The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Algae Source
2.1.2. Plant Material
2.2. Methods
2.2.1. Phytochemical Analysis of TAM®
2.2.2. Field Experiment and Soil Analysis
2.2.3. Treatments and Experimental Design
2.2.4. Determination of Growth and Yield Parameters
2.2.5. Determination of Chlorophyll, Carotenoid, and Mineral Contents
2.2.6. Preparation of Plant Extracts
2.2.7. Determination of Antioxidant Activity and Phytochemicals
2.2.8. Determination of Cytotoxic Activity
2.2.9. Statistical Analysis
3. Results
3.1. Soil Analysis
3.2. Morpho-Agronomic Properties
3.3. Pigment Content
3.4. Nutrient Content
3.5. Phytochemical Content
3.6. Antioxidant Activity
3.7. Cytotoxic Activity
3.8. Principal Components Analysis (PCA)
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | Factors | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Plant height | Years | 57.01 | 1 | 57.01 | 656.80 | 0.00 |
Treatments | 231.76 | 3 | 77.25 | 890.00 | 0.00 | |
Interaction | 24.48 | 3 | 8.16 | 94.01 | 0.00 | |
Number of leaves | Years | 2.05 | 1 | 2.05 | 6.04 | 0.03 |
Treatments | 4.45 | 3 | 1.48 | 4.36 | 0.05 | |
Interaction | 1.78 | 3 | 0.59 | 1.75 | 0.20 | |
Dry matter | Years | 0.06 | 1 | 0.06 | 0.19 | 0.67 |
Treatments | 14.17 | 3 | 4.72 | 13.89 | 0.00 | |
Interaction | 0.15 | 3 | 0.05 | 0.15 | 0.93 | |
Total yield | Years | 0.00 | 1 | 0.00 | 0.01 | 0.92 |
Treatments | 0.90 | 3 | 0.30 | 3.46 | 0.04 | |
Interaction | 0.22 | 3 | 0.07 | 0.85 | 0.49 | |
Chl. a | Years | 0.00 | 1 | 0.00 | 0.35 | 0.56 |
Treatments | 0.22 | 3 | 0.07 | 16.92 | 0.00 | |
Interaction | 0.03 | 3 | 0.01 | 2.53 | 0.09 | |
Chl. b | Years | 0.09 | 1 | 0.09 | 0.18 | 0.68 |
Treatments | 54.99 | 3 | 18.33 | 39.03 | 0.00 | |
Interaction | 0.95 | 3 | 0.32 | 0.67 | 0.58 | |
Carotene | Years | 0.00 | 1 | 0.00 | 0.00 | 0.98 |
Treatments | 4.57 | 3 | 1.52 | 42.81 | 0.00 | |
Interaction | 0.10 | 3 | 0.03 | 0.89 | 0.47 | |
Total phenols | Years | 19.15 | 1 | 19.15 | 0.42 | 0.52 |
Treatments | 3485.78 | 3 | 1161.93 | 25.68 | 0.00 | |
Interaction | 62.40 | 3 | 20.80 | 0.46 | 0.71 | |
Nitrogen | Years | 0.00 | 1 | 0.00 | 0.70 | 0.42 |
Treatments | 0.16 | 3 | 0.05 | 15.60 | 0.00 | |
Interaction | 0.00 | 3 | 0.00 | 0.12 | 0.95 | |
Phosphorus | Years | 0.00 | 1 | 0.00 | 0.05 | 0.82 |
Treatments | 0.01 | 3 | 0.00 | 1.00 | 0.42 | |
Interaction | 0.00 | 3 | 0.00 | 0.20 | 0.90 | |
Potassium | Years | 0.00 | 1 | 0.00 | 0.10 | 0.75 |
Treatments | 4.80 | 3 | 1.60 | 137.48 | 0.00 | |
Interaction | 0.01 | 3 | 0.00 | 0.23 | 0.88 | |
Total flavonoids | Years | 693.38 | 1 | 693.38 | 0.86 | 0.37 |
Treatments | 9,586,325.46 | 3 | 3,195,441.82 | 3950.88 | 0.00 | |
Interaction | 507.46 | 3 | 169.15 | 0.21 | 0.89 | |
DPPH | Years | 3.11 | 1 | 3.11 | 0.60 | 0.45 |
Treatments | 1078.40 | 3 | 359.47 | 69.72 | 0.00 | |
Interaction | 10.15 | 3 | 3.38 | 0.66 | 0.59 | |
Total antioxidants | Years | 8.86 | 1 | 8.86 | 0.23 | 0.64 |
Treatments | 256.11 | 3 | 85.37 | 2.23 | 0.12 | |
Interaction | 30.36 | 3 | 10.12 | 0.26 | 0.85 |
References
- Abbas, E.M.; Ali, F.S.; Desouky, M.G.; Ashour, M.; El-Shafei, A.; Maaty, M.M.; Sharawy, Z.Z. Novel comprehensive molecular and ecological study introducing coastal mud shrimp (Solenocera crassicornis) recorded at the Gulf of suez, Egypt. J. Mar. Sci. Eng. 2021, 9, 9. [Google Scholar] [CrossRef]
- Ashour, M.; Abo-Taleb, H.; Abou-Mahmoud, M.; El-Feky, M.M.M. Effect of the integration between plankton natural productivity and environmental assessment of irrigation water, El-Mahmoudia Canal, on aquaculture potential of Oreochromis niloticus. Turk. J. Fish. Aquat. Sci. 2018, 18. [Google Scholar] [CrossRef]
- Mur, L.A.J.; Simpson, C.; Kumari, A.; Gupta, A.K.; Gupta, K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2016, 119, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Shambhavi, S.; Kumar, R.; Sharma, S.P.; Verma, G.; Sharma, R.P.; Sharma, S.K. Long-term effect of inorganic fertilizers and amendments on productivity and root dynamics under maize-wheat intensive cropping in an acid Alfisol. J. Appl. Nat. Sci. 2017, 9, 2004–2012. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, L.; Wen, T.; Zhu, R.; Zhang, J.; Cai, Z. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol. Res. 2015, 181, 33–42. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, H.; Ali, M.; Hayat, K.; Khan, M.; Cheng, Z. Aqueous Garlic Extract as a Plant Biostimulant Enhances Physiology, Improves Crop Quality and Metabolite Abundance, and Primes the Defense Responses of Receiver Plants. Appl. Sci. 2018, 8, 1505. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of seaweed extracts from laminaria and ascophyllum nodosum spp. As biostimulants in zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Helaly, A.A.; Hassan, S.M.; Craker, L.E.; Mady, E. Effects of growth-promoting bacteria on growth, yield and nutritional value of collard plants. Ann. Agric. Sci. 2020. [Google Scholar] [CrossRef]
- Metwally, A.S.; El-Naggar, H.A.; El-Damhougy, K.A.; Bashar, M.A.E.; Ashour, M.; Abo-Taleb, H.A.H. GC-MS analysis of bioactive components in six different crude extracts from the Soft Coral (Sinularia maxim) collected from Ras Mohamed, Aqaba Gulf, Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 2020, 24, 425–434. [Google Scholar] [CrossRef]
- Abo-Taleb, H.A.; Zeina, A.F.; Ashour, M.; Mabrouk, M.M.; Sallam, A.E.; El-Feky, M.M. Isolation and cultivation of the freshwater amphipod Gammarus pulex (Linnaeus, 1758), with an evaluation of its chemical and nutritional content. Egypt. J. Aquat. Biol. Fish. 2020, 24, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Sharawy, Z.Z.; Ashour, M.; Abbas, E.; Ashry, O.; Helal, M.; Nazmi, H.; Kelany, M.; Kamel, A.; Hassaan, M.; Rossi, W.; et al. Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 2020, 51, 2216–2228. [Google Scholar] [CrossRef]
- Abo-Taleb, H.; Ashour, M.; El-Shafei, A.; Alataway, A.; Maaty, M.M. Biodiversity of Calanoida Copepoda in Different Habitats of the North-Western Red Sea (Hurghada Shelf). Water 2020, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Elshobary, M.E.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. Int. J. Hydrogen Energy 2021, 46, 3135–3159. [Google Scholar] [CrossRef]
- Ashour, M. Current and future perspectives of microalgae-aquaculture in Egypt, case study: SIMAF-prototype-project. Egypt. J. Anim. Prod. 2020, 57, 163–170. [Google Scholar] [CrossRef]
- Ashour, M.; El-Shafei, A.A.; Khairy, H.M.; Abd-Elkader, D.Y.; Mattar, M.A.; Alataway, A.; Hassan, S.M. Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow. Agronomy 2020, 10, 420. [Google Scholar] [CrossRef] [Green Version]
- Hamed, S.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M.M.; El-Rhman, A.A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M.M. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Ashour, M.; Elshobary, M.E.; El-Shenody, R.; Kamil, A.W.; Abomohra, A.E.F. Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 2019, 120, 439–447. [Google Scholar] [CrossRef]
- El-Khodary, G.M.; El-Sayed, H.S.; Khairy, H.M.; El-Sheikh, M.A.; Qi, X.; Elshobary, M.E. Comparative study on growth, survival and pigmentation of Solea aegyptiaca larvae by using four different microalgal species with emphasize on water quality and nutritional value. Aquac. Nutr. 2020, anu.13211. [Google Scholar] [CrossRef]
- Zaki, M.A.; Ashour, M.; Heneash, A.M.M.; Mabrouk, M.M.; Alprol, A.E.; Khairy, H.M.; Nour, A.M.; Mansour, A.T.; Hassanien, H.A.; Gaber, A. Potential Applications of Native Cyanobacterium Isolate (Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer (Brachionus plicatilis) Production. Sustainability 2021, 13, 1769. [Google Scholar] [CrossRef]
- Heneash, A.M.M.; Ashour, M.; Matar, M. Effect of Un-live Microalgal diet, Nannochloropsis oculata and Arthrospira (Spirulina) platensis, Comparing to Yeast on Population of Rotifer, Brachionus plicatilis. Mediterr. Aquac. J. 2015, 63–70. [Google Scholar] [CrossRef]
- Elshobary, M.E.; El-Shenody, R.; Abomohra, A.E.E.E.; El-Shenody, R.A.; Abomohra, A.E.E.E.; El-Shenody, R.; Abomohra, A.E.E.E. Sequential biofuel production from seaweeds enhances the energy recovery: A case study for biodiesel and bioethanol production. Int. J. Energy Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Osman, M.E.H.; Abo-Shady, A.M.; Elshobary, M.E.; Abd El-Ghafar, M.O.; Abomohra, A.E.-F.F. Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. Environ. Sci. Pollut. Res. 2020, 27, 32481–32493. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.E.H.H.; Abu-Shady, A.M.; Elshobary, M.E.; Aboshady, A.; Elshobary, M.E.; Abu-Shady, A.M.; Elshobary, M.E.; Aboshady, A.; Elshobary, M.E. The Seasonal Fluctuation of the Antimicrobial Activity of Some Macroalgae Collected from Alexandria Coast, Egypt. In Salmonella—Distribution, Adaptation, Control Measures and Molecular Technologies; InTechOpen: London, UK, 2012; pp. 173–186. [Google Scholar]
- Osman, M.E.H.; Aboshady, A.M.; Elshobary, M.E. Production and characterization of antimicrobial active substance from some macroalgae collected from Abu- Qir bay (Alexandria) Egypt. Afr. J. Biotechnol. 2013, 12, 6847–6858. [Google Scholar] [CrossRef]
- Osman, M.E.H.; Abushady, A.M.; Elshobary, M.E. In vitro screening of antimicrobial activity of extracts of some macroalgae collected from Abu- Qir bay Alexandria, Egypt. Afr. J. Biotechnol. 2010, 9, 7203–7208. [Google Scholar] [CrossRef]
- El-Shenody, R.A.; Ashour, M.; Ghobara, M.M.E. Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Braz. J. Food Technol. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Shabaka, S.H. Checklist of seaweeds and seagrasses of Egypt (Mediterranean Sea): A review. Egypt. J. Aquat. Res. 2018, 44, 203–212. [Google Scholar] [CrossRef]
- Bogani, P.; Visioli, F. Antioxidants in the Mediterranean Diets: An Update. In More on Mediterranean Diets; KARGER: Basel, Switzerland, 2006; Volume 97, pp. 162–179. [Google Scholar]
- Jaafar, N.S.; Jaafar, I.S. Eruca sativa linn.: Pharmacognostical and pharmacological properties and pharmaceutical preparations. Asian J. Pharm. Clin. Res. 2019, 12, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Gugliandolo, A.; Giacoppo, S.; Ficicchia, M.; Aliquò, A.; Bramanti, P.; Mazzon, E. Eruca sativa seed extract: A novel natural product able to counteract neuroinflammation. Mol. Med. Rep. 2018, 17, 6235–6244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neriman, T.B.; Mehmet, E.I.; Mahmut, T. Mineral content of the rocket plant (Eruca sativa). Afr. J. Biotechnol. 2011, 10, 14080–14082. [Google Scholar] [CrossRef]
- Alruwaih, N.A.; Yaylayan, V.A. Comparative evaluation of bioactive compounds in lyophilized and tray-dried rocket (Eruca sativa). J. Food Process. Preserv. 2017, 41, e13205. [Google Scholar] [CrossRef]
- Doležalová, I.; Duchoslav, M.; Dušek, K. Biology and Yield of Rocket (Eruca sativa Mill.) under Field Conditions of the Czech Republic (Central Europe). Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 530. [Google Scholar] [CrossRef] [Green Version]
- Omri, A.H.; Mosbah, H.; Majouli, K.; Besbes, M.H.; Ben, H.J.; Flamini, G.; Aouni, M.; Selmi, B. Chemical composition and biological activities of Eruca vesicaria subsp. longirostris essential oils. Pharm. Biol. 2016, 54, 2236–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, T.S. Effect of Organic Fertilizer Addition and Spraying Seaweed Extract on Some Growth Characters, Yield and Active Ingredient of Arugula Plant (Eruca sativa Mill). J. Tikrit Univ. Agri. Sci. 2018, 18, 21–30. [Google Scholar]
- Cohen, A.; Burgos-Aceves, M.A.; Bar-Ziv, N.; Smith, Y. Cruciferous vegetables consumption and lung cancer prevention: Epidemiological studies and molecular mechanisms. J. Xiangya Med. 2019, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Ashour, M. Bioactive Compounds Extracted from Marine Algae Improve the Growth and Immunity of Plants, Fish and Marine Crustaceans. Egypt Patent Application 2046, 23 December 2019. under processing. [Google Scholar]
- Khairy, H.M.; El-Sheikh, M.A. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi J. Biol. Sci. 2015, 22, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L.B.; Siitonen, P.H.; Thompson, H.C. Methods for the Determination of Arsenic, Cadmium, Copper, Lead, and Tin in Sucrose, Corn Syrups, and High-Fructose Corn Syrups by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Agric. Food Chem. 1997, 45, 162–165. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Osman, M.E.H.; Abushady, A.M.; Piercey-Normore, M.D. Comparison of lichen-forming cyanobacterial and green algal photobionts with free-living algae. Cryptogam. Algol. 2015, 36, 81–100. [Google Scholar] [CrossRef]
- Albrektienė, R.; Rimeika, M.; Zalieckienė, E.; Šaulys, V.; Zagorskis, A. Determination of organic matter by UV absorption in the ground water. J. Environ. Eng. Landsc. Manag. 2012, 20, 163–167. [Google Scholar] [CrossRef]
- Elshobary, M.E.; El-Shenody, R.A.; Ashour, M.; Zabed, H.M.; Qi, X. Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum. Food Biosci. 2020, 35, 100567. [Google Scholar] [CrossRef]
- Ashour, M.; Mabrouk, M.M.; Ayoub, H.F.; El-Feky, M.M.M.; Sharawy, Z.Z.; Hoseinifar, S.H.; Rossi, W.; Van Doan, H.; El-Haroun, E.; Goda, A.M.-S. Effect of dietary seaweed extract supplementation on growth, feed utilization, hematological indices, and non-specific immunity of Nile Tilapia, Oreochromis niloticus challenged with Aeromonas hydrophila. J. Appl. Phycol. 2020, 32, 3467–3479. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Sakai, N.; Zhang, L.; Hassanien, H.A. Impact of Seaweed Liquid Extract Biostimulant on Growth, Yield, and Chemical Composition of Cucumber (Cucumis sativus). Agriculture 2021, 11, 320. [Google Scholar] [CrossRef]
- Abdel-Latif, H.H.; Shams El-Din, N.G.; Ibrahim, H.A.H. Antimicrobial activity of the newly recorded red alga Grateloupia doryphora collected from the Eastern Harbor, Alexandria, Egypt. J. Appl. Microbiol. 2018, 125, 1321–1332. [Google Scholar] [CrossRef]
- El-Din, S.M.M.; El-Ahwany, A.M.D.; Mohy El-Din, S.M.; El-Ahwany, A.M.D. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 2016, 10, 471–484. [Google Scholar] [CrossRef] [Green Version]
- WM Hassan, S.; H Shobier, A. GC/MS identification and applications of bioactive seaweed extracts from Mediterranean coast of Egypt. Egypt. J. Aquat. Biol. Fish. 2018, 22, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, O.; Nakamura, K.; Hamada, S.; Kobayasi, Y. Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 1994, 29, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Prichard, R.; Ménez, C.; Lespine, A. Moxidectin and the avermectins: Consanguinity but not identity. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 134–153. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sahoo, D.; Levine, I. Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations. Algal Res. 2015, 9, 117–125. [Google Scholar] [CrossRef]
- Santos, I.J.M.; Melo Coutinho, H.D.; Ferreira Matias, E.F.; Martins da Costa, J.G.; Nóbrega Alves, R.R.; de Oliveira Almeida, W. Antimicrobial activity of natural products from the skins of the semiarid living lizards Ameiva ameiva (Linnaeus, 1758) and Tropidurus hispidus (Spix, 1825). J. Arid Environ. 2012, 76, 138–141. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E.; Page, A.L. Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America location: Madison, WI, USA, 1982; Volume 2. [Google Scholar]
- Digruber, T.; Sass, L.; Cseri, A.; Paul, K.; Nagy, A.V.; Remenyik, J.; Molnár, I.; Vass, I.; Toldi, O.; Gyuricza, C.; et al. Stimulation of energy willow biomass with triacontanol and seaweed extract. Ind. Crop. Prod. 2018, 120, 104–112. [Google Scholar] [CrossRef]
- FAO. Fertilizer Use by Crop in Egypt First Version; Food and Agriculture Organization: Rome, Italy, 2005; 57p. [Google Scholar]
- Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Evenhuis, B. Simplified Methods for Foliar Analysis, Parts I–VII.; Royal Tropical Institute: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Cottenie, A.; Verloo, V.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plant and Soils; Laboratory of Analytical and Agrochemistry State University: Ghent, Belgium, 1982. [Google Scholar]
- Hassan, S.; Ashour, M.; Soliman, A. Anticancer Activity, Antioxidant Activity, Mineral Contents, Vegetative and Yield of Eruca sativa Using Foliar Application of Autoclaved Cellular Extract of Spirulina platensis Extract, Comparing to N-P-K Fertilizers. J. Plant Prod. 2017, 8, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Viturro, C.; Molina, A.; Schmeda-Hirschmann, G. Free radical scavengers from Mutisia friesiana (asteraceae) and Sanicula graveolens (apiaceae). Phytother. Res. 1999, 13, 422–424. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 2008, 110, 881–890. [Google Scholar] [CrossRef]
- Kumar, S.; Dhankhar, S.; Yadav, S.; Yadav, J.P. Evaluation of Antioxidant Activity of Stem and Root Extracts of Salvadora oleoides, a Medicinal Plant. J. HerbsSpices Med. Plants 2014, 20, 132–147. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2020, 10, 178–182. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Papenfus, H.B.; Kulkarni, M.G.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Sci. Hortic. 2013, 151, 142–146. [Google Scholar] [CrossRef]
- Pohl, A.; Kalisz, A.; Sękara, A. Seaweed extracts’ multifactorial action: Influence on physiological and biochemical status of Solanaceae plants. Acta Agrobot. 2019, 72, 1–11. [Google Scholar] [CrossRef]
- Ozbay, N.; Demirkiran, A.R. Enhancement of growth in ornamental pepper (Capsicum annuum L.) Plants with application of a commercial seaweed product, stimplex®. Appl. Ecol. Environ. Res. 2019, 17, 4361–4375. [Google Scholar] [CrossRef]
- Fornes, F.; Sánchez-Perales, M.; Guardiola, J.L. Effect of a Seaweed Extract on the Productivity of “de Nules” Clementine Mandarin and Navelina Orange. Bot. Mar. 2002, 45, 486–489. [Google Scholar] [CrossRef]
- Anantharaman, P.; Karthikaidevi, G.; Manivannan, K.; Thirumaran, G.; Balasubramanian, T. Mineral composition of marine macroalgae from Mandapam coastal regions; southeast coast of India. Recent Res. Sci. Technol. 2010, 2, 58–67. [Google Scholar]
- Ahmad, K.; Ali, A.; Afridi, W.A.; Somayya, R.; Ullah, M.J. Antimicrobial, hemagglutination and phytotoxic activity of crude ethanolic and aqueous extracts of Seriphidium kurramense. J. Tradit. Chin. Med. 2018, 38, 433–438. [Google Scholar] [CrossRef]
- Ashour, M.; Kamel, A. Enhance Growth and Biochemical Composition of Nannochloropsis oceanica, Cultured under Nutrient Limitation, Using Commercial Agricultural Fertilizers. J. Mar. Sci. Res. Dev. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Raghunandan, B.L.; Vyas, R.V.; Patel, H.K.; Jhala, Y.K. Perspectives of Seaweed as Organic Fertilizer in Agriculture. In Soil Fertility Management for Sustainable Development; Springer: Singapore, 2019; pp. 267–289. [Google Scholar]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Timotiwu, P.B.; Agustiansyah, A.; Ermawati, E.; Amalia, S. The Effects of Foliar Boron and Silica Through the Leaves on Soybean Growth and Yield. J. Agric. Stud. 2018, 5, 34. [Google Scholar] [CrossRef]
- Laane, H.-M. The Effects of Foliar Sprays with Different Silicon Compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Abid, A.L.I.; Hussain, M.; Habib, H.S.; Kiani, T.T.; Anees, M.A.; Rahman, M.A. Foliar spray surpasses soil application of potassium for maize production under rainfed conditions. Turk. J. Field Crop. 2016, 21, 36–43. [Google Scholar]
- Yıldıztekın, M.; Tuna, A.L.; Kaya, C. Physiological effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biol. Hung. 2018, 69, 325–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvia, S.; Baluswami, M.; Parthasarathy, V.M.D.; Krishnamurthy, V. Effect of liquid seaweed fertilizers extracted from Gracilaria edulis (Gmel.) Silva, Sargassum wightii greville and Ulva lactuca Linn. on the growth and yield of Abelmoschus esculentus (L.) Moench. Indian Hydrobiol 2005, 7, 69–88. [Google Scholar]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giorda no, M.; Rouphael, Y.; El Nakhel, C.; Leone, V.; Mori, M. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop Sci. 2020, 1456–1464. [Google Scholar] [CrossRef]
- Castellanos-Barriga, L.G.; Santacruz-Ruvalcaba, F.; Hernández-Carmona, G.; Ramírez-Briones, E.; Hernández-Herrera, R.M. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). J. Appl. Phycol. 2017, 29, 2479–2488. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Wagstaff, C. Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). J. Agric. Food Chem. 2014, 62, 4481–4492. [Google Scholar] [CrossRef]
- Podsędek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. Lwt Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- El-Wakeel, M.A.; El-Desoki, E.R.; Ahmed, S.E.-D. Bioherbicidal activity of Eruca sativa fresh shoot aqueous extract for the management of two annual weeds associating Pisum sativum plants. Bull. Natl. Res. Cent. 2019, 43, 87. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.; Bonini, P.; Colla, G. Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J. Agric. Food Chem. 2008, 56, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.R.; Chaves, A.R.; Rodríguez, S.D.C. UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa Mill.). Postharvest Biol. Technol. 2018, 138, 107–113. [Google Scholar] [CrossRef]
- Khoobchandani, M.; Ganesh, N.; Gabbanini, S.; Valgimigli, L.; Srivastava, M.M. Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth. Fitoterapia 2011, 82, 647–653. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Physical analyses | |
Color | Dark brown |
Odor | Seaweed |
Density | 1.20 |
pH | 9–9.5 |
Biochemical analyses (% DM) | |
Total polysaccharides | 15 |
Total organic matter | 23.2 |
Total dissolved solids | 2.6 |
Chemical analyses | |
Macroelements | |
Potassium (%) | 12 |
Phosphorus (%) | 2.4 |
Total nitrogen (mg/kg) | 1400 |
Microelements (mg/kg) | |
Copper | 0.39 |
Iron | 16.18 |
Magnesium | 19.72 |
Zinc | 1.19 |
Manganese | 3.72 |
Heavy metals (mg/kg) | |
Cadmium | LOQ ** |
Chromium | LOQ ** |
Lead | LOQ ** |
Nickel | LOQ ** |
Arsenic | 0.55 |
Peak No | Retention Time | Compound Name | Phytochemical Group | Formula | Molecular Weight | Content % | Applications | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 9.022 | 5-Silaspiro [4.4]nona-1,3,6,8-tetraene,3,8-bis(diethylboryl)-2,7-diethyl-1,4,6,9-tetraphenyl | Silanes | C44H50B2Si | 628.38 | 1.93% | Immune response enhancer | [45,46] |
2 | 16.824 | Nonadecane | Alkane hydrocarbon | C19H40 | 628.39 | 3.61% | Antioxidant, antimicrobial activities | [45,47,48,49] |
3 | 19.284 | Rhodopin (6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-6,8,10,12,14,16,18,20,22,24,26,30-dodecaen-2-ol) | Carotene | C40H58O | 268.31 | 0.81% | Antioxidant activity, immune response enhancer | [46,48,50] |
4 | 20.071 | Milbemycin A4 5-oxime (1R,4S,5′S,6R,6′R,8R,10E,13R,14E,16E,20R,24S)-6′-ethyl-24-hydroxy-21-hydroxyimino-5′,11,13,22-tetramethylspiro[3,7,19-trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene-6,2′-oxane]-2-one) | Macrocyclic lactones | C32H44ClNO7 | 589.28 | 4.75% | Antiparasitic and insecticidal activities | [45,51,52] |
5 | 20.514 | Octadecenoic acid methyl ester (9,12-octadecadienoic acid, methyl ester, (E,E)) | Methylated fatty acids | C17H32O2 | 554.45 | 52.20% | Antioxidant activities | [44,45,46] |
6 | 20.901 | Tridecanoic acid methyl ester | C14H28O2 | 268.24 | 2.79% | |||
7 | 23.748 | γ-Linolenic acid methyl ester (6,9,12-Octadecatrienoic acid, methyl ester) | C19H32O2 | 228.21 | 14.78% | |||
8 | 21.627 | Oleic Acid (cis-9-Octadecenoic acid) | Fatty acid | C18H34O2 | 292.24 | 12.55% | Antioxidant activities | [44] |
9 | 24.295 | Phytol (3,7,11,15-Tetramethylhexadec-2-en-1-ol) | Phytol | C20H40O | 294.26 | 6.59% | Antioxidant activities | [45,53] |
Soil Parameters | 2016 | 2017 |
Particle size distribution | ||
Sand (%) | 32.3 ± 1.6 | 31.5 ± 1.2 |
Silt (%) | 25.2 ± 2.5 | 28.7 ± 2.2 |
Clay (%) | 42.5 ± 3.6 | 39.8 ± 3.1 |
Soil texture | Clay loam | Clay loam |
pH | 7.45 ± 0.5 | 7.35 ± 0.3 |
Chemical Properties | ||
Soluble Cations (mmol g−1 soil) | ||
Ca2+ | 1.44 ± 0.4 | 1.40 ± 0.5 |
Mg2+ | 1.45 ± 0.4 | 0.98 ± 0.2 |
Na+ | 3.63 ± 0.5 | 4.75 ± 0.7 |
K+ | 0.54 ± 0.05 | 0.36 ± 0.03 |
Soluble Anions (meq L−1) | ||
HCO3ˉ | 1.66 ± 0.1 | 1.78 ± 0.2 |
Clˉ | 2.00 ± 0.3 | 1.80 ± 0.2 |
SO42- | 1.70 ± 0.5 | 1.65 ± 0.6 |
Total nitrogen (TN) (%) | 0.16 ± 0.03 | 0.15 ± 0.01 |
Available phosphorus (mg L−1) | 0.32 ± 0.02 | 0.27 ± 0.01 |
Parameters | Cultivated Year | TAM® Treatments | |||
---|---|---|---|---|---|
0% (Control) | 5% | 10% | 15% | ||
Plant height (cm) | 2016 | 34.00 ± 2.65 b | 33.67 ± 2.31 b | 40.00 ± 2.65 a | 42.66 ± 0.58 a |
2017 | 39.60 ± 1.53 BC | 37.00 ± 2.65 C | 43.33 ± 1.13 A | 42.67 ± 1.15 AB | |
Number of leaves (No.) | 2016 | 7.00 ± 0.04 c | 8.33 ± 0.60 a | 7.66 ± 0.58 b | 8.02 ± 0.03 ab |
2017 | 7.60 ± 0.55 C | 8.00 ± 0.02 B | 8.70 ± 0.58 AB | 9.06 ± 1.00 A | |
Dry matter (%) | 2016 | 17.12 ± 0.31 a | 16.73 ± 0.65 a | 15.07 ± 1.10 b | 15.93 ± 0.39 ab |
2017 | 17.31 ± 1.48 A | 16.75 ± 0.75 AB | 15.38 ± 0.23 B | 15.82 ± 0.43 AB | |
Total yield (kg m−2) | 2016 | 1.61 ± 0.19 b | 1.89 ± 0.02 ab | 1.99 ± 0.47 a | 1.82 ± 0.07 ab |
2017 | 1.59 ± 0.11 B | 1.64 ± 0.27 B | 2.28 ± 0.17 A | 1.85 ± 0.13 B |
TAM Treatments | Cytotoxicity% | |
---|---|---|
A549 | HepG2 | |
0% (Control) | 27.33 ± 1.60 b | 25.30 ± 0.72 c |
5% | 15.80 ± 1.39 c | 13.20 ± 1.80 d |
10% | 27.00 ± 0.89 b | 60.40 ± 1.61 b |
15% | 13.00 ± 1.00 d | 12.10 ± 1.80 d |
Doxorubicin | 87.33 ± 0.61 a | 88.83 ± 0.90 a |
IC50 | ND | 85.7 μg mL−1 |
TC | TPC | TFC | TAA | Cyto% (A549) | Cyto% (HepG2) | |
---|---|---|---|---|---|---|
TC | 1.00 | |||||
TPC | 0.91 ** | 1.00 | ||||
TFC | 0.44 | 0.38 | 1.00 | |||
TAA | 0.96 ** | 0.858 ** | 0.38 | 1.00 | ||
Cyto% (HepG2) | 0.73 ** | 0.44 | 0.59 * | 0.77 ** | 1.00 | |
Cyto% (A549) | 0.03 | 0.43 | −0.04 | −0.07 | −0.58 | 1.00 |
Principal Components | PC 1 | PC 2 | PC 3 |
---|---|---|---|
% variance | 50.16 | 30.23 | 19.61 |
Eigenvalue | 6.02 | 3.62 | 2.35 |
Eigenvectors | |||
Plant height | 0.63 * | 0.65 * | −0.41 |
Leaves no. | 0.85 * | −0.24 | −0.48 |
Total yield | 0.92 * | 0.27 | 0.28 |
Dry matter | −0.93 * | −0.38 | 0.00 |
Chl. a | −0.02 | 0.72 * | 0.70 * |
Chl. b | −0.01 | −0.65 * | 0.76 * |
Carotenoids | −0.17 | 0.97 * | 0.19 |
Nitrogen% | 0.26 | −0.74 * | 0.62 * |
Phosphorus% | 0.98 * | −0.13 | 0.13 |
Potassium% | 0.83 * | −0.51 | −0.23 |
Total phenols | 0.98 * | −0.21 | −0.04 |
Total flavonoids | 0.70 * | 0.44 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.M.; Ashour, M.; Soliman, A.A.F.; Hassanien, H.A.; Alsanie, W.F.; Gaber, A.; Elshobary, M.E. The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. https://doi.org/10.3390/su13084485
Hassan SM, Ashour M, Soliman AAF, Hassanien HA, Alsanie WF, Gaber A, Elshobary ME. The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability. 2021; 13(8):4485. https://doi.org/10.3390/su13084485
Chicago/Turabian StyleHassan, Shimaa M., Mohamed Ashour, Ahmed A. F. Soliman, Hesham A. Hassanien, Walaa F. Alsanie, Ahmed Gaber, and Mostafa E. Elshobary. 2021. "The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav." Sustainability 13, no. 8: 4485. https://doi.org/10.3390/su13084485
APA StyleHassan, S. M., Ashour, M., Soliman, A. A. F., Hassanien, H. A., Alsanie, W. F., Gaber, A., & Elshobary, M. E. (2021). The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability, 13(8), 4485. https://doi.org/10.3390/su13084485