Analysis of Mudstone Fracture and Precursory Characteristics after Corrosion of Acidic Solution Based on Dissipative Strain Energy
Abstract
:1. Introduction
2. Experimental Design
2.1. Sample Reparation
2.2. Experimental Equipment and Methods
3. Experimental Results
3.1. Water–Rock Interaction
3.1.1. pH Value
3.1.2. Porosity
- m0—mass of dry mudstone (g)
- m1—mass of saturated mudstone (g)
- m2—mass of saturated mudstone in water (g)
- ρv—density of water (g/cm3)
- m3—Mass of dry rock sample powder (g)
- m4—Mass of a density bottle containing distilled water (g)
- m5—Mass of a density bottle containing rock sample powder and distilled water (g)
4. Strain Energy
4.1. The Calculation of Strain Energy
4.2. Strain Energy Characteristics
5. The Precursor of Rock Failure
6. Failure Mode
7. Conclusions
- (1)
- The rate of change in porosity and the coefficient of chemical damage of the rock samples after chemical corrosion decreases almost linearly with an increase in the pH value of the chemical solution.
- (2)
- The total strain energy, elastic strain energy, and dissipative strain energy at the peak stress point decrease with the increase in the pH value of a chemical solution. It is proposed that the turning point of the ratio curve of dissipated strain energy from decline to rise can be considered as the precursory point of rock failure.
- (3)
- The stress value increases and the strain value decreases at the failure precursor point with the increase of the pH value of the chemical solution. However, the ratio of the stress value of the failure precursor point to the peak stress slightly changes with the change of the pH value, which is 0.883.
- (4)
- Rock samples soaked in a weak acidic chemical solution (pH = 7.3 and 5.3) are damaged by a tensile crack, while rock samples soaked in a strong acidic chemical solution (pH = 3.3 and 1.3) are mainly damaged by tensile shear combination.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.P.; Ju, Y.; Li, L.Y. Rock strength and global failure criterion based on energy dissipation and release principle. Chin. J. Rock Mech. Eng. 2005, 24, 3003–3010. [Google Scholar]
- Xie, H.P.; Ju, Y.; Li, L.Y.; Peng, R.D. Energy mechanism of deformation and failure process of rock mass. Chin. J. Rock Mech. Eng. 2008, 27, 1729–1740. [Google Scholar]
- Gao, R.; Kuang, T.J.; Zhang, Y.Q.; Zhang, W.Y.; Quan, C.Y. Controlling mine pressure by subjecting high-level hard rock strata to ground fracturing. Int. J. Coal Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.T.; Zhang, X.; Wang, Z.; Yang, C. A novel application of strain energy for fracturing process analysis of hard rock under true triaxial compression. Rock Mech. Rock Eng. 2019, 52, 4257–4272. [Google Scholar] [CrossRef]
- Zhou, Y.; Sheng, Q.; Li, N.; Fu, X.D. The influence of strain rate on the energy characteristics and damage evolution of rock materials under dynamic uniaxial compression. Rock Mech. Rock Eng. 2020, 53, 3823–3834. [Google Scholar] [CrossRef]
- Zuo, J.P.; Wang, J.T.; Jiang, Y.Q. Macro/meso failure behavior of surrounding rock in deep roadway and its control technology. Int. J. Coal Sci. Technol. 2019, 6, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Dou, L.T.; Yang, K.; Chi, X.L. Fracture behavior and acoustic emission characteristics of sandstone samples with inclined precracks. Int. J. Coal Sci. Technol. 2021, 8, 77–87. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zuo, J.P.; Liu, D.J.; Li, Y.J.; Wang, Z.B. Experimental and numerical study of coal-rock bimaterial composite bodies under triaxial compression. Int. J. Coal Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Ding, X.; Xiao, X.C.; Wu, D.; Lv, X.F. Mechanical properties and charge signal characteristics in coal material failure under different loading paths. Int. J. Coal Sci. Technol. 2019, 6, 138–149. [Google Scholar] [CrossRef]
- Li, Y.; Huang, D.; Li, X.A. Strain rate dependency of coarse crystal marble under uniaxial compression: Strength, deformation and strain energy. Rock Mech. Rock Eng. 2014, 47, 1153–1164. [Google Scholar] [CrossRef]
- Pan, X.H.; Lu, Q. A quantitative strain energy indicator for predicting the failure of laboratory scale rock samples: Application to shale rock. Rock Mech. Rock Eng. 2018, 51, 2689–2707. [Google Scholar] [CrossRef]
- Rezaei, M.; Hossaini, M.F.; Majdi, A. Determination of longwall mining induced stress using the strain energy method. Rock Mech. Rock Eng. 2015, 48, 2421–2433. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.M.; Si, G.Y.; Cao, A.Y.; Gong, S.Y.; Wang, G.H.; Yuan, S.S. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines. Int. J. Rock Mech. Min. Sci. 2019, 123, 104086. [Google Scholar] [CrossRef]
- Feng, P.; Xu, Y.; Dai, F. Effects of dynamic strain rate on the energy dissipation and fragment characteristics of cross-fissured rocks. Int. J. Rock Mech. Min. Sci. 2021, 138, 104600. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Deng, M.; Bai, J.B.; Yu, X.Y.; Wu, Q.H.; Jiang, L.S. Strain energy evolution and conversion under triaxial unloading confining pressure tests due to gob-side entry retained. Int. J. Rock Mech. Min. Sci. 2020, 126, 104184. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.F.; Han, J.M.; Jiang, B.B.; Gao, J. Understanding of mineral change mechanisms in coal mine groundwater reservoir and their influences on effluent water quality: A experimental study. Int. J. Coal Sci. Technol. 2021, 8, 154–167. [Google Scholar] [CrossRef]
- Guo, P.Y.; Gu, J.; Su, Y.; Wang, J.; Ding, Z.W. Effect of cyclic wetting-drying on tensile mechanical behavior and microstructure of clay-bearing sandstone. Int. J. Coal Sci. Technol. 2021, 1–13. [Google Scholar]
- Yu, H.; Gui, H.R.; Zhao, H.H.; Wang, M.C.; Li, J.; Fang, H.X.; Jiang, Y.Q.; Zhang, Y.R. Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China. Int. J. Coal Sci. Technol. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Sho, O.; Hideaki, Y.; Naoki, K.; Dae, S.C.; Kiyoshi, K. Modeling of coupled thermal-hydraulic-mechanical-chemical processes for predicting the evolution in permeability and reactive transport behavior within single rock fractures. Int. J. Rock Mech. Min. Sci. 2018, 107, 271–281. [Google Scholar]
- Han, T.; Shi, J.; Cao, X. Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze–thaw cycles. Rock Mech. Rock Eng. 2016, 49, 4245–4255. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, F.; Zhou, K.; Gao, R.G. Mechanical properties and statistical damage constitutive model of rock under a coupled chemical-mechanical condition. Geofluids 2019, 2019, 7349584. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, P.; Wang, S. Experimental study on the macroscopic mechanical effects of water-rock chemistry on rocks. Chin. J. Rock Mech. Eng. 2002, 21, 526–531. [Google Scholar]
- Feng, X.T.; Ding, W.X. Experimental study of limestone micro-fracturing under a coupled stress.; fluid flow and changing chemical environment. Int. J. Rock Mech. Min. Sci. 2007, 44, 437–448. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.H.; Zhu, Q.Z.; Shi, C.; Xu, W.Y. Experimental study of mechanical characteristics of sandy slate under chemical corrosion. Rock Soil Mech. 2017, 9, 2559–2566. [Google Scholar]
- Ding, W.; Chen, J.; Xu, T.; Chen, H.; Wang, H. Study on mechanical and chemical dissolution characteristics of limestone under chemical solution erosion. Rock Soil Mech. 2015, 36, 1825–1830. [Google Scholar]
- Han, T.; Chen, Y.; Shi, J.; Yu, C.; He, M. Experimental study on the influence of hydrochemical corrosion on mechanical properties of sandstone. Chin. J. Rock Mech. Eng. 2013, 32, 3065–3072. [Google Scholar]
- Ma, D.; Zhang, J.X.; Duan, H.Y.; Huang, Y.L.; Li, M.; Sun, Q.; Zhou, N. Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection. Chemosphere 2021, 264, 128400. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Li, X.B.; Li, Z.H.; Zhou, Z.L.; Li, T.B. Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones. Tunn. Undergr. Space Technol. 2019, 91, 102993. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Zhang, Q.; Zhang, J.X.; Li, W.X.; Zhou, Z.L.; Liu, W.T. A numerical gas fracturing model of coupled thermal, flowing and nechanical effects. Comput. Mater. Contin. 2020, 65, 2123–2141. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Liu, J.F.; Li, X.B.; Zhou, Z.L. The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation. Sci. Total Environ. 2019, 664, 436–448. [Google Scholar] [CrossRef]
- Miao, S.J.; Cai, M.F.; Guo, Q.F.; Wang, P.T.; Liang, M.C. Damage effects and mechanisms in granite treated with acidic chemical solutions. Int. J. Rock Mech. Min. Sci. 2016, 88, 77–86. [Google Scholar] [CrossRef]
- Cao, K.; Naseer, K.H.; Liu, W.; Hussain, S.; Zhu, Y.; Cao, Z.; Bian, Y. Prediction model of dilatancy stress based on brittle rock: A case study of sandstone. Arab. J. Sci. Eng. 2021, 46, 2165–2176. [Google Scholar] [CrossRef]
- Cao, K.W.; Ma, L.; Wu, Y.; Naseer, K.H.; Yang, J. Cyclic fatigue characteristics of rock failure using infrared radiation as precursor to violent failure: Experimental insights from loading and unloading response. Fatigue Fract. Eng. Mater. Struct. 2020, 44, 584–594. [Google Scholar] [CrossRef]
Solution Composition | Solution Concentration/(Mol/L) | pH | |
---|---|---|---|
Neutral solution | NaCl, KCl | 0.1 | 7.3 |
Acid solution | NaCl, KCl | 0.1 | 5.3 |
Acid solution | NaCl, KCl | 0.1 | 3.3 |
Acid solution | NaCl, KCl | 0.1 | 1.3 |
Number | Initial Porosity/% | Porosity After Corrosion/% | Chemical Damage Parameters/% |
---|---|---|---|
A1 | 15.74 | 16.95 | 1.44 |
A2 | 16.01 | 17.24 | 1.47 |
A3 | 15.88 | 17.14 | 1.50 |
B1 | 16.33 | 17.38 | 1.25 |
B2 | 15.92 | 16.92 | 1.19 |
B3 | 16.04 | 17.02 | 1.17 |
C1 | 16.21 | 16.93 | 0.85 |
C2 | 15.85 | 16.56 | 0.84 |
C3 | 16.08 | 16.76 | 0.81 |
D1 | 15.77 | 16.07 | 0.36 |
D2 | 15.80 | 16.12 | 0.38 |
D3 | 16.17 | 16.45 | 0.33 |
Number | Total Strain Energy/g·cm3 | Elastic Strain Energy/g·cm3 | Dissipative Strain Energy/g·cm3 |
---|---|---|---|
A1 | 0.0979 | 0.0557 | 0.0422 |
A2 | 0.112 | 0.0735 | 0.0389 |
A3 | 0.103 | 0.0647 | 0.0387 |
B1 | 0.0888 | 0.0541 | 0.0347 |
B2 | 0.0914 | 0.0633 | 0.0282 |
B3 | 0.0880 | 0.0691 | 0.0189 |
C1 | 0.0777 | 0.0605 | 0.0172 |
C2 | 0.0871 | 0.0711 | 0.0159 |
C3 | 0.0728 | 0.0603 | 0.0394 |
D1 | 0.0633 | 0.0357 | 0.0276 |
D2 | 0.0881 | 0.0696 | 0.0184 |
D3 | 0.0530 | 0.0420 | 0.0110 |
Number | Precursor Point (A) | Peak Point | Ratio | |||
---|---|---|---|---|---|---|
Stress/MPa | Strain | Stress/MPa | Strain | σA/σmax | εA/εmax | |
A1 | 16.17 | 0.0120 | 17.33 | 0.0146 | 0.933 | 0.822 |
A2 | 15.58 | 0.0151 | 18.61 | 0.0177 | 0.837 | 0.853 |
A3 | 13.53 | 0.0119 | 17.51 | 0.0153 | 0.773 | 0.778 |
B1 | 19.47 | 0.00965 | 21.59 | 0.0119 | 0.902 | 0.811 |
B2 | 17.30 | 0.0101 | 21.54 | 0.0118 | 0.803 | 0.856 |
B3 | 20.28 | 0.0113 | 22.11 | 0.0123 | 0.917 | 0.919 |
C1 | 24.40 | 0.00833 | 26.87 | 0.00896 | 0.908 | 0.929 |
C2 | 25.58 | 0.00854 | 27.01 | 0.0090 | 0.947 | 0.949 |
C3 | 23.05 | 0.00688 | 26.25 | 0.00896 | 0.878 | 0.768 |
D1 | 26.76 | 0.00506 | 30.41 | 0.00613 | 0.880 | 0.825 |
D2 | 29.05 | 0.00581 | 31.70 | 0.00638 | 0.916 | 0.911 |
D3 | 27.69 | 0.00598 | 30.77 | 0.00609 | 0.900 | 0.982 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Wu, Y.; Cao, K.; Muhammad Khan, N.; Hussain, S.; Lee, S.; Ma, C. Analysis of Mudstone Fracture and Precursory Characteristics after Corrosion of Acidic Solution Based on Dissipative Strain Energy. Sustainability 2021, 13, 4478. https://doi.org/10.3390/su13084478
Dong X, Wu Y, Cao K, Muhammad Khan N, Hussain S, Lee S, Ma C. Analysis of Mudstone Fracture and Precursory Characteristics after Corrosion of Acidic Solution Based on Dissipative Strain Energy. Sustainability. 2021; 13(8):4478. https://doi.org/10.3390/su13084478
Chicago/Turabian StyleDong, Xu, Yu Wu, Kewang Cao, Naseer Muhammad Khan, Sajjad Hussain, Seungyeon Lee, and Chuan Ma. 2021. "Analysis of Mudstone Fracture and Precursory Characteristics after Corrosion of Acidic Solution Based on Dissipative Strain Energy" Sustainability 13, no. 8: 4478. https://doi.org/10.3390/su13084478
APA StyleDong, X., Wu, Y., Cao, K., Muhammad Khan, N., Hussain, S., Lee, S., & Ma, C. (2021). Analysis of Mudstone Fracture and Precursory Characteristics after Corrosion of Acidic Solution Based on Dissipative Strain Energy. Sustainability, 13(8), 4478. https://doi.org/10.3390/su13084478