Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Methodology
3. Results
3.1. General Information of Tangquan
3.2. Hydrochemical and İsotopic Composition
3.2.1. Hydrochemical Composition
3.2.2. Estimation of the Geothermal Reservoir Temperature (TR) and Depth (Z)
3.2.3. Characteristics of Stable D and 18O Isotopes
3.2.4. Mixing Ratio for a Mixing Model Based on Sr and 87Sr/86Sr
3.2.5. Age of the GTW
4. Discussion
4.1. Analysis of the Heat Source
4.2. Geothermal Reservois and Caprock Conditions
4.3. Tectonic Control
4.4. Genetic Model
5. Conclusions
- (1)
- The temperature of the GTW in Tangquan, Nanjing, ranges from 32 to 46 °C. Thus, the GTW in this area is low-temperature hot water. Hydrochemically, the GTW in Tangquan is of the SO4-Ca type. TR ranges from 63 to 75 °C. The GTW circulates at depths of 1.8–2.3 km.
- (2)
- The GTW in the study area originates from meteoric water, has a depleted D and O isotopic composition compared to the cold GW, and is recharged at elevations of 321–539 m, close to the elevation of the main body of Mount Laoshan. During the upwelling process, the GTW becomes mixed with the shallow cold karst water at a ratio of approximately 4–26% (cold water). At a relatively low cold-water mixing ratio, the temperature of the GTW is relatively high, and vice versa. The age of the GTW in the study area is approximately 2046–6474 a.
- (3)
- The geothermal system in the study area is of the low-medium-temperature type. Atmospheric precipitation infiltrates in the high-elevation outcropping carbonate area of the Laoshan complex anticline and flows mainly through Upper Sinian dolomite formations. Under the background of the normal terrestrial heat flow, the infiltrated water is gradually heated by the surrounding rocks. Through long-term deep circulation, the GTW rises in the relatively low-lying area on the northwest side of Mount Laoshan, where the ENE- and NW-trending faults meet. During the upwelling process, the GTW becomes mixed with some shallow cold karst water. The mixed water forms a geothermal reservoir overlain by Cretaceous and Quaternary formations or rises to the surface at locations where the caprock is discontinuous and forms geothermal anomalies in the study area.
- (4)
- In order to ensure the sustainable development and utilization of GTW, it is suggested to further strengthen the dynamic monitoring of groundwater and the control of extraction amounts. A comprehensive plan for cascading development and utilization should be established—mainly for medical treatment, tourism, and bathing—and the management mode of GTW should be improved.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montanari, D.; Minissale, A.; Doveri, M.; Gola, G.; Trumpy, E.; Santilano, A.; Manzella, A. Geothermal resources within carbonate reservoirs in western sicily (italy): A review. Earth-Sci. Rev. 2017, 169, 180–201. [Google Scholar] [CrossRef]
- Yang, P.; Cheng, Q.; Xie, S.; Wang, J.; Chang, L.; Yu, Q.; Zhan, Z.; Chen, F. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China. J. Hydrol. 2017, 549, 50–61. [Google Scholar] [CrossRef]
- Duan, Z.; Pang, Z.; Wang, X. Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics 2011, 40, 125–135. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, W.; Wang, X. Discussion on Types and Characteristics of Geothermal Resources in China. Ground Water 2018, 40, 1–5. [Google Scholar]
- Ahmad, M.; Akram, W.; Hussain, S.D.; Sajjad, M.I.; Zafar, M.S. Origin and subsurface history of geothermal water of Murtazabad area, Pakistan—Isotopic evidence. Appl. Radiat. Isot. 2001, 55, 731–736. [Google Scholar] [CrossRef]
- Minissale, A.; Donato, A.; Procesi, M.; Pizzino, L.; Giammanco, S. Systematic review of geochemical data from thermal springs, gas vents and fumaroles of Southern Italy for geothermal favourability mapping. Earth-Sci. Rev. 2019, 188, 514–535. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, W.; Liu, Z.; Liu, Z.; Hu, X.; Wang, G. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet. China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2014, 41, 382–392. [Google Scholar]
- Ke, B.; Lin, T.; Li, W.; Yang, M.; Liu, Q.; Liu, A.; Zhao, L. Genetic model of Gujishan anticline geothermal system and prediction of potential areas in Western Hills of Beijing. Geol. Bull. China 2019, 38, 1378–1385. [Google Scholar]
- Yan, B.; Xiao, C.; Liang, X.; Jiang, H. Characteristics and Genetic Model of the Basin Type Geothermal Water Recourses in Basalt Area of Changbai Mountain. Geol. Rev. 2018, 64, 1201–1216. [Google Scholar]
- Zhang, W. Hydrogeochemical Method in Hengjing Area of South Jiangxi Province Application of geothermal water genesis analysis. Hydrogeol. Eng. Geol. 2001, 28, 45–48. [Google Scholar]
- Yang, F.; Pang, Z.; Wang, C. Genesis model of Laozishan geothermal field, Subei basin. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 468–475. [Google Scholar]
- Pang, Z.; Wang, J.; Fan, Z. The heat storage temperature of Zhangzhou geothermal field was calculated by SiO2 hybrid model. Bull. Sci. Technol. 1990, 35, 57. [Google Scholar]
- Gu, W.; Pang, Z.; Wang, J.; Song, X. Isotope Hydrology; Science Press: Beijing, China, 2011; ISBN 9787030313621. [Google Scholar]
- Yu, J.; Yu, F.; Liu, D. Composition of hydrogen and oxygen isotopes in meteoric precipitation in eastern China. Geochimica 1987, 3, 22–26. [Google Scholar]
- Bakari, S.S.; Aagaard, P.; Vogt, R.D.; Ruden, F.; Johansen, I.; Vuai, S.A. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania. J. Geochem. Explor. 2013, 130, 1–14. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology, 2nd ed.; John Wiley and Sons: Chichester, UK, 1986; ISBN 0-471-86412-9. [Google Scholar]
- Lu, L.; Pang, Z.; Kong, Y.; Guo, Q.; Wang, Y.; Xu, C.; Gu, W.; Zhou, L.; Yu, D. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: Implications for sustainable development. Hydrogeol. J. 2018, 26, 1705–1719. [Google Scholar] [CrossRef]
- Négrel, P.; Petelet-Giraud, E.; Widory, D. Strontium isotope geochemistry of alluvial groundwater: A tracer for groundwater resources characterisation. Hydrol. Earth Syst. Sci. 2004, 8, 959–972. [Google Scholar] [CrossRef]
- Heine, F.; Einsiedl, F. Groundwater dating with dissolved organic radiocarbon: A promising approach in carbonate aquifers. Appl. Geochem. 2021, 125, 104827. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J. Incised-valley sedimentary succession and evolution of the nanjing section of the yangtze river since the LGM. J. Coastal Res. 2020, 104, 785–794. [Google Scholar] [CrossRef]
- Fournier, R.O.; Truesdell, A.H. An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 1973, 37, 1255–1275. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H. Isotopic and chemical composition of Parbati valley geothermal discharges, north-west Himalaya, India. Geothermics 1983, 12, 199–222. [Google Scholar] [CrossRef]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, J.; Wang, G. Geotemperature Field Feature and Distribution Law of Geothermal Anomaly and Their Control Conditions. Jiangsu Geol. 1997, 21, 21–35. [Google Scholar]
- Guo, Q.; Pang, Z.; Wang, Y.; Tian, J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl. Geochem. 2017, 81, 63–75. [Google Scholar] [CrossRef]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC: Boca Raton, FL, USA, 1997; ISBN 1-56670-249-6. [Google Scholar]
- Li, Z.; Luo, Z.; Wang, Q.; Du, J.; Lu, W.; Ning, D. A three-dimensional fluid-solid model, coupling high-rise building load and groundwater abstraction, for prediction of regional land subsidence. Hydrogeol. J. 2019, 27, 1515–1526. [Google Scholar] [CrossRef]
- Liu, X.; Cai, G.; Congress, S.S.C.; Liu, L.; Liu, S. Investigation of Thermal Conductivity and Prediction Model of Mucky Silty Clay. J. Mater. Civ. Eng. 2020, 32, 4020221. [Google Scholar] [CrossRef]
- Jiang, G.; Gao, P.; Rao, S.; Zhang, L.; Tang, X.; Huang, F.; Zhao, P.; Pang, Z.; He, L.; Hu, S.; et al. Compilation of Heat Flow Data in the Continental Area of China (4th edition). Chin. J. Geophys. 2016, 59, 2892–2910. [Google Scholar]
- Wang, Y.; Wang, J.Y.; Deng, J.F. Heat flow constraint on the abundance of uranium, thorium and potassium in crust and lithosphere of the continental area of China. Prog. Geophys. 2001, 16, 21–30. [Google Scholar]
- Huang, S.J.; Liu, S.G.; Li, G.R. Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician. J. Chengdu Univ. Technol. 2004, 31, 1–7. [Google Scholar]
- Zhou, H.; Li, W.; Zhang, B.; Liu, J.; Jiang, H. Formation and evolution of upper sinian to lower cambrian intraplatformal basin in sichuan basin. Shiyou Xuebao Acta Pet. Sin. 2015, 36, 310–332. [Google Scholar]
Sample ID | Depth | Wellhead Temp °C | pH | Electric | TDS | K+ | Na+ | Ca2+ | Mg2+ | Cl− | HCO3− | SO42− | H2SiO3 | δD | δ18O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | μs/cm | mg/L | mg/L | /‰ | |||||||||||
H1 | >200 | 37.0 | 7.04 | 2320 | 2794.00 | 6.77 | 12.4 | 682.0 | 102.0 | 5.55 | 301 | 1789 | 55.1 | −54.9 | −8.83 |
H2 | >200 | 46.0 | 6.89 | 2350 | 2420.00 | 6.96 | 12.2 | 566.0 | 108.0 | 6.93 | 299 | 1523 | 60.2 | −56.2 | −8.71 |
H3 | >200 | 22.0 | 8.30 | 979 | 776.00 | 3.60 | 11.8 | 174.0 | 33.9 | 20.8 | 134 | 444 | 20.3 | −49.9 | −8.00 |
H4 | >200 | 32.4 | 7.02 | 1970 | 1954.00 | 4.92 | 12.0 | 464.0 | 84.4 | 6.93 | 332 | 1178 | 48.0 | −54.3 | −8.62 |
H5 | >200 | 35.5 | 7.12 | 2030 | 1959.00 | 5.31 | 13.2 | 457.0 | 88.4 | 10.4 | 332 | 1180 | 46.8 | −54.2 | −8.74 |
H6 | >250 | 41.4 | 6.96 | 2250 | 2513.00 | 6.38 | 12.6 | 541.0 | 98.9 | 6.93 | 314 | 1489 | 54.5 | −55.8 | −9.27 |
C1 | 12.00 | 15.8 | 7.68 | 1752 | 1610.00 | 4.79 | 21.7 | 368.0 | 71.2 | 41.6 | 343 | 904 | 32.6 | −46.6 | −7.85 |
C2 | 10.00 | 15.2 | 8.30 | 875 | 647.00 | 0.81 | 17.4 | 138.0 | 35.0 | 24.3 | 270 | 230 | 32.0 | −46.8 | −7.98 |
C3 | 10.00 | 14.8 | 7.83 | 820 | 524.00 | 61.80 | 50.5 | 66.5 | 21.3 | 54.1 | 339 | 75.5 | 30.0 | −43.9 | −7.58 |
C4 | 10.00 | 16.2 | 7.98 | 721 | 468.00 | 0.64 | 98.9 | 52.8 | 10.8 | 69.3 | 257 | 49.9 | 27.0 | −46.0 | −7.16 |
C5 | 10.00 | 14.6 | 7.30 | 498 | 312.00 | 1.63 | 21.7 | 58.6 | 22.1 | 41.6 | 157 | 62.9 | 31.9 | −44.2 | −7.69 |
C6 | 3.00 | 16.5 | 7.65 | 1012 | 694.00 | 2.93 | 63.6 | 126 | 32.7 | 70.7 | 389 | 139 | 35.3 | −44.4 | −7.47 |
C7 | 15.00 | 16.5 | 8.52 | 835 | 532.00 | 2.05 | 67.3 | 92.8 | 19.4 | 54.1 | 299 | 115 | 23.7 | −42.9 | −7.11 |
C8 | 6.00 | 16.2 | 8.58 | 798 | 478.00 | 4.10 | 46.6 | 84.5 | 23.0 | 61.0 | 213 | 96.4 | 36.2 | −45.0 | −7.14 |
C9 | 10.00 | 15.6 | 8.00 | 679 | 1335.31 | 3.39 | 66.4 | 57.2 | 20.5 | 61.0 | 163 | 69.8 | 42.4 | −44.1 | −7.30 |
Sample ID | Wellhead Temp | Amorphous Silica | α-Cristobalite | β-Cristobalite | Chalcedony |
---|---|---|---|---|---|
Fournier, 1977 | |||||
H1 | 37.0 | −15 | 50 | 3 | 70 |
H2 | 46.0 | −12 | 54 | 7 | 75 |
H3 | 22.0 | −49 | 10 | −33 | 27 |
H4 | 32.4 | −20 | 44 | −2 | 64 |
H5 | 35.5 | −21 | 43 | −3 | 63 |
H6 | 41.4 | −16 | 50 | 3 | 70 |
Sample ID | Depth/m |
---|---|
H1 | 2117 |
H2 | 2292 |
H3 | 417 |
H4 | 1854 |
H5 | 1807 |
H6 | 2096 |
Sample ID | δ18O/‰ | δ2H/‰ | Recharge Elevation/m |
---|---|---|---|
H1 | −8.83 | −54.9 | 392 |
H2 | −8.71 | −56.2 | 354 |
H3 | −8.00 | −49.9 | 116 |
H4 | −8.62 | −54.3 | 321 |
H5 | −8.74 | −54.2 | 362 |
H6 | −9.27 | −55.8 | 539 |
Sample ID | 87Sr/86Sr | Sr /(μg·L−1) | Thermal Water Fraction | Cold Water Faction |
---|---|---|---|---|
H1 | 0.708876 | 4890 | 96% | 4% |
H2 | 0.709041 | 5060 | 100% | 0% |
H3 | 0.709299 | 1580 | 13% | 87% |
H4 | 0.708916 | 4100 | 76% | 24% |
H5 | 0.708901 | 4020 | 74% | 26% |
H6 | 0.708997 | 4740 | 92% | 8% |
Sample ID | 13C /‰ VPDB | 14C /pMC | Uncorrected | Pearson Model No. 2 |
---|---|---|---|---|
H1 | −3.8 | 11.06 | 18,203 | 6474 |
H2 | −2.03 | 8 | 20,880 | 3709 |
H3 | −2.99 | 35.49 | 8564 | Modern water |
H4 | −5.09 | 25.15 | 11,411 | 2046 |
H5 | −5.69 | 24.28 | 11,702 | 3417 |
H6 | −4.43 | 13.11 | 16,797 | 6206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Yu, D.; Luo, Z. Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China. Sustainability 2021, 13, 4449. https://doi.org/10.3390/su13084449
Xu C, Yu D, Luo Z. Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China. Sustainability. 2021; 13(8):4449. https://doi.org/10.3390/su13084449
Chicago/Turabian StyleXu, Chenghua, Dandan Yu, and Zujiang Luo. 2021. "Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China" Sustainability 13, no. 8: 4449. https://doi.org/10.3390/su13084449
APA StyleXu, C., Yu, D., & Luo, Z. (2021). Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China. Sustainability, 13(8), 4449. https://doi.org/10.3390/su13084449