Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability
Abstract
:1. Introduction
2. Important By-Products in the EU
2.1. Spent Grain
2.2. Fruits, Vegetables, and Tubers
2.3. Dairy
2.4. Meat and Other Animal Products
2.5. Oil Seed Cakes and Meals
3. Discussion
3.1. Valorization for Animal Feed Versus Human Consumption
3.2. Consumer Perspective
3.3. Legal Perspective
4. Research Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Stenmarck, Å.; Jensen, C.; Quested, T.; Moates, G.; Buksti, M.; Cseh, B.; Juul, S.; Parry, A.; Politano, A.; Redlingshofer, B.; et al. Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: 2016. Available online: https://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf (accessed on 13 April 2021).
- Van der Meulen, B.M.J.; Szajkowska, A. The General Food Law: General provisions of food law. In EU Food Law Handbook; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 229–259. ISBN 978-90-8686-246-7. [Google Scholar]
- Caldeira, C.; Corrado, S.; Sala, S. JRC Technical Report—Food Waste Accounting Methodologies, Challenges and Opportunities; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Ujang, Z. bin The Food Waste Hierarchy as a Framework for the Management of Food Surplus and Food Waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Canali, M.; Amani, P.; Aramyan, L.; Gheoldus, M.; Moates, G.; Östergren, K.; Silvennoinen, K.; Waldron, K.; Vittuari, M. Food Waste Drivers in Europe, from Identification to Possible Interventions. Sustainability 2017, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Djagny, K.B.; Wang, Z.; Xu, S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. [Google Scholar] [CrossRef]
- Gebrechristos, H.Y.; Chen, W. Utilization of Potato Peel as Eco-Friendly Products: A Review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Gilson, L.L.; Goldberg, C.B. Editors’ Comment: So, What Is a Conceptual Paper? Group Organ. Manag. 2015, 40, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, E. Designing Conceptual Articles: Four Approaches. AMS Rev. 2020, 10, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Toulmin, S.E. The Uses of Argument; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-521-53483-3. [Google Scholar]
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of Food Waste per Product Group along the Food Supply Chain in the European Union: A Mass Flow Analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef]
- Moates, G.; Sweet, N.; Bygrave, K.; Waldron, K. Top 20 Food Waste Streams. REFRESH. 2016. Available online: https://eu-refresh.org/sites/default/files/D6_9_Waste_Streams_Final.pdf (accessed on 13 April 2021).
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ Spent Grain: A Review with an Emphasis on Food and Health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Sodhi, H.S.; Garcha, H.S.; Kiran, U. Screening of Mycoflora of Spent-up Brewers’ Grains for Aflatoxin Production. J. Res. Punjab. Agric. Univ. 1985, 22, 6. [Google Scholar]
- Kuentzel, U.; Sonnenberg, H. Conservation of pressed brewers grain with potassium sorbate. Mon. Fuer Brauwiss. Ger. 1997, 50, 175–181. [Google Scholar]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; del Nozal, M.J. Variability of Brewer’s Spent Grain within a Brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Bartolomé, B.; Santos, M.; Jiménez, J.J.; del Nozal, M.J.; Gómez-Cordovés, C. Pentoses and Hydroxycinnamic Acids in Brewer’s Spent Grain. J. Cereal Sci. 2002, 36, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I. Brewer’s Spent Grain: A Valuable Feedstock for Industrial Applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Ekielski, A.; Mishra, P.K.; Żelaziński, T. Assessing the Influence of Roasting Process Parameters on Mepiquat and Chlormequat Formation in Dark Barley Malts. Food Bioprocess Technol. 2018, 11, 1177–1187. [Google Scholar] [CrossRef] [Green Version]
- Stojceska, V.; Ainsworth, P. The Effect of Different Enzymes on the Quality of High-Fibre Enriched Brewer’s Spent Grain Breads. Food Chem. 2008, 110, 865–872. [Google Scholar] [CrossRef]
- McCarthy, A.L.; O’Callaghan, Y.C.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ Spent Grain; Bioactivity of Phenolic Component, Its Role in Animal Nutrition and Potential for Incorporation in Functional Foods: A Review. Proc. Nutr. Soc. 2013, 72, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Coppola, R. Recovery of Biomolecules of High Benefit from Food Waste. Curr. Opin. Food Sci. 2018, 22, 43–54. [Google Scholar] [CrossRef]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of Brewers’ Spent Grain by Production of Dry Pasta with Higher Nutritional Potential. LWT 2019, 114, 108421. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Lecce, L.; Padalino, L.; Del Nobile, M.A. Supercritical Carbon Dioxide Extraction of Brewer’s Spent Grain. J. Supercrit. Fluids 2016, 107, 69–74. [Google Scholar] [CrossRef]
- Stojceska, V. Chapter 15—Brewer’s Spent Grain From By-Product to Health: A Rich Source of Functional Ingredients. In Flour and Breads and their Fortification in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 189–198. ISBN 978-0-12-814639-2. [Google Scholar]
- Kao, T.H. Health Potential for Beer Brewing Byproducts. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Dordrecht, The Netherlands, 2018; pp. 313–326. ISBN 978-1-78923-208-0. [Google Scholar]
- Misi, S.N.; Forster, C.F. Semi-Continuous Anaerobic Co-Digestion of Agro-Wastes. Environ. Technol. 2002, 23, 445–451. [Google Scholar] [CrossRef]
- Sweet, N.; Bygrave, K.; Moates, G.; Waldron, K. “Medium” List of Waste Streams Appropriate for Valorisation. REFRESH. 2016. Available online: https://eu-refresh.org/sites/default/files/D6_1_Waste_Streams_Final.pdf (accessed on 13 April 2021).
- Henríquez, C.; Speisky, H.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Simpson, R.; Almonacid, S. Development of an Ingredient Containing Apple Peel, as a Source of Polyphenols and Dietary Fiber. J. Food Sci. 2010, 75, H172–H181. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.M.; Rupasinghe, H.P.V. Phenolic Profiles and Antioxidant Properties of Apple Skin Extracts. J. Food Sci. 2009, 74, C693–C700. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Apple Peels as a Value-Added Food Ingredient. J. Agric. Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple Pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin Content of Seeds, Kernels and Food Products Commercially-Available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Lozowicka, B. Health Risk for Children and Adults Consuming Apples with Pesticide Residue. Sci. Total Environ. 2015, 502, 184–198. [Google Scholar] [CrossRef]
- Opyd, P.M.; Jurgoński, A.; Juśkiewicz, J.; Milala, J.; Zduńczyk, Z.; Król, B. Nutritional and Health-Related Effects of a Diet Containing Apple Seed Meal in Rats: The Case of Amygdalin. Nutrients 2017, 9, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beretta, B.; Gaiaschi, A.; Galli, C.L.; Restani, P. Patulin in Apple-Based Foods: Occurrence and Safety Evaluation. Food Addit. Contam. 2000, 17, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Moake, M.M.; Padilla-Zakour, O.I.; Worobo, R.W. Comprehensive Review of Patulin Control Methods in Foods. Compr. Rev. Food Sci. Food Saf. 2005, 4, 8–21. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial Effects and Potential Risks of Tomato Consumption for Human Health: An Overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef]
- Laza, V. Tomatoes and Lycopene in the Athletes’ Diet. Palestrica Third Millenn. Civiliz. Sport 2014, 15, 72–79. [Google Scholar]
- Żukiewicz-Sobczak, W.A.; Wróblewska, P.; Adamczuk, P.; Kopczyński, P. Causes, Symptoms and Prevention of Food Allergy. Adv. Dermatol. Allergol. Dermatol. Alergol. 2013, 30, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Fernández-López, J.; Fernández-Ginés, J.M.; Aleson-Carbonell, L.; Sendra, E.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Application of Functional Citrus By-Products to Meat Products. Trends Food Sci. Technol. 2004, 15, 176–185. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, B.; Zhao, Q.; Wang, C.; Gong, Y.; Zhang, Y.; Chen, W. Effect of Commercial Processing on Pesticide Residues in Orange Products. Eur. Food Res. Technol. 2012, 234, 449–456. [Google Scholar] [CrossRef]
- Burchat, C.S.; Ripley, B.D.; Leishman, P.D.; Ritcey, G.M.; Kakuda, Y.; Stephenson, G.R. The Distribution of Nine Pesticides between the Juice and Pulp of Carrots and Tomatoes after Home Processing. Food Addit. Contam. 1998, 15, 61–71. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Anjum, F.M.; Ahmed, A.; Randhawa, M.S. Field Incurred Chlorpyrifos and 3,5,6-Trichloro-2-Pyridinol Residues in Fresh and Processed Vegetables. Food Chem. 2007, 103, 1016–1023. [Google Scholar] [CrossRef]
- Joshi, A.; Sethi, S.; Arora, B.; Azizi, A.F.; Thippeswamy, B. Potato Peel Composition and Utilization. In Potato: Nutrition and Food Security; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K., Eds.; Springer: Singapore, 2020; pp. 229–245. ISBN 9789811576621. [Google Scholar]
- Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O’Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic Extraction of Steroidal Alkaloids from Potato Peel Waste. Ultrason. Sonochem. 2014, 21, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Maldonado, A.F.; Mudge, E.; Gänzle, M.G.; Schieber, A. Extraction and Fractionation of Phenolic Acids and Glycoalkaloids from Potato Peels Using Acidified Water/Ethanol-Based Solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; Al-Harahsheh, M.; Hararah, M.; Magee, T.R.A. Drying Characteristics and Quality Change of Unutilized-Protein Rich-Tomato Pomace with and without Osmotic Pre-Treatment. Ind. Crops Prod. 2010, 31, 171–177. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, B.; Menna, V.; Gruppioni, N.; Bergamini, C. Aflatoxins in Spices, Aromatic Herbs, Herb-Teas and Medicinal Plants Marketed in Italy. Food Control 2007, 18, 697–701. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Coronary Heart Disease: Meta-Analysis of Cohort Studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Kromhout, D.; Spaaij, C.J.K.; de Goede, J.; Weggemans, R.M. The 2015 Dutch Food-Based Dietary Guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- McCall Damian, O.; McGartland Claire, P.; McKinley Michelle, C.; Patterson Chris, C.; Sharpe, P.; McCance David, R.; Young Ian, S.; Woodside Jayne, V. Dietary Intake of Fruits and Vegetables Improves Microvascular Function in Hypertensive Subjects in a Dose-Dependent Manner. Circulation 2009, 119, 2153–2160. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Health Benefits of Fruit and Vegetables Are from Additive and Synergistic Combinations of Phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [CrossRef]
- Timbo, B.B.; Ross, M.P.; McCarthy, P.V.; Lin, C.-T.J. Dietary Supplements in a National Survey: Prevalence of Use and Reports of Adverse Events. J. Am. Diet. Assoc. 2006, 106, 1966–1974. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Allison, B.J.; Simmons, C.W. Valorization of Tomato Pomace by Sequential Lycopene Extraction and Anaerobic Digestion. Biomass Bioenergy 2017, 105, 331–341. [Google Scholar] [CrossRef]
- Van Steenwijk, H.P.; Bast, A.; de Boer, A. The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules 2020, 25, 4378. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K. Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Crit. Rev. Food Sci. Nutr. 2015, 55, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, J.; Deng, Z.; Pan, X.; Xie, X.; Peng, C. Effective Utilization of Food Wastes: Bioactivity of Grape Seed Extraction and Its Application in Food Industry. J. Funct. Foods 2020, 73, 104113. [Google Scholar] [CrossRef]
- Weseler, A.R.; Bast, A. Masquelier’s Grape Seed Extract: From Basic Flavonoid Research to a Well-Characterized Food Supplement with Health Benefits. Nutr. J. 2017, 16, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiles, A.; Campbell, G.M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from Fruit Pomace: A Review of Applications in Cereal-Based Products. Food Rev. Int. 2018, 34, 162–181. [Google Scholar] [CrossRef]
- Kosseva, M.R. Processing of Food Wastes. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2009; Volume 58, pp. 57–136. [Google Scholar]
- Smithers, G.W. Whey and Whey Proteins—From ‘Gutter-to-Gold. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Van Asselt, E.D.; van Fels-Klerx, H.J.; der Marvin, H.J.P.; van Veen, H.B.; de Groot, M.N. Overview of Food Safety Hazards in the European Dairy Supply Chain. Compr. Rev. Food Sci. Food Saf. 2017, 16, 59–75. [Google Scholar] [CrossRef]
- Van Asselt, E.D.; Marvin, H.J.P.; Boon, P.E.; Swanenburg, M.; Zeilmaker, M.; Mengelers, M.J.B.; van der Fels-Klerx, H.J. Chemical and Physical Hazards in the Dairy Chain. 2016. Available online: https://edepot.wur.nl/447318 (accessed on 13 April 2021).
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese Whey Management: A Review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Burdock, G.A.; Carabin, I.G. Generally Recognized as Safe (GRAS): History and Description. Toxicol. Lett. 2004, 150, 3–18. [Google Scholar] [CrossRef]
- De Boer, J.; Helms, M.; Aiking, H. Protein Consumption and Sustainability: Diet Diversity in EU-15. Ecol. Econ. 2006, 59, 267–274. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Kondrup, J.; Børsheim, E. Health Effects of Protein Intake in Healthy Adults: A Systematic Literature Review. Food Nutr. Res. 2013. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.; Kreider, R.B.; Ziegenfuss, T.; La Bounty, P.; Roberts, M.; Burke, D.; Landis, J.; Lopez, H.; Antonio, J. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2007, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Lam, F.-C.; Bukhsh, A.; Rehman, H.; Waqas, M.K.; Shahid, N.; Khaliel, A.M.; Elhanish, A.; Karoud, M.; Telb, A.; Khan, T.M. Efficacy and Safety of Whey Protein Supplements on Vital Sign and Physical Performance Among Athletes: A Network Meta-Analysis. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese Whey: A Potential Resource to Transform into Bioprotein, Functional/Nutritional Proteins and Bioactive Peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Whey Basic Protein Isolates as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2018, 16, e05360. [Google Scholar] [CrossRef] [Green Version]
- Glatzel, M.; Aguzzi, A. PrPC Expression in the Peripheral Nervous System Is a Determinant of Prion Neuroinvasion. J. Gen. Virol. 2000, 81, 2813–2821. [Google Scholar] [CrossRef] [PubMed]
- Alao, B.; Falowo, A.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Colles, A.; Bruckers, L.; Den Hond, E.; Govarts, E.; Morrens, B.; Schettgen, T.; Buekers, J.; Coertjens, D.; Nawrot, T.; Loots, I.; et al. Perfluorinated Substances in the Flemish Population (Belgium): Levels and Determinants of Variability in Exposure. Chemosphere 2020, 242, 125250. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Mora, L.; Reig, M. New Insights into Meat By-Product Utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryder, K.; Bekhit, A.E.-D.; McConnell, M.; Carne, A. Towards Generation of Bioactive Peptides from Meat Industry Waste Proteins: Generation of Peptides Using Commercial Microbial Proteases. Food Chem. 2016, 208, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Yousif, A.M.; Cranston, P.; Deeth, H.C. Incorporation of Bovine Dry Blood Plasma into Biscuit Flour for the Production of Pasta. LWT Food Sci. Technol. 2003, 36, 295–302. [Google Scholar] [CrossRef]
- Del Hoyo, P.; Rendueles, M.; Díaz, M. Effect of Processing on Functional Properties of Animal Blood Plasma. Meat Sci. 2008, 78, 522–528. [Google Scholar] [CrossRef]
- Bah, C.S.; Bekhit, A.E.-D.A.; Carne, A.; McConnell, M.A. Composition and Biological Activities of Slaughterhouse Blood from Red Deer, Sheep, Pig and Cattle. J. Sci. Food Agric. 2016, 96, 79–89. [Google Scholar] [CrossRef]
- Toldrá, F.; Aristoy, M.-C.; Mora, L.; Reig, M. Innovations in Value-Addition of Edible Meat by-Products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef]
- FEDIOL Statistics. Available online: https://www.fediol.eu/web/2019/1011306087/list1187970188/f1.html (accessed on 26 March 2021).
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Arntfield, S.D. Proteins from oil-producing plants. In Proteins in Food Processing (Second Edition); Yada, R.Y., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2018; pp. 187–221. ISBN 978-0-08-100722-8. [Google Scholar]
- Gupta, A.; Sharma, R.; Singh, B. Oilseed as Potential Functional Food Ingredient. 2019. Available online: https://www.researchgate.net/publication/337561630_Oilseed_as_potential_functional_food_Ingredient (accessed on 13 April 2021).
- Kowalska, G.; Kowalski, R.; Hawlena, J.; Rowiński, R. Seeds of Oilseed Rape as an Alternative Source of Protein and Minerals. J. Elem. 2020, 25, 513–522. [Google Scholar] [CrossRef]
- Schweiggert-Weisz, U.; Eisner, P.; Bader-Mittermaier, S.; Osen, R. Food Proteins from Plants and Fungi. Curr. Opin. Food Sci. 2020, 32, 156–162. [Google Scholar] [CrossRef]
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond Oil: Press Cakes and Meals Supplying Global Protein Requirements. Trends Food Sci. Technol. 2020, 100, 88–102. [Google Scholar] [CrossRef]
- Rozan, P.; Villaum, C.; Bau, H.M.; Schwertz, A.; Nicolas, J.P.; Méjean, L. Detoxication of Rapeseed Meal by Rhizopus Oligosporus Sp-T3: A First Step towards Rapeseed Protein Concentrate. Int. J. Food Sci. Technol. 1996, 31, 85–90. [Google Scholar] [CrossRef]
- Roos, N.; Sørensen, J.C.; Sørensen, H.; Rasmussen, S.K.; Briend, A.; Yang, Z.; Huffman, S.L. Screening for Anti-Nutritional Compounds in Complementary Foods and Food Aid Products for Infants and Young Children. Matern. Child. Nutr. 2013, 9, 47–71. [Google Scholar] [CrossRef]
- Krupodorova, T.; Barshteyn, V.Y. Alternative Substrates for Higher Mushrooms Mycelia Cultivation. J. Biosci. Biotechnol. 2015, 4, 339–347. [Google Scholar]
- Bhat, R.; Reddy, K.R.N. Challenges and Issues Concerning Mycotoxins Contamination in Oil Seeds and Their Edible Oils: Updates from Last Decade. Food Chem. 2017, 215, 425–437. [Google Scholar] [CrossRef]
- Garon, D.; Richard, E.; Sage, L.; Bouchart, V.; Pottier, D.; Lebailly, P. Mycoflora and Multimycotoxin Detection in Corn Silage: Experimental Study. J. Agric. Food Chem. 2006, 54, 3479–3484. [Google Scholar] [CrossRef]
- Banu, N.; Muthumary, J.P. Mycobiota of Sunflower Seeds and Samples Collected from Vegetable Oil Refinery Located in Tamilnadu, India. Mycol. Prog. 2005, 4, 195–204. [Google Scholar] [CrossRef]
- Thieme, O.; Makkar, H.P.S. Utilisation of Loss and Waste during the Food-Production Cycle as Livestock Feed. Anim. Prod. Sci. 2017, 57, 601–607. [Google Scholar] [CrossRef]
- Riet-Correa, F.; Rivero, R.; Odriozola, E.; de Adrien, M.L.; Medeiros, R.M.T.; Schild, A.L. Mycotoxicoses of Ruminants and Horses. J. Vet. Diagn. Investig. 2013, 25, 692–708. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority; European Commission. 2019 Eurobarometer on Food Safety in the EU; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Azzurra, A.; Massimiliano, A.; Angela, M. Measuring Sustainable Food Consumption: A Case Study on Organic Food. Sustain. Prod. Consum. 2019, 17, 95–107. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Consumer Perception and Behaviour Regarding Sustainable Protein Consumption: A Systematic Review. Trends Food Sci. Technol. 2017, 61, 11–25. [Google Scholar] [CrossRef]
- Von Meyer-Höfer, M.; von der Wense, V.; Spiller, A. Characterising Convinced Sustainable Food Consumers. Br. Food J. 2015, 117, 1082–1104. [Google Scholar] [CrossRef]
- Yang, Q.; Shen, Y.; Foster, T.; Hort, J. Measuring Consumer Emotional Response and Acceptance to Sustainable Food Products. Food Res. Int. 2020, 131, 108992. [Google Scholar] [CrossRef]
- Djamel, R.; Jose Maria, G. Valorisation of Food Surpluses and Side-Flows and Citizens’ Understanding. REFRESH. 2018. Available online: https://eu-refresh.org/valorisation-food-surpluses-and-side-flows-and-citizens%E2%80%99-understanding (accessed on 13 April 2021).
- Asioli, D.; Grasso, S. Do Consumers Value Food Products Containing Upcycled Ingredients? The Effect of Nutritional and Environmental Information. Food Qual. Prefer. 2021, 91, 104194. [Google Scholar] [CrossRef]
- Coderoni, S.; Perito, M.A. Sustainable Consumption in the Circular Economy. An Analysis of Consumers’ Purchase Intentions for Waste-to-Value Food. J. Clean. Prod. 2020, 252, 119870. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional Food. Product Development, Marketing and Consumer Acceptance—A Review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Van Trijp, H.C.M. Consumer Understanding and Nutritional Communication: Key Issues in the Context of the New EU Legislation. Eur. J. Nutr. 2009, 48, 41–48. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. Innovation Trends in the Food Industry: The Case of Functional Foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Charlier, C.; Valceschini, E. Food Safety, Market Power and Private Standards: An Analysis of the Emerging Strategies of Food Operators. Int. J. Food Syst. Dyn. 2010, 1, 103–110. [Google Scholar] [CrossRef]
- Rao, M.; Bast, A.; de Boer, A. European Private Food Safety Standards in Global Agri-Food Supply Chains: A Systematic Review. Int. Food Agribus. Manag. Rev. 2021, in press. [Google Scholar] [CrossRef]
- United Nations Academeic Impact Sustainability. Available online: https://academicimpact.un.org/content/sustainability (accessed on 1 April 2021).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Kasza, G.; Szabó-Bódi, B.; Lakner, Z.; Izsó, T. Balancing the Desire to Decrease Food Waste with Requirements of Food Safety. Trends Food Sci. Technol. 2019, 84, 74–76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, M.; Bast, A.; de Boer, A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. https://doi.org/10.3390/su13084428
Rao M, Bast A, de Boer A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability. 2021; 13(8):4428. https://doi.org/10.3390/su13084428
Chicago/Turabian StyleRao, Madhura, Aalt Bast, and Alie de Boer. 2021. "Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability" Sustainability 13, no. 8: 4428. https://doi.org/10.3390/su13084428
APA StyleRao, M., Bast, A., & de Boer, A. (2021). Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability, 13(8), 4428. https://doi.org/10.3390/su13084428