Effects of Olive Mill Vegetation Water Phenol Metabolites Transferred to Muscle through Animal Diet on Rabbit Meat Microbial Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Analysis of Polyphenols in Feed and Meat
2.3. Chemical Composition of Meat
2.4. Microbial Analysis of Meat
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Petracci, M.; Cavani, C. Rabbit meat processing: Historical perspective to future directions. World Rabbit Sci. 2013, 21, 217–226. [Google Scholar] [CrossRef]
- Pereira, M.; Malfeito-Ferreira, M. A simple method to evaluate the shelf life of refrigerated rabbit meat. Food Control 2015, 49, 70–74. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Ortenzi, R.; Roila, R.; Trabalza-Marinucci, M.; Servili, M.; Papa, P.; Galarini, R.; Valiani, A. Dietary administration of olive millwastewater extract reduces campylobacter spp. Prevalence in broiler chickens. Sustainability 2016, 8, 837. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Mattioli, S.; Matics, Z.; Szendrő, Z.; Gerencsér, Z.; Mancinelli, A.C.; Kovacs, M.; Cullere, M.; Castellini, C.; Dalle Zotte, A. The antioxidant effectiveness of liquorice (Glycyrrhiza glabra L.) extract administered as dietary supplementation and/or as a burger additive in rabbit meat. Meat Sci. 2019, 158, 107921. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, D.; Roila, R.; Andoni, E.; Braconi, P.; Branciari, R. Punica granatum and Citrus spp. Extract mix affect spoilage microorganisms growth rate in vacuum-packaged cooked sausage made from pork emmer wheat (Triticum dicoccum Schübler), almond (Prunus dulcis Mill.) and hazelnut (Corylus avellana L). Foods 2019, 8, 664. [Google Scholar] [CrossRef] [Green Version]
- Roila, R.; Valiani, A.; Ranucci, D.; Ortenzi, R.; Servili, M.; Veneziani, G.; Branciari, R. Antimicrobial efficacy of a polyphenolic extract from olive oil by-product against “Fior di latte” cheese spoilage bacteria. Int. J. Food Microbiol. 2019, 295, 49–53. [Google Scholar] [CrossRef]
- Megdiche-Ksouri, W.; Trabelsi, N.; Mkadmini, K.; Bourgou, S.; Noumi, A.; Snoussi, M.; Barbria, R.; Tebourbi, O.; Ksouri, R. Artemisia campestris phenolic compounds have antioxidant and antimicrobial activity. Ind. Crop Prod. 2015, 63, 104–113. [Google Scholar] [CrossRef]
- Soultos, N.; Tzikas, Z.; Christaki, E.; Papageorgiou, K.; Steris, V. The effect of dietary oregano essential oil on microbial growth of rabbit carcasses during refrigerated storage. Meat Sci. 2009, 81, 474–478. [Google Scholar] [CrossRef]
- Koné, A.P.; Desjardins, Y.; Gosselin, A.; Cinq-Mars, D.; Guay, F.; Saucier, L. Plant extracts and essential oil product as feed additives to control rabbit meat microbial quality. Meat Sci. 2019, 150, 111–121. [Google Scholar] [CrossRef]
- Babuskin, S.; Babu, P.A.S.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. The effects of dietary quercetin supplementation on the meat quality and volatile profile of rabbit meat during chilled storage. Meat Sci. 2019, 158, 107905. [Google Scholar] [CrossRef]
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative status and presence of bioactive compounds in meat from chickens fed polyphenols extracted from olive oil industry waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef] [Green Version]
- Branciari, R.; Ranucci, D.; Miraglia, D.; Urbani, S.; Esposto, S.; Servili, M. Effect of dietary treatment with olive oil by-product (olive cake) on physicochemical, sensory and microbial characteristics of beef during storage. Ital. J. Food Saf. 2015, 4, 225–229. [Google Scholar]
- Fasolato, L.; Cardazzo, B.; Balzan, S.; Carraro, L.; Taticchi, A.; Montemurro, F.; Novelli, E. Minimum bactericidal concentration of phenols extracted from oil vegetation water on spoilers, starters and food-borne bacteria. Ital. J. Food Saf. 2015, 4, 75–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; De Feo, V.; Cruz, A.G.; d’Acierno, A. Antibacterial activity of three extra virgin olive oils of the Campania region, Southern Italy, related to their polyphenol content and composition. Microorganisms 2019, 7, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomone, R.; Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88–100. [Google Scholar] [CrossRef]
- Pinotti, L.; Manoni, M.; Fumagalli, F.; Rovere, N.; Luciano, A.; Ottoboni, M.; Ferrari, L.; Cheli, F.; Djuragic, O. Reduce, Reuse, Recycle for Food Waste: A Second Life for Fresh-Cut Leafy Salad Crops in Animal Diets. Animals 2020, 10, 1082. [Google Scholar] [CrossRef] [PubMed]
- Memon, M.A. Integrated solid waste management based on the 3R approach. J. Mater. Cycles Waste Manag. 2010, 12, 30–40. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mourvaki, E.; Cardinali, R.; Servili, M.; Sebastiani, B.; Ruggeri, S.; Mattioli, S.; Taticchi, A.; Esposto, S.; Castellini, C. Effect of dietary supplementation with olive pomaces on the performance and meat quality of growing rabbits. Meat Sci. 2012, 92, 783–788. [Google Scholar] [CrossRef]
- Westendorf, M.L. Food waste as animal feed: An introduction. Food Waste Anim. Feed 2000, 3–16. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef] [PubMed]
- De Toffoli, A.; Monteleone, E.; Bucalossi, G.; Veneziani, G.; Fia, G.; Servili, M.; Zanoni, B.; Pagliarini, E.; Gallina Toschi, T.; Dinnella, C. Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition. Food Res. Int. 2019, 119, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Branciari, R.; Galarini, R.; Miraglia, D.; Ranucci, D.; Valiani, A.; Giusepponi, D.; Servili, M.; Acuti, G.; Pauselli, M.; Trabalza-Marinucci, M. Dietary Supplementation with Olive Mill Wastewater in Dairy Sheep: Evaluation of Cheese Characteristics and Presence of Bioactive Molecules. Animals 2020, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2000; ISBN 978-093558467-7. [Google Scholar]
- Ranucci, D.; Branciari, R.; Cobellis, G.; Acuti, G.; Miraglia, D.; Olivieri, O.; Roila, R.; Trabalza-Marinucci, M. Dietary essential oil mix improves oxidative stability and hygienic characteristic of lamb meat. Small Ruminant Res. 2019, 175, 104–109. [Google Scholar] [CrossRef]
- Gill, C.; Jones, T. Microbiological sampling of carcasses by excision or swabbing. J. Food Prot. 2000, 63, 167–173. [Google Scholar] [CrossRef]
- Cullere, M.; Dalle Zotte, A.; Tasoniero, G.; Giaccone, V.; Szendrő, Z.; Szín, M.; Meinrad, O.; Zsolt, G.; Dal Bosco, A.; Matics, Z. Effect of diet and packaging system on the microbial status, pH, color and sensory traits of rabbit meat evaluated during chilled storage. Meat Sci. 2018, 141, 36–43. [Google Scholar] [CrossRef]
- JMP® 9 Basic Analysis and Graphing; SAS Institute Inc.: Cary, NC, USA, 2010.
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A review of its occurrence, (bio) synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Shi, L.; Wang, C.; Zhou, X.; Zhang, Y.; Liu, Y.; Ma, C. Production of salidroside and tyrosol in cell suspension cultures of Rhodiola crenulata. Plant Cell Tissue Organ Cult. (PCTOC) 2013, 114, 295–303. [Google Scholar] [CrossRef]
- Serra, A.; Rubió, L.; Borràs, X.; Macià, A.; Romero, M.P.; Motilva, M.J. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol. Nutr. Food Res. 2012, 56, 486–496. [Google Scholar] [CrossRef]
- Corona, G.; Spencer, J.; Dessì, M. Extra virgin olive oil phenolics: Absorption, metabolism, and biological activities in the GI tract. Toxicol. Ind. Health 2009, 25, 285–293. [Google Scholar] [CrossRef]
- Rubió, L.; Macià, A.; Castell-Auví, A.; Pinent, M.; Blay, M.T.; Ardévol, A.; Romero, M.P.; Motilva, M.J. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chem. 2014, 149, 277–284. [Google Scholar] [CrossRef] [PubMed]
- González-Santiago, M.; Fonollá, J.; Lopez-Huertas, E. Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacol. Res. 2010, 61, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Sofos, J.N. Microbial contamination of carcasses and cuts. Encycl. Meat Sci. 2004, 67, 1624–1629. [Google Scholar]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef]
- Castrica, M.; Menchetti, L.; Balzaretti, C.M.; Branciari, R.; Ranucci, D.; Cotozzolo, E.; Vigo, D.; Curone, G.; Brecchia, G.; Miraglia, D. Impact of dietary supplementation with goji berries (Lycium barbarum) on microbiological quality, Physic-chemical, and sensory characteristics of rabbit meat. Foods 2020, 9, 1480. [Google Scholar] [CrossRef]
- Rodriguez-Calleja, J.M.; Garcia-Lopez, I.; Garcia-Lopez, M.L.; Santos, J.A.; Otero, A. Rabbit meat as a source of bacterial foodborne pathogens. J. Food Prot. 2006, 69, 1106–1112. [Google Scholar] [CrossRef]
- Roila, R.; Branciari, R.; Ranucci, D.; Ortenzi, R.; Urbani, S.; Servili, M.; Valiani, A. Antimicrobial activity of olive mill wastewater extract against Pseudomonas fluorescens isolated from mozzarella cheese. Ital. J. Food Saf. 2016, 5, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Branciari, R.; Ortenzi, R.; Roila, R.; Miraglia, D.; Ranucci, D.; Valiani, A. Listeria Monocytogenes in Soft Spreadable Salami: Study of the Pathogen Behavior and Growth Prediction During Manufacturing Process and Shelf Life. Appl. Sci. 2020, 10, 4438. [Google Scholar] [CrossRef]
- Roila, R.; Valiani, A.; Galarini, R.; Servili, M.; Branciari, R. Antimicrobial and anti-biofilm activity of olive oil by-products against Campylobacter spp. isolated from chicken meat. Acta Sci. Pol. Technol. Aliment. 2019, 18, 43–52. [Google Scholar] [PubMed] [Green Version]
- Bisignano, G.; Tomaino, A.; Cascio, R.L.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef] [PubMed]
Feed | Hydroxytyrosol (mg/kg) | Tyrosol (mg/kg) | Verbascoside (mg/kg) | Pinoresinol (mg/kg) | Sum (mg/kg) |
---|---|---|---|---|---|
C | 0.4 | 2.6 | 2.5 | 0.3 | 5.9 |
L | 97 | 18 | 35 | 0.4 | 150 |
H | 182 | 30 | 70 | 0.4 | 283 |
Groups | Tyrosol Sulphate (µg/kg) | Hydroxytyrosol-4-Sulphate (µg/kg) | Hydroxytyrosol-3-Sulphate (µg/kg) |
---|---|---|---|
C | 0.03 a | 0.40 a | 0.16 a |
L | 0.01 a | 1.26 b | 0.60 b |
H | 0.10 b | 2.52 c | 1.11 c |
SEM | 0.024 | 0.510 | 0.234 |
p-Value | <0.001 | <0.001 | <0.001 |
Days of Storage | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | T | D | TXD | |||
Total viable count (TVC) | C | 2.81 a | 3.05 a | 5.21 b | 8.22 c | 8.29 c | ||||
L | 2.79 a | 3.11 a | 5.18 b | 8.19 c | 8.20 c | 0.187 | <0.001 | 0.520 | 0.973 | |
H | 2.94 a | 2.97 a | 5.09 b | 7.92 c | 8.04 c | |||||
Total psychotrophic count (TPC) | C | 2.27 a | 2.50 a | 5.01 b | 7.71 c | 7.81 c | ||||
L | 2.05 a | 2.68 a | 4.90 b | 7.41 c | 7.69 c | 0.240 | <0.001 | 0.078 | 0.829 | |
H | 2.23 a | 2.38 a | 4.70 b | 7.22 c | 7.17 c | |||||
Pseudomonas spp. | C | 1.17 a | 1.97 b | 4.81 cW | 7.34 dW | 7.46 dW | ||||
L | 1.21 a | 1.87 b | 4.71 cW | 7.23 dW | 7.38 dW | 0.205 | <0.001 | <0.001 | 0.010 | |
H | 1.29 a | 1.74 a | 3.75 bX | 6.09 cX | 6.39 cX | |||||
Lactic acid bacteria (LAB) | C | 2.05 a | 2.23 a | 4.54 b | 6.38 c | 6.67 c | ||||
L | 2.08 a | 2.29 a | 4.27 b | 6.21 c | 6.42 c | 0.193 | <0.001 | 0.224 | 0.977 | |
H | 2.04 a | 2.19 a | 4.19 b | 6.01 c | 6.39 c | |||||
Enterobacteriaceae | C | 1.12 a | 1.75 a | 2.85 b | 4.06 c | 4.23 c | ||||
L | 1.03 a | 1.63 a | 2.66 b | 4.02 c | 4.37 c | 0.215 | <0.001 | 0.904 | 0.998 | |
H | 1.07 a | 1.74 a | 2.81 b | 3.98 c | 4.18 c |
Microorganism and Parameters | C | L | H |
---|---|---|---|
Total viable count (TVC) | |||
Initial value (Log CFU/g) | 2.91 ± 0.11 | 2.92 ± 0.16 | 2.94 ± 0.13 |
Λ (h) | 100.34 ± 10.93 | 101.32 ± 17.78 | 101.85 ± 10.78 |
µmax (Log CFU/g/h) | 0.0529 ± 0.014 | 0.0531 ± 0.021 | 0.0509 ± 0.010 |
Final value (Log CFU/g) | 8.32 ± 0.13 | 8.25 ± 0.20 | 8.03 ± 0.21 |
R2 | 0.997 | 0.994 | 0.995 |
SE of Fit | 0.137 | 0.208 | 0.189 |
Total psychrotrophic count (TPC) | |||
Initial value (Log CFU/g) | 2.28 ± 0.12 | 2.09 ± 0.16 | 2.27 ± 0.09 |
Λ (h) | 84.59 ± 10.00 | 82.26 ± 10.02 | 95.58 ± 13.64 |
µmax (Log CFU/g/h) | 0.0459 ± 0.003 | 0.0379 ± 0.004 | 0.0503 ± 0.013 |
Final value (Log CFU/g) | 7.94 ± 0.11 | 7.67 ± 0.16 | 7.22 ± 0.08 |
R2 | 0.999 | 0.996 | 0.998 |
SE of Fit | 0.0149 | 0.167 | 0.0949 |
Pseudomonas spp | |||
Initial value (Log CFU/g) | 1.18 ± 0.09 | 1.22 ± 0.05 | 1.33 ± 0.10 |
Λ (h) | 60.85 ± 4.61 a | 65.37 ± 12.74 a,b | 74.01 ± 7.40 b |
µmax (Log CFU/g/h) | 0.0443 ± 0.002 a | 0.0447 ± 0.01 a,b | 0.0354 ± 0.003 b |
Final value (Log CFU/g) | 7.50 ± 0.08 a | 7.41 ± 0.05 a | 6.42 ± 0.11 b |
R2 | 0.999 | 0.997 | 0.998 |
SE of Fit | 0.0912 | 0.052 | 0.11 |
Lactic acid bacteria (LAB) | |||
Initial value (Log CFU/g) | 2.02 ± 0.15 | 2.07 ± 0.13 | 1.99 ± 0.12 |
Λ (h) | 77.52 ± 12.40 | 79.05 ± 18.56 | 76.36 ± 10.09 |
µmax (Log CFU/g/h) | 0.0373 ± 0.006 | 0.0338 ± 0.005 | 0.0316 ± 0.003 |
Final value (Log CFU/g) | 6.50 ± 0.13 | 6.41 ± 0.17 | 6.36 ± 0.12 |
R2 | 0.995 | 0.997 | 0.996 |
SE of Fit | 0.15 | 0.022 | 0.127 |
Enterobacteriaceae | |||
Initial value (Log CFU/g) | 1.13 ± 0.10 | 1.05 ± 0.14 | 1.08 ± 0.08 |
Λ (h) | 42.32 ± 11.00 | 48.36 ± 15.53 | 37.94 ± 10.45 |
µmax (Log CFU/g/h) | 0.0176 ± 0.002 | 0.0179 ± 0.002 | 0.0169 ± 0.001 |
Final value (Log CFU/g) | 4.26 ± 0.01 | 4.41 ± 0.16 | 4.21 ± 0.09 |
R2 | 0.995 | 0.991 | 0.996 |
SE of Fit | 0.0976 | 0.141 | 0.0895 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branciari, R.; Galarini, R.; Trabalza-Marinucci, M.; Miraglia, D.; Roila, R.; Acuti, G.; Giusepponi, D.; Dal Bosco, A.; Ranucci, D. Effects of Olive Mill Vegetation Water Phenol Metabolites Transferred to Muscle through Animal Diet on Rabbit Meat Microbial Quality. Sustainability 2021, 13, 4522. https://doi.org/10.3390/su13084522
Branciari R, Galarini R, Trabalza-Marinucci M, Miraglia D, Roila R, Acuti G, Giusepponi D, Dal Bosco A, Ranucci D. Effects of Olive Mill Vegetation Water Phenol Metabolites Transferred to Muscle through Animal Diet on Rabbit Meat Microbial Quality. Sustainability. 2021; 13(8):4522. https://doi.org/10.3390/su13084522
Chicago/Turabian StyleBranciari, Raffaella, Roberta Galarini, Massimo Trabalza-Marinucci, Dino Miraglia, Rossana Roila, Gabriele Acuti, Danilo Giusepponi, Alessandro Dal Bosco, and David Ranucci. 2021. "Effects of Olive Mill Vegetation Water Phenol Metabolites Transferred to Muscle through Animal Diet on Rabbit Meat Microbial Quality" Sustainability 13, no. 8: 4522. https://doi.org/10.3390/su13084522
APA StyleBranciari, R., Galarini, R., Trabalza-Marinucci, M., Miraglia, D., Roila, R., Acuti, G., Giusepponi, D., Dal Bosco, A., & Ranucci, D. (2021). Effects of Olive Mill Vegetation Water Phenol Metabolites Transferred to Muscle through Animal Diet on Rabbit Meat Microbial Quality. Sustainability, 13(8), 4522. https://doi.org/10.3390/su13084522