia. Laporan Sosioekonomi Negeri Sembilan; DSM: Putrajaya, Malaysia, 2019. [Google Scholar]
- Unit Perancang Ekonomi Negeri Sembilan. Data Sosioekonomi Negeri Sembilan (Socioeconomic Data of Negeri Sembilan); EPU NS: Seremban, Negeri Sembilan, Malaysia, 2019. [Google Scholar]
- Department of Survey and Mapping Malaysia. Electronic Map (eMap); JUPEM: Kuala Lumpur, Malaysia, 2001. [Google Scholar]
- Kim, M.J. Understanding the determinants on household electricity consumption in Korea: OLS regression and quantile regression. Electr. J. 2020, 33, 106802. [Google Scholar] [CrossRef]
- Kim, M.J. Determining the relationship between residential electricity consumption and factors: Case of Seoul. Sustainability 2020, 12, 8590. [Google Scholar] [CrossRef]
- Creative Research Systems. Sample Size Formulas for Our Sample Size Calculator; CRS: Sacramento, CA, USA, 2019. [Google Scholar]
- Olaniyan, K.; McLellan, B.C.; Ogata, S.; Tezuka, T. Estimating residential electricity consumption in Nigeria to support energy transitions. Sustainability 2018, 10, 1440. [Google Scholar] [CrossRef] [Green Version]
- IBM. IBM Corp IBM SPSS Statistics for Windows, version 26.0; IBM: Armonk, NY, USA, 2019. [Google Scholar]
- Bluman, A.G. Elementary Statistics: A Step by Step Approach, 8th ed.; McGraw Hill: New York, NY, USA, 2012; ISBN 9788578110796. [Google Scholar]
- Lay, Y.F.; Khoo, C.H. Introduction to Statistical Analysis in Social Sciences Research; Venton Publishing: Selangor, Malaysia, 2009. [Google Scholar]
- Fumo, N.; Rafe Biswas, M.A. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef]
- Kubota, T.; Ahmad, S. Questionnaire Survey on Behavior for Natural Ventilation and Electricity Consumption in Terraced Houses: A case study of Johor Bahru City. In Proceedings of the Asian Planning Schools Association (APSA) Conference 2005, Penang, Malaysia, 11–14 September 2005. [Google Scholar]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Rosenthal, J.A. Statistics and Data Interpretation for the Helping Professions; Cengage Learning, Inc.: Belmont, CA, USA, 2001. [Google Scholar]
- Skrivanek, S. The Use of Dummy Variables in Regression Analysis; More Steam, LLC.: Powell, OH, USA, 2009. [Google Scholar]
- Rahman, K.A.; Hariri, A.; Leman, A.M.; Yusof, M.Z.M.; Najib, M.N.M. Energy consumption in residential building: The effect of appliances and human behaviour. AIP Conf. Proc. 2017, 1831, 020018. [Google Scholar]
- Khattak, N.U.R.; Tariq, M.; Khan, J. Determinants of household’s demand for electricity in district Peshawar. Eur. J. Soc. Sci. 2010, 14, 7–16. [Google Scholar]
- Yohanis, Y.G.; Mondol, J.D.; Wright, A.; Norton, B. Real-life energy use in the UK: How occupancy and dwelling characteristics affect domestic electricity use. Energy Build. 2008, 40, 1053–1059. [Google Scholar] [CrossRef]
- Nielsen, L. How to get the birds in the bush into your hand. Results from a Danish research project on electricity savings. Energy Policy 1993, 21, 1133–1144. [Google Scholar] [CrossRef]
- Bedir, M.; Hasselaar, E.; Itard, L. Determinants of electricity consumption in Dutch dwellings. Energy Build. 2013, 58, 194–207. [Google Scholar] [CrossRef]
- Tiwari, P. Architectural, Demographic, and Economic Causes of Electricity Consumption in Bombay. J. Policy Model. 2000, 22, 81–98. [Google Scholar] [CrossRef]
- Wiesmann, D.; Lima Azevedo, I.; Ferrão, P.; Fernández, J.E. Residential electricity consumption in Portugal: Findings from top-down and bottom-up models. Energy Policy 2011, 39, 2772–2779. [Google Scholar] [CrossRef]
- The World Bank. Electric Power Consumption (kWh per capita); TWG: Washington, DC, USA, 2021. [Google Scholar]
- ASEAN Centre for Energy. ASEAN Electricity Sector: 2019 Highlights; ACE: Jakarta, Indonesia, 2020. [Google Scholar]
- ASEAN Centre for Energy. ASEAN Energy Database System (AEDS); ACE: Jakarta, Indonesia, 2019. [Google Scholar]
Appliances | Number of Equipment | Average Consumption (kWh) | Power Rating | Average Operating (hour/day) | Total Consumption (kWh) |
---|---|---|---|---|---|
Refrigerator | 395 | 308.41 | 400 | 24 | 121,824 |
Microwave | 177 | 15.07 | 1500 | 0.25 | 2668.78 |
Washing Machine | 382 | 16.71 | 425 | 2 | 6384.49 |
Rice Cooker | 380 | 20.95 | 730 | 1 | 7961.46 |
Television | 372 | 29.43 | 150 | 5 | 10,948.01 |
Fluorescent Lamp | 292 | 47.7 | 30 | 5 | 13,930.32 |
Lighting Bulb | 179 | 34.68 | 36 | 3 | 6207.98 |
Air Conditioning | 237 | 206.63 | 750 | 6 | 48,973.39 |
Ceiling Fan | 378 | 80.96 | 100 | 6 | 30,606.3 |
Stand Fan | 229 | 25.35 | 75 | 4 | 5805.75 |
Vacuum Cleaner | 220 | 12.39 | 1220 | 1 | 2725.85 |
Total | 3241 | 798.28 | 5416 | 57.25 | 258,036.33 |
Variables | Mean | Standard Deviation | Skewness | Kurtosis | |
---|---|---|---|---|---|
Energy | Electricity consumption (kWh/month) | 648.31 | 280.22 | 1.916 | 5.814 |
Socioeconomic Profile | Age of household head (years old) | 2.60 | 0.986 | 0.122 | −1.139 |
Marital status | 1.92 | 0.529 | 1.246 | 6.325 | |
Occupation | 1.49 | 0.937 | 1.834 | 2.043 | |
Monthly income (RM) | 4.09 | 1.508 | −0.211 | −1.035 | |
Education Level | 3.57 | 1.389 | −0.231 | −1.140 | |
Household size (person) | 1.93 | 0.710 | 0.105 | −1.006 | |
Housing Characteristics | Type of house | 2.82 | 1.222 | 1.016 | 0.204 |
Number of rooms | 2.54 | 0.741 | 0.455 | −0.404 |
Electricity Consumption (kWh) | Age | Race | Marital Status | Occupation | Monthly Income (RM) | Education Level | Household Size | |
---|---|---|---|---|---|---|---|---|
Electricity consumption (kWh) | 1 | |||||||
Age | 0.108 * | 1 | ||||||
Race | 0.097 | −0.011 | 1 | |||||
Marital status | 0.031 | 0.370 ** | −0.057 | 1 | ||||
Occupation | −0.001 | 0.162 ** | −0.061 | −0.026 | 1 | |||
Monthly income (RM) | 0.360 ** | 0.202 ** | 0.126 * | 0.131 ** | −0.332 ** | 1 | ||
Education level | 0.227 ** | −0.127 ** | 0.204 ** | −0.096 | −0.168 ** | 0.470 ** | 1 | |
Household size | 0.210 ** | 0.188 ** | −0.092 | 0.052 | 0.012 | 0.151 ** | −0.047 | 1 |
Electricity Consumption (kWh) | Type of House | Number of Rooms | |
---|---|---|---|
Electricity consumption (kWh) | 1 | ||
Type of house | 0.209 ** | 1 | |
Number of rooms | 0.376 ** | 0.328 ** | 1 |
Variables | Age | Race | Marital Status | Occupation | Monthly Income (RM) | Education Level | Household Size | Type of House | Number of Rooms |
---|---|---|---|---|---|---|---|---|---|
Age | 1 | ||||||||
Race | −0.011 | 1 | |||||||
Marital Status | 0.370 ** | −0.057 | 1 | ||||||
Occupation | 0.162 ** | −0.061 | −0.026 | 1 | |||||
MonthlyIncome (RM) | 0.202 ** | 0.126 * | 0.131 ** | 0.332 ** | 1 | ||||
Education level | −0.127 ** | 0.204 ** | −0.096 | 0.168 ** | 0.407 ** | 1 | |||
Household size | 0.188 ** | −0.092 | −0.052 | 0.012 | 0.151 ** | −0.047 | 1 | ||
Type of house | 0.122 * | 0.067 | −0.002 | 0.153 ** | 0.198 ** | 0.232 ** | 0.045 | 1 | |
Number of rooms | 0.084 | 0.095 | −0.037 | 0.031 | 0.330 ** | 0.340 ** | 0.203 ** | 0.328 ** | 1 |
Model | B | Std. Error | Beta | Sig. | R2 |
---|---|---|---|---|---|
(Constant) | 504.025 | 34.553 | 0.000 | ||
>RM5001 | 240.655 | 34.519 | 0.378 | 0.000 | 0.088 |
Married | 114.493 | 34.056 | 0.160 | 0.001 | 0.119 |
RM4001–RM5000 | 136.242 | 41.131 | 0.173 | 0.001 | 0.132 |
RM3001–RM4000 | 90.680 | 35.886 | 0.134 | 0.012 | 0.142 |
Government | −70.861 | 30.621 | −0.112 | 0.021 | 0.154 |
Model | B | Std. Error | Beta | Sig. | R2 |
---|---|---|---|---|---|
(Constant) | 567.194 | 17.578 | 0.000 | ||
>5 rooms | 283.200 | 49.353 | 0.323 | 0.000 | 0.117 |
4 rooms | 106.565 | 28.126 | 0.181 | 0.000 | 0.151 |
Bungalow | 117.858 | 50.834 | 0.126 | 0.021 | 0.161 |
Model | B | Std. Error | Beta | Sig. | R2 |
---|---|---|---|---|---|
(Constant) | 414.554 | 31.853 | 0.000 | ||
>5 rooms | 277.499 | 47.491 | 0.316 | 0.000 | 0.117 |
>RM5001 | 121.610 | 30.064 | 0.191 | 0.000 | 0.186 |
Married | 129.468 | 31.898 | 0.181 | 0.000 | 0.222 |
3–5 people | 62.733 | 24.925 | 0.112 | 0.012 | 0.233 |
4 rooms | 69.789 | 38.348 | 0.119 | 0.014 | 0.245 |
Bungalow | 97.571 | 48.533 | 0.105 | 0.045 | 0.253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.S.S.; Razman, M.R.; Awang, A.; Asyraf, M.R.M.; Ishak, M.R.; Ilyas, R.A.; Lawrence, R.J. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability 2021, 13, 4441. https://doi.org/10.3390/su13084441
Ali SSS, Razman MR, Awang A, Asyraf MRM, Ishak MR, Ilyas RA, Lawrence RJ. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability. 2021; 13(8):4441. https://doi.org/10.3390/su13084441
Chicago/Turabian StyleAli, Sharif Shofirun Sharif, Muhammad Rizal Razman, Azahan Awang, M. R. M. Asyraf, M. R. Ishak, R. A. Ilyas, and Roderick John Lawrence. 2021. "Critical Determinants of Household Electricity Consumption in a Rapidly Growing City" Sustainability 13, no. 8: 4441. https://doi.org/10.3390/su13084441
APA StyleAli, S. S. S., Razman, M. R., Awang, A., Asyraf, M. R. M., Ishak, M. R., Ilyas, R. A., & Lawrence, R. J. (2021). Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability, 13(8), 4441. https://doi.org/10.3390/su13084441