Postharvest Losses in Quantity and Quality of Table Grape (cv. Crimson Seedless) along the Supply Chain and Associated Economic, Environmental and Resource Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvesting Techniques and Berry Preparation
2.2. Supply Chains Simulated
2.3. Fruit Loss Evaluation and Quality Measurements
2.3.1. Postharvest Losses
2.3.2. Quality Attributes
2.4. Environmental and Economic Impacts of Postharvest Losses
2.5. Statistical Analysis
3. Results
3.1. Physical Losses at Farm Level
3.2. Physical Losses along the Simulated Supply Chain
3.2.1. Weight Loss, Decay and SO2 Damage
3.2.2. Total Amount of Physical Losses
3.3. Quality Losses along the Supply Chain
3.4. Socioeconomic Impacts of Postharvest Losses
4. Discussion
4.1. Physical Losses at Farm Level
4.2. Physical Losses along the Simulated Supply Chain
Total Amount of Physical Losses
4.3. Quality Losses along the Supply Chain
4.4. Socioeconomic Impacts of Postharvest Losses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhr, R.J. Integrated pest management. A new strategy in an old war. N. Y. Food Life Sci. 1979, 12, 3. [Google Scholar]
- FAO. State of Food Insecurity in the World: Economic Crises—Impacts and Lessons Learned; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; Available online: https://www.fao.org (accessed on 12 September 2020).
- Hodges, R.J.; Buzby, J.C.; Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 2010, 149, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Alexandratos, N. How to Feed the World in 2050; Expert meeting; FAO Headquarters: Rome, Italy, 2009. [Google Scholar]
- FAO. Food Losses and Waste in Europe and Central Asia; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: https://www.fao.org (accessed on 11 November 2020).
- Statista. Global Volume of Wasted Food as of 2017, by Food Category, Global Waste Generation Dossier, Statista. 2019. Available online: https://www.statista.com/study/58790/global-waste-generation/ (accessed on 10 September 2020).
- Smil, V. Improving Efficiency and Reducing Waste in Our Food System. Environ. Sci. 2004, 1, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Phil. Trans. R. Soc. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FLW Protocol (Food Loss and Waste Protocol). The Food Loss and Waste Accounting and Reporting Standard; World Resources Institute: Washington, DC, USA, 2016. [Google Scholar]
- Lipinski, B.; Hanson, C.; Lomaw, J.; Kitinoja, L.; Waite, R.; Searchinger, T. Reducing Food Loss and Waste; Working Paper; Installment 2 of Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2013; Available online: http://www.worldresourcesreport.org (accessed on 23 December 2020).
- Kader, A.A. Increasing availability by reducing post-harvest losses of fresh produce. Acta Hortic. 2005, 682, 2169–2175. [Google Scholar] [CrossRef]
- Munhuweyi, K.; Opara, U.L.; Sigge, G. Postharvest losses of cabbages from retail to consumer and the socio-economic and environmental impacts. Br. Food J. 2016, 118, 286–300. [Google Scholar] [CrossRef]
- Affognon, H.; Mutungi, C.; Sanginga, P.; Borgemeister, C. Unpacking postharvest losses in Sub-Saharan Africa: A meta-analysis. World Dev. 2015, 66, 49–68. [Google Scholar] [CrossRef] [Green Version]
- Oelofse, S.H.H.; Nahman, A. Estimating the magnitude of food waste generated in South Africa. Waste Manag. Res. 2013, 31, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kitinoja, L.; Kader, A.A. Measuring Post-Harvest Losses of Fresh Fruits and Vegetables in Developing Countries; White paper 15-02; Post-harvest Education Foundation: La Pine, OR, USA, 2015. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste Section 3.2; Study Conducted for the International Congress “Save Food!” at Interpack2011, Düsseldorf, Germany; FAO Rural Infrastructure and Agro-Industries Division 38: Rome, Italy, 2011. [Google Scholar]
- DAFF. A Profile of the South African Table Grapes Market Value Chain. 2017. Available online: http://webapps.daff.gov.za (accessed on 31 August 2019).
- SATI. South African Table Grape Industry Statistics Booklet. 2016. Available online: http://www.satgi.co.za/Media/Default/Documents/Booklets/SATI_BOOK_2016.pdf (accessed on 19 August 2020).
- Lichter, A.; Kaplunov, T.; Zutahy, Y.; Daus, A.; Alchanatis, V.; Ostrovsky, V.; Lurie, S. Physical and visual properties of grape rachis as affected by water vapour pressure deficit. Postharvest Biol. Technol. 2011, 59, 25–33. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Opara, U.L.; Thiart, G.D. Effects of packaging liners on cooling rate and quality attributes of table grape (cv Regal Seedless). Packag. Technol. Sci. 2012, 25, 73–84. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Delele, M.A.; Opara, U.L.; Meyer, C.J. Performance of multipackaging for table grapes based on airflow, cooling rates and fruit quality. J. Food Eng. 2013, 116, 613–621. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Smilanick, J.L.; Dokoozlian, N.K. Table grapes suffer water loss, stem browning during cooling delays. Calif. Agric. 2001, 55, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Kaplunov, T.; Zutahy, Y.; Daus, A.; Porat, R.; Lichter, A. The effects of 1-methylcyclopropane and ethylene on postharvest rachis browning in table grapes. Postharvest Biol. Technol. 2015, 107, 16–22. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Garner, D.; Crisosto, G. Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of ‘Red Globe’ table grapes. Postharvest Biol. Technol. 2002, 26, 181–189. [Google Scholar] [CrossRef]
- Jiang, L.; Jin, P.; Wang, L.; Xuan, Y.; Wang, H.; Zheng, Y. Methyl jasmonate primes defense responses against Botrytis cinerea and reduces disease development in harvested table grapes. Sci. Hortic. 2015, 192, 218–223. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Delele, M.A.; Pathare, P.B.; Chan, L.; Opara, U.L.; Meyer, C.J. Moisture loss characteristics of fresh table grapes packed in different film liners during cold storage. Biosyst. Eng. 2012, 113, 363–370. [Google Scholar] [CrossRef]
- Sabir, F.K.; Sabir, A. Quality response of table grapes (Vitis vinifera L.) during cold storage to postharvest cap stem excision and hot water treatments. Int. J. Food Sci. Technol. 2013, 48, 999–1006. [Google Scholar] [CrossRef]
- Sabir, F.K.; Sabir, A. Extending postharvest quality attributes of grapes (V. vinifera L. cv. ‘Thompson Seedless’) by preharvest calcium pulverizations. Acta Sci. Pol. Hortorum Cultus 2017, 16, 29–38. [Google Scholar] [CrossRef]
- Kitinoja, L.; Al Hassan, H.Y. Identification of appropriate postharvest technologies for small scale horticultural farmers and marketers in Sub-Saharan Africa and South Asia—Part 1. Postharvest losses and quality assessments. Acta Hortic. 2012, 934, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods—A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Janse van Vuuren, P.F. Regional Resource Flow Model: Fruit Sector Report. GreenCape. 2015. Available online: https://www.green-cape.co.za/assets/Bioeconomy/RRFM-Fruit-sector-report-2014-15.pdf (accessed on 18 October 2020).
- Steenwerth, K.L.; Strong, E.B.; Greenhut, R.F.; Williams, L.; Kendall, A. Life cycle greenhouse gas, energy and water assessment of wine grape production in California. Int. J. Life Cycle Assess. 2015, 20, 1243–1253. [Google Scholar] [CrossRef]
- Kangueehi, G.N. Water Footprint Analysis to Improve Water Use Efficiency in Table Grape (Vitis vinifera L. cv. Crimson Seedless) Production. A South African Case Study. Ph.D. Thesis, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa, 2018. [Google Scholar]
- Louw, L. Economic Aspects of Losses and Waste: Case Study of the South African Table Grape Supply Chain. Master’ Thesis, Department of Agricultural Economics, Extension and Rural Development, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
- Rajabi, S.; Lashgarara, F.; Omidi, M.; Hosseini, S.J.F. Quantifying the grapes losses and waste in various stages of supply chain. Biol. Forum 2015, 7, 225–229. [Google Scholar]
- Aujla, K.M.; Shah, N.A.; Ishaq, M.; Fraooq, A. Post-harvest losses and marketing of grapes in Pakistan. Sarhad J. Agric. 2011, 27, 485–490. [Google Scholar]
- Murthy, M.R.K.; Reddy, G.P.; Rao, K.H. Retail marketing of fruits and vegetables in India: A case study on export of grapes from Andhra Pradesh, India. Eur. J. Logist. Purch. Supply Chain Manag. 2014, 2, 62–70. [Google Scholar]
- Sharma, A.K.; Sawant, S.D.; Somkuwar, R.G.; Naik, S. Postharvest Losses in Grapes: Present Indian Status; Technical report ICAR; National Research Centre for Grapes: Pune, India, 2018; Available online: https://www.researchgate.net/publication/311693568 (accessed on 5 August 2020).
- Pereira, E.; e Silva, R.G.B.; Spagnol, W.A.; Silveira Junior, V. Water loss in table grapes: Model development and validation under dynamic storage conditions. Food Sci. Technol. Camp. 2018, 38, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Mlikota Gabler, F.; Fassel, R.; Mercier, J.; Smilanick, J.L. Influence of temperature, inoculation interval, and dosage on biofumigation with Muscodor albus to control postharvest gray mold on grapes. Plant Dis. 2006, 90, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Eccher Zerbini, P. The quality of pear fruits. Acta Hortic. 2002, 596, 805–810. [Google Scholar] [CrossRef]
- Sortino, G.; Allegra, A.; Passafiume, R.; Gianguzzi, G.; Gullo, G.; Gallotta, A. Postharvest Application of Sulphur Dioxide Fumigation to Improve Quality and Storage Ability of “Red Globe” Grape Cultivar During Long Cold Storage. Chem. Eng. Trans. 2017, 58, 403–408. [Google Scholar]
- Zoffoli, F.P.; Latorre, B.A.; Naranjo, P. Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biol. Technol. 2008, 47, 90–97. [Google Scholar] [CrossRef]
- Sabir, F.K.; Sabir, A.; Unal, S.; Taytak, M.; Kucukbasmaci, A.; Bilgin, O.F. Postharvest quality extension of minimally processed table grapes by chitosan coating. Int. J. Fruit Sci. 2019, 19, 347–358. [Google Scholar] [CrossRef]
- Xu, W.; Li, D.; Fu, Y.; Liu, Z.; Wang, Y.; Yu, X.; Shang, W. Chinese Packaging Institute—2012 Conference Extending the Shelf Life of Victoria Table Grapes by High Permeability and Fungicide Packaging at Room Temperature. Packaging Technol. Sci. 2013, 26, 43–50. [Google Scholar] [CrossRef]
- Klaasen, J.A.; Van der Merwe, J.A.; Vries, F.A.; Calitz, F.J. Long-Term Storage Quality of Table Grapes as Influenced by Pre-Harvest Yeast Applications and Post-Harvest Use of Controlled Atmosphere. S. Afr. J. Enol. Vitic. 2006, 27, 2. [Google Scholar] [CrossRef] [Green Version]
- Mena, C.; Adenso-Diaz, B.; Yurt, O. The causes of food waste in the supplier–retailer interface: Evidences from the UK and Spain. Resour. Conserv. Recycl. 2011, 55, 648–658. [Google Scholar] [CrossRef]
- Lichter, A.; Zutkhy, Y.; Sonego, L.; Dvir, O.; Kaplunov, T.; Sarig, P.; Ben-Arie, R. Ethanol controls postharvest decay of table grapes. Postharvest Biol. Technol. 2002, 24, 301–308. [Google Scholar] [CrossRef]
- Peacock, B.; Simpson, T. The Relationship between Berry Weight, Length and Width for Five Table Grape Varieties. Cooperative Extension Pub.-TBI 95. 2017. Available online: http://cetulare.ucanr.edu/files/82015.pdf (accessed on 10 July 2020).
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grape storage in boxes with sulfurdioxide releasing pads with either an internal plastic liner or external wrap. HortTechnology 2008, 18, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Palou, L.; Serrano, M.; Martínez-Romero, D.; Valero, D. New approaches for quality retention of table grapes. Fresh Prod. 2010, 4, 103–110. [Google Scholar]
- Du Plessis, S.F. Effects of Packaging and Postharvest Cooling on Quality of Table Grapes (Vitis vinifera L.). Master’ Thesis, Department of Horticulture, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa, 2003. [Google Scholar]
- Tamizheezham, U.; Muthuvel, I.; Subbiah, A. Effect of Temperature on Shelf life of Muscat Hamburg Grapes under Storage. Madras Agric. J. 2018, 105, 426–429. [Google Scholar] [CrossRef]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Junior, O.J.C.; Sumida, C.H.; De Souza, R.T. Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Sabir, F.K.; Kara, Z. Effects of modified atmosphere packing and honey dip treatments on quality maintenance of minimally processed grape cv. Razaki (V. vinifera L.) during cold storage. J. Food Sci Technol. 2011, 48, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, R.C.; Carvalho, D.U.; Da Cruz, M.A.; Sumida, C.H.; Ahmed, S.; Bassoli, P.A.; De Souza, R.T.; Roberto, S.R. Cold Storage and Biocontrol Agents to Extend the Storage Period of ‘BRS Isis’ Seedless Table Grapes. Horticulturae 2018, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Eskom. Available online: https://www.eskom.co.za/CustomerCare/TariffsAndCharges/Pages/Tariffs_And_Charges.aspx (accessed on 10 October 2019).
Supply Chain Scenario | Description | Environmental Condition |
---|---|---|
A | Table grapes were harvested and stored under ambient conditions, typical in areas that lack cold storage facilities Measurements were taken at harvest and after 3, 7 and 10 days | Under ambient conditions for 10 days: 25.1 ± 1.3 °C 46.6 ± 6.0% RH |
B | Handling of table grapes for domestic supply chain Measurements were taken at harvest, after 14 days in cold storage, after 10 days at retail conditions and then after 3, 7 and 10 days at ambient conditions | Cold store for 2 weeks: −0.3 °C ± 0.7 °C and 81.3% ± 4.1% RH Retail store for 10 days: 5.4 °C ± 0.6 °C and 83.7% ± 2.9% RH Consumer/home (ambient) store: 25.1 ± 1.3 °C and 46.6 ± 6.0%RH |
C | Shipping to export markets Measurements were taken at harvest, after 28 days in cold storage, after a further 10 days at retail conditions and then at 3, 7 and 10 days at ambient conditions | Cold storage for 4 weeks at −0.3 ± 0.7 °C, 81.3 ± 4.1% RH Retail store for 10 days: 5.4 °C ± 0.6 °C and 83.7% ± 2.9% RH Consumer/home (ambient) ‘shelf’ store: 25.1 ± 1.3 °C and 46.6 ± 6.0%RH |
D | Reefer container containing export fruit are left open on arrival for 2 days before fruit is unloaded. ‘Abusive’ treatment of fruit within the export chain Measurements were taken at harvest, after 28 days in cold storage then after 2 days exposure to ambient conditions, after a further 10 days at retail conditions and then at 3, 7 and 10 days at ambient conditions | Cold store for 2 weeks: −0.3 °C ± 0.7 °C and 81.3% ± 4.1% RH; Ambient storage for 2 days: 25.1 ± 1.3 °C, 46.6 ± 6.0% RH; Retail store display for 10 days: 5.4 °C ± 0.6 °C and 83.7% ± 2.9% RH; Consumer/home (ambient) ‘shelf’ store: 25.1 ± 1.3 °C and 46.6 ± 6.0% RH |
Season | 2017 | 2018 | ||||
---|---|---|---|---|---|---|
Time | Weight Loss (%) | Decay (%) | SO2 (%) | Weight Loss (%) | Decay (%) | SO2 (%) |
Harvest | - | 0 | 0 | - | 0 | 0 |
3 days | 2.34 a | 1.05 b | 1.85 b | 1.55 a | 0.85 b | 0.37 b |
7 days | 4.47 a | 3.34 b | 2.31 a | 1.83 a | 1.67 b | 0.92 a |
10 days | 7.63 a | 7.60 a | 2.57 a | 4.43 a | 2.67 a | 1.19 a |
p-value | 0.28 | <0.01 | <0.01 | 0.19 | <0.01 | <0.01 |
Season | 2017 | 2018 | ||||
---|---|---|---|---|---|---|
Time | Weight Loss (%) | Decay (%) | SO2 (%) | Weight Loss (%) | Decay (%) | SO2 (%) |
Harvest | - | 0 | 0 | - | 0 | 0 |
14 days (−0.5 °C) | 1.41 a | 0 | 1.0 b | 1.85 a | 0.4 e | 0.8 b |
10 days (5 °C) | 1.87 a | 2.1 c | 1.8 ab | 2.57 a | 1.2 d | 1.7 ab |
3 days | 2.53 a | 2.5 c | 2.1 a | 4.03 a | 2.2 c | 2.1 a |
7 days | 3.78 a | 5.5 b | 2.2 a | 4.40 a | 3.3 b | 2.1 a |
10 days | 5.36 a | 8.6 a | 2.4 a | 6.76 a | 4.7 a | 2.1 a |
p-value | 0.91 | <0.01 | 0.02 | 0.99 | <0.01 | <0.01 |
Season | 2017 | 2018 | ||||
---|---|---|---|---|---|---|
Time | Weight Loss (%) | Decay (%) | SO2 (%) | Weight Loss (%) | Decay (%) | SO2 (%) |
Harvest | - | 0 | 0 | - | 0 | 0 |
28 days (−0.5 °C) | 4.82 a | 2.14 d | 0.47 c | 1.89 | 0.94 d | 0.25 a |
10 days (5 °C) | 5.50 a | 3.20 cd | 0.94 c | 2.45 | 2.60 c | 0.62 a |
3 days | 6.61 a | 4.44 c | 1.39 b | 2.64 | 3.16 c | 0.62 a |
7 days | 7.90 a | 6.53 b | 1.68 ab | 3.95 | 4.95 b | 0.62 a |
10 days | 10.22 a | 9.92 a | 1.85 a | 5.18 | 8.30 a | 0.62 a |
p-value | 0.85 | <0.01 | <0.01 | 0.84 | <0.01 | 0.26 |
Season | 2018 | ||
---|---|---|---|
Time | Weight Loss (%) | Decay (%) | SO2 (%) |
Harvest | - | 0 | 0 |
28 days (−0.5 °C) | 1.31 a | 0.84 e | 0.88 a |
2 days (ambient) | 2.17 a | 1.33 e | 0.98 a |
10 days (5 °C) | 3.04 a | 2.35 d | 1.06 a |
3 days | 3.96 a | 3.24 c | 1.09 a |
7 days | 4.74 a | 4.46 b | 1.10 a |
10 days | 5.70 a | 6.70 a | 1.21 a |
p-value | 0.19 | <0.01 | 0.99 |
Year | 2017 | ||||||
---|---|---|---|---|---|---|---|
Time | L | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 29.55 a | 5.85 a | 6.77 a | 98.22 a | 18.72 a | 0.89 a | 1 d |
3 days | 30.81 a | 4.98 a | 6.56 a | 97.80 a | 18.16 a | 0.75 a | 2.4 c |
7 days | 31.07 a | 5.08 a | 6.59 a | 96.87 a | 18.34 a | 0.73 a | 4.4 b |
10 days | 30.91 a | 4.88 a | 6.75 a | 95.47 a | 19.15 a | 0.80 a | 5.0 a |
p-value | 0.06 | 0.45 | 0.98 | 0.79 | 0.85 | 0.50 | <0.01 |
Year | 2018 | ||||||
---|---|---|---|---|---|---|---|
Time | L | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 27.46 c | 7.91 a | 6.95 a | 98.15 a | 20.88 a | 0.86 a | 1 c |
3 days | 27.64 bc | 6.80 a | 6.74 a | 97.73 a | 16.77 a | 0.76 a | 2.5 b |
7 days | 27.96 b | 6.84 a | 6.83 a | 96.96 a | 18.60 a | 0.79 a | 4.6 a |
10 days | 28.94 a | 7.85 a | 7.00 a | 95.55 a | 19.15 a | 0.85 a | 4.8 a |
p-value | 0.06 | 0.45 | 0.98 | 0.79 | 0.85 | 0.50 | <0.01 |
2017 | |||||||
---|---|---|---|---|---|---|---|
Time | L | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 33.65 a | 7.76 a | 7.28 a | 98.23 a | 17.34 a | 0.99 a | 1 d |
14 days (−0.5 °C) | 30.78 a | 6.60 a | 7.08 a | 100.14 a | 19.39 a | 0.91 a | 1.4 d |
10 days (5 °C) | 29.78 a | 7.64 a | 7.74 a | 106.59 a | 18.97 a | 0.75 a | 2.4 c |
3 days | 30.61 a | 6.11 a | 7.41 a | 92.02 a | 19.63 a | 0.77 a | 3.5 b |
7 days | 30.52 a | 6.70 a | 8.44 a | 87.59 a | 19.52 a | 0.70 a | 4.7 a |
10 days | 31.38 a | 6.86 a | 9.20 a | 88.88 a | 17.10 a | 0.68 a | 4.9 a |
p-value | 0.79 | 0.49 | 0.24 | 0.21 | 0.73 | 0.27 | <0.01 |
2018 | |||||||
---|---|---|---|---|---|---|---|
Time | L | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 27.46 b | 7.91 a | 2.23 a | 111.06 a | 17.84 b | 0.72 c | 1 d |
14 days (−0.5 °C) | 27.88 b | 8.22 a | 2.87 a | 114.59 a | 17.99 b | 0.85 b | 1.3 d |
10 days (5 °C) | 27.32 b | 7.32 a | 4.05 a | 121.69 a | 19.14 a | 0.82 b | 2.7 c |
3 days | 27.84 b | 7.05 a | 2.19 a | 115.23 a | 18.95 a | 0.78 c | 3.7 b |
7 days | 27.56 b | 6.56 a | 1.94 a | 119.03 a | 19.13 a | 0.89 a | 4.6 a |
10 days | 30.30 a | 6.01 a | 3.45 a | 120.27 a | 18.95 a | 0.85 b | 4.8 a |
p-value | <0.01 | 0.31 | 0.19 | 0.49 | <0.01 | <0.01 | <0.01 |
2017 | |||||||
---|---|---|---|---|---|---|---|
Time | L* | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 30.04 a | 10.37 a | 9.36 a | 98.69 a | 17.80 a | 1.13 a | 1 e |
28 days (−0.5 °C) | 29.94 a | 8.80 a | 9.16 a | 94.41 a | 18.56 a | 0.74 a | 1.14 e |
10 days (5 °C) | 28.61 a | 7.89 a | 9.54 a | 98.70 a | 19.15 a | 0.64 a | 1.97 d |
3 days | 31.41 a | 6.81 a | 8.72 a | 97.00 a | 19.28 a | 0.73 a | 3.08 c |
7 days | 31.78 a | 6.52 a | 8.10 a | 99.70 a | 19.17 a | 0.67 a | 4.53 b |
10 days | 31.69 a | 5.76 a | 8.10 a | 97.20 a | 18.57 a | 0.67 a | 5.00 a |
p-value | 0.12 | 0.15 | 0.72 | 0.90 | 0.67 | 0.06 | <0.01 |
2018 | |||||||
---|---|---|---|---|---|---|---|
Time | L* | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 27.45 b | 7.91 a | 2.23 a | 106.60 a | 17.80 a | 0.72 b | 1 e |
28 days (−0.5 °C) | 27.75 b | 7.06 a | 1.76 a | 106.02 a | 18.69 a | 0.77 a | 1.97 e |
10 days (5 °C) | 28.09 ab | 7.20 a | 2.47 a | 104.34 a | 18.58 a | 0.77 a | 2.67 d |
3 days | 28.42 a | 6.96 a | 2.36 a | 110.07 a | 18.77 a | 0.72 b | 3.61 c |
7 days | 27.30 c | 6.60 a | 2.10 a | 110.21 a | 18.55 a | 0.69 c | 4.45 b |
10 days | 27.79 b | 7.23 a | 2.41 a | 112.65 a | 18.53 a | 0.73 b | 4.78 a |
p-value | <0.01 | 0.26 | 0.22 | 0.11 | 0.30 | p < 0.01 | <0.01 |
2018 | |||||||
---|---|---|---|---|---|---|---|
Time | L* | a* | b* | Firmness (N) | TSS (Brix °) | TA (%) | Stem Browning Index |
Harvest | 27.46 b | 7.91 a | 9.36 a | 116.60 a | 17.80 d | 0.79 a | 1 e |
28 days (−0.5 °C) | 27.49 b | 7.89 a | 9.16 a | 118.54 a | 18.54 c | 0.76 b | 1.89 e |
2 days (ambient) | 28.21 a | 7.65 a | 9.23 a | 115.72 a | 17.75 d | 0.75 b | 3.25d |
10 days (5 °C) | 27.71 b | 7.88 a | 9.54 a | 123.01 a | 19.55 ab | 0.72 c | 4.01 c |
3 days | 27.60 b | 8.02 a | 8.72 a | 121.96 a | 17.27 d | 0.72 c | 4.62 b |
7 days | 28.23 a | 7.69 a | 8.34 a | 116.28 a | 19.11 b | 0.75 b | 4.94 a |
10 days | 27.82 b | 7.83 a | 8.12 a | 123.24 a | 19.74 a | 0.76 b | 4.94 a |
p-value | <0.01 | 0.86 | 0.21 | 0.23 | <0.01 | <0.01 | <0.01 |
Year | Supply Chain Scenario | Storage Condition | Estimated Physical and Economic Losses | * Estimated Environmental and Resource Impacts | ||||
---|---|---|---|---|---|---|---|---|
Time | Temp (°C) and Humidity (%) | Physical (ton) | Value (ZAR) | Energy (MJ) | Water Footprint (m3) | Emissions CO2eq (ton) | ||
2017 | A | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1052 a | 13,816,968 a | 6,868,508 a | 221,288 a | 957 a |
2017 | A | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1904 b | 25,007,316 b | 12,431,216 b | 400,466 b | 1733 b |
2017 | A | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 2068 b | 27,161,112 b | 13,461,972 b | 435,003 b | 1882 b |
2017 | B | 14 days | −0.3 ± 0.7 °C; 81.3 ± 4.1%RH | 493 a | 6,475,062 a | 3,218,797 a | 103,703 a | 449 a |
2017 | B | 10 days | 5.4 ± 0.6 °C; 83.7 ± 2.9%RH | 874 ab | 11,479,116 ab | 5,706,346 ab | 183,846 ab | 795 ab |
2017 | B | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1431 bc | 18,794,754 bc | 9,342,999 bc | 301,011 bc | 1302 bc |
2017 | B | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 2074 cd | 27,239,916 cd | 13,541,146 cd | 436,266 cd | 1887 cd |
2017 | B | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 2534 d | 33,281,556 d | 16,544,486 d | 533,027d | 2306 d |
2017 | C | 28 days | −0.3 ± 0.7 °C; 81.3 ± 4.1%RH | 13,299 a | 279,305,598 a | 86,829,171 a | 2,797,445 a | 12,102 a |
2017 | C | 10 days | 5.4 ± 0.6 °C; 83.7 ± 2.9%RH | 21,443 b | 450,345,886 b | 140,001,347 b | 4,510,535 b | 19,513 b |
2017 | C | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 22,602 b | 474,687,204 b | 147,568,458 b | 4,754,331 b | 20,568 b |
2017 | C | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 29,251 b | 614,329,502 b | 190,979,779 b | 6,152,948 b | 26,618 b |
2017 | C | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 43,587 c | 915,414,174 c | 284,579,523 c | 9,168,525 c | 39,664 c |
2018 | A | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 555 a | 7,289,370 a | 3,623,595a | 116,744 a | 505,05 a |
2018 | A | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 575 a | 7,552,050 a | 3,754,175a | 120,951 a | 523,25 a |
2018 | A | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1305 b | 17,139,870 b | 8,520,345b | 274,507 b | 118,755 b |
2018 | B | 14 days | −0.3 ± 0.7 °C; 81.3 ± 4.1%RH | 611 a | 8,024,874 a | 3,989,219 a | 128,524 a | 556 a |
2018 | B | 10 days | 5.4 ± 0.6 °C; 83.7 ± 2.9%RH | 728 ab | 9,561,552 ab | 4,753,112 ab | 153,135 ab | 663 ab |
2018 | B | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1163 bc | 15,274,842 bc | 7,593,227 bc | 244,637 bc | 1058 bc |
2018 | B | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1303 cd | 17,113,602 cd | 85,07,287 cd | 274,086 cd | 1186 cd |
2018 | B | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 1856 d | 24,376,704 d | 12,117,824 d | 390,410 d | 1689 d |
2018 | C | 28 days | −0.3 ± 0.7 °C; 81.3 ± 4.1%RH | 29,861 a | 627,140,722 a | 194,962,469 a | 6,281,261 a | 27,174 a |
2018 | C | 10 days | 5.4 ± 0.6 °C; 83.7 ± 2.9%RH | 11,560 b | 242,783,120 b | 75,475,240 b | 2,431,646 b | 10,520 b |
2018 | C | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 12,109 b | 254,313,218 b | 79,059,661 b | 2,547,128 b | 11,019 b |
2018 | C | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 21,107 ab | 443,289,214 ab | 137,807,603 ab | 4,439,857 ab | 19,207 ab |
2018 | C | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 31,173 a | 654,695,346 a | 203,528,517 a | 6,557,241 a | 2,836,743 a |
2018 | D | 28 days | −0.3 ± 0.7 °C; 81.3 ± 4.1%RH | 9242 a | 194,100,484 a | 60,341,018 a | 1,944,055 a | 8410 a |
2018 | D | 2 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 9730 a | 204,349,460 a | 63,527,170 a | 2,046,706 a | 8854a |
2018 | D | 10 days | 5.4 ± 0.6 °C; 83.7 ± 2.9%RH | 13,024 ab | 273,530,048 ab | 85,033,696 ab | 2,739,598 ab | 11,852 ab |
2018 | D | 3 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 15,251 bc | 320,301,502 bc | 99,573,779 bc | 3,208,048 bc | 13,878 bc |
2018 | D | 7 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 20,314 c | 426,634,628 c | 132,630,106 c | 4,273,050 c | 18,486 c |
2018 | D | 10 days | 25.1 ± 1.3 °C; 46.6 ± 6.0%RH | 27,177 d | 570,771,354 d | 177,438,633 d | 5,716,682 d | 24,731 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanckenberg, A.; Opara, U.L.; Fawole, O.A. Postharvest Losses in Quantity and Quality of Table Grape (cv. Crimson Seedless) along the Supply Chain and Associated Economic, Environmental and Resource Impacts. Sustainability 2021, 13, 4450. https://doi.org/10.3390/su13084450
Blanckenberg A, Opara UL, Fawole OA. Postharvest Losses in Quantity and Quality of Table Grape (cv. Crimson Seedless) along the Supply Chain and Associated Economic, Environmental and Resource Impacts. Sustainability. 2021; 13(8):4450. https://doi.org/10.3390/su13084450
Chicago/Turabian StyleBlanckenberg, Anelle, Umezuruike Linus Opara, and Olaniyi Amos Fawole. 2021. "Postharvest Losses in Quantity and Quality of Table Grape (cv. Crimson Seedless) along the Supply Chain and Associated Economic, Environmental and Resource Impacts" Sustainability 13, no. 8: 4450. https://doi.org/10.3390/su13084450
APA StyleBlanckenberg, A., Opara, U. L., & Fawole, O. A. (2021). Postharvest Losses in Quantity and Quality of Table Grape (cv. Crimson Seedless) along the Supply Chain and Associated Economic, Environmental and Resource Impacts. Sustainability, 13(8), 4450. https://doi.org/10.3390/su13084450