Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale
Abstract
:1. Introduction
2. Materials and Methods
- the daily COVID-19 new cases sourced from the Italian Ministry of Health (2020) [43];
- the Italian national census data from ISTAT (2020) [44];
- the PM10 and PM2.5 concentrations measured by the Italian Regional Environmental Protection Agency (ARPA, 2020) at an urban scale [45];
- the COVID-19 mobility observatory of the Italian Transport Ministry (2020), collecting daily trips at an urban scale [46].
- The territorial (zonal) aggregation level consists in 13 main Italian cities located from north to south of the country and reported in Figure 1. Both large and medium–small size cities were considered, with populations ranging from 150 thousand to 3 million inhabitants. Furthermore, the northern cities are those with higher PM concentrations (pollution), with a colder and wetter climate; the cities in the south, instead, and especially those located on the coast have a warmer climate with a lower average seasonal PM pollution (see results in Figure 2);
- The analysis time period considered ranged from 1 February to 15 August 2020, which is the period of the first wave of the virus spreading in Italy, from the first case of coronavirus in the Province of Milan up to the end of its diffusion with less than five hundred daily new cases at a national level. Within this time period, a “high COVID-19 period” from 9 March to 15 June 2020 was identified, which matches with the implementation of the national lockdown (for about 70 consecutive days) and in which a higher number of daily new cases was observed during the first wave (see results in Figure 3 and Figure 4);
- The relationship among air pollution, mobility habits and daily new COVID-19 cases was assessed, and a correlation analyses was performed. Pearson’s, Spearman’s, Kendall’s, Goodman’s, and Somers’ correlation tests were applied. Often, there are differences in the same dataset applications between the estimation of both parametric and nonparametric indices. Pearson’s r correlation coefficient produces values often greater than the nonparametric ones, and the Spearman’s ρ indices are highest among notparametric measures [47]. Therefore, when multiple correlation indices are applied to the same dataset, differences in estimation results must be expected in this sense. Furthermore, Somers’ D is one of the main nonparametric indices often used to test the cause–effect relation of two phenomena;
- For a proper correlation analyses, the daily COVID-19 cases must be related with the PM concentrations (mobility trips) measured several days before. i.e., the day when the infection occurred. To estimate the most representative number of “days before” that influenced the daily COVD-19 cases, many thresholds were tested in terms of correlation indices estimation ranging from 0 to 40 days.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, A.P.Y.; Mu, K.; Rossi, L.; Sun, K. The Effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Bai, X.; Shen, H.; Pang, X.; Liang, Z.; Liu, Y. Synchronized travel restrictions across cities can be effective in COVID-19 control. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Johns Hopkins University (JHU) COVID-19 Map. Available online: https://coronavirus.jhu.edu/map.html (accessed on 19 March 2021).
- Cacciapaglia, G.; Cot, C.; Sannino, F. Second wave COVID-19 pandemics in Europe: A temporal playbook. Sci. Rep. 2020, 10, 15514. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. Covid-19: Risk of second wave is very real, say researchers. BMJ Br. Med. J. Online 2020, 369, m2294. [Google Scholar] [CrossRef] [PubMed]
- Frontera, A.; Martin, C.; Vlachos, K.; Sgubin, G. Regional air pollution persistence links to Covid19 infection zoning. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 72; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Blocken, B.; Malizia, F.; van Druenen, T.; Marchal, T. Social Distancing v2. 0: During Walking, Running and Cycling. Eindhoven University of Technology: Eindhoven, The Netherlands, 2020. [Google Scholar]
- Bertuzzo, E.; Mari, L.; Pasetto, D.; Miccoli, S.; Casagrandi, R.; Gatto, M.; Rinaldo, A. The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA 2020, 117, 10484–10491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter.-personal distance could not. be enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartenì, A.; Di Francesco, L.; Martino, M. The role of transport accessibility within the spread of the coronavirus pandemic in Italy. Saf. Sci. 2021, 133, 104999. [Google Scholar] [CrossRef]
- Cartenì, A.; Di Francesco, L.; Martino, M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci. Total Environ. 2020, 741, 140489. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.J.; Lee, G.R.; Kim, J.E.; Lee, J.H.; Jung, Y.; Nam, E.W. The relationship between trends in COVID-19 prevalence and traffic levels in South Korea. Int. J. Infect. Dis. 2020, 96, 399–407. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ. 2020, 728, 138890. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Lin, C.; Lau, A.K.; Fung, J.C.; Guo, C.; Chan, J.W.; Yeung, D.W.; Zhang, Y.; Bo, Y.; Hossain, M.S.; Zeng, Y. A mechanism-based parameterisation scheme to investigate the association between transmission rate of COVID-19 and meteorological factors on plains in China. Sci. Total Environ. 2020, 737, 140348. [Google Scholar] [CrossRef] [PubMed]
- Prata, D.N.; Rodrigues, W.; Bermejo, P.H. Temperature significantly changes COVID-19 transmission in (sub) tropical cities of brazil. Sci. Total Environ. 2020, 729, 138862. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Xiao, S.; Shi, R.; Ward, M.P.; Chen, Y.; Tu, W.; Su, Q.; Wang, W.; Wang, X.; Zhang, Z. COVID-19 transmission in mainland china is associated with temperature and humidity: A time-series analysis. Sci. Total Environ. 2020, 728, 138778. [Google Scholar] [CrossRef] [PubMed]
- Rashed, E.A.; Kodera, S.; Gomez-Tames, J.; Hirata, A. influence of absolute humidity, temperature and population density on COVID-19 spread and decay durations: Multi-prefecture study in Japan. Int. J. Environ. Res. Public. Health 2020, 17, 5354. [Google Scholar] [CrossRef] [PubMed]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci. Total Environ. 2020, 729, 139051. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Carey, I.M.; Kent, A.J.; Van Staa, T.P.; Anderson, H.R.; Cook, D.G. Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national english cohort. Occup. Environ. Med. 2015, 72, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Yang, C.; Li, J.; Chen, R.; Chen, B.; Gu, D.; Kan, H. Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study. J. Hazard. Mater. 2011, 186, 1594–1600. [Google Scholar] [CrossRef]
- Yang, W.-S.; Zhao, H.; Wang, X.; Deng, Q.; Fan, W.-Y.; Wang, L. An evidence-based assessment for the association between long-term exposure to outdoor air pollution and the risk of lung cancer. Eur. J. Cancer Prev. 2016, 25, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Cascetta, E.; Henke, I.; Di Francesco, L. The effects of air pollution, sea exposure and altitude on COVID-19 hospitalization rates in Italy. Int. J. Environ. Res. Public. Health 2021, 18, 452. [Google Scholar] [CrossRef]
- Cole, M.A.; Ozgen, C.; Strobl, E. Air pollution exposure and Covid-19 in dutch municipalities. Environ. Resour. Econ. 2020, 76, 581–610. [Google Scholar] [CrossRef]
- Pansini, R.; Fornacca, D. Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality. MedRxiv 2020. [Google Scholar] [CrossRef]
- Pluchino, A.; Inturri, G.; Rapisarda, A.; Biondo, A.E.; Moli, R.L.; Zappala, C.; Giuffrida, N.; Russo, G.; Latora, V. A novel methodology for epidemic risk assessment: The case of COVID-19 outbreak in Italy. Sci. Rep. 2020. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Qiu, Y.; Meng, X.; Wang, W. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Sci. Total Environ. 2020, 741, 140396. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- USEPA. Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 19 March 2021).
- Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air pollution and Covid-19: The role of particulate matter in the spread and increase of Covid-19′s morbidity and mortality. Int. J. Environ. Res. Public. Health 2020, 17, 4487. [Google Scholar] [CrossRef] [PubMed]
- Carugno, M.; Dentali, F.; Mathieu, G.; Fontanella, A.; Mariani, J.; Bordini, L.; Milani, G.P.; Consonni, D.; Bonzini, M.; Bollati, V. PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy, Italy. Environ. Res. 2018, 166, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2. 5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Licen, S.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A. potential role of particulate matter in the spreading of COVID-19 in northern Italy: First observational study based on initial epidemic diffusion. BMJ Open 2020, 10, e039338. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P. The potential role of particulate matter in the spreading of COVID-19 in northern Italy: First evidence-based research hypotheses. MedRxiv 2020. [Google Scholar] [CrossRef]
- Bontempi, E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 2020, 186, 109639. [Google Scholar] [CrossRef] [PubMed]
- Italian Ministry of Health Daily Reports on COVID-19 Positive Cases. Available online: http://www.salute.gov.it/portale/home.html (accessed on 19 March 2021).
- ISTAT I Dati Sui Confini Amministrativi Aggiornati al 1° Gennaio 2021. Available online: https://www.istat.it/it/archivio/222527 (accessed on 19 March 2021).
- ARPA—Agenzia Regionale per la Protezione Ambientale. Available online: https://www.arpae.it/it (accessed on 19 March 2021).
- Italian Transport Ministry Strategic and Infrastructures Development Office: COVID-19 Mobility Observatory. Available online: https://www.mit.gov.it/ (accessed on 19 March 2021).
- Masyn, K.; Nathan, P.; Little, T. The Oxford handbook of quantitative methods. Little TD Ed. Stat. Anal. 2013, 2, 551–611. [Google Scholar]
- Bogomolova, A.; Balk, I.; Polkovnikova, N.; Ivaschenko, N. The impact of the COVID-19 related lockdowns on air quality. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Helsinki, Finland, 22–24 May 2020; IOP Publishing: Bristol, UK, 2020; Volumn 534, p. 012010. [Google Scholar]
- Broomandi, P.; Karaca, F.; Nikfal, A.; Jahanbakhshi, A.; Tamjidi, M.; Kim, J.R. Impact of COVID-19 event on the air quality in Iran. Aerosol Air Qual. Res. 2020, 20, 1793–1804. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of Covid-19 lockdown on air quality in the poland, eastern Europe. Environ. Res. 2020, 110454. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Zaman, N.A.F.K.; Kaskaoutis, D.G.; Latif, M.T. COVID-19′s Impact on the atmospheric environment in the southeast Asia region. Sci. Total Environ. 2020, 736, 139658. [Google Scholar] [CrossRef] [PubMed]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2. 5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- Navinya, C.; Patidar, G.; Phuleria, H.C. Examining Effects of the COVID-19 national lockdown on ambient air quality across urban India. Aerosol Air Qual. Res. 2020, 20, 1759–1771. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of Major Air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Azad, M.A.K.; Hasanuzzaman, M.; Salam, R.; Islam, A.R.M.T.; Rahman, M.M.; Hoque, M.M.M. How air quality and COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Sci. Total Environ. 2021, 762, 143161. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef]
- Italian Civil Protection Protezione Civile Italia-Home. Available online: https://www.protezionecivileitalia.it/ (accessed on 19 March 2021).
- Cartenì, A. A cost-benefit analysis based on the carbon footprint derived from plug-in hybrid electric buses for urban public transport services. WSEAS Trans. Environ. Dev. 2018, 14, 125–135. [Google Scholar]
- Carteni, A.; Henke, I. External costs estimation in a cost-benefit analysis: The new formia-gaeta tourist railway line in Italy. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Henke, I.; Cartenì, A.; Francesco, L.D. A sustainable evaluation Processes for investments in the transport sector: A combined multi-criteria and cost–benefit analysis for a new highway in Italy. Sustainability 2020, 12, 9854. [Google Scholar] [CrossRef]
- Cartenì, A.; Henke, I.; Molitierno, C.; Di Francesco, L. Strong sustainability in public transport policies: An e-mobility bus fleet application in sorrento peninsula (Italy). Sustainability 2020, 12, 7033. [Google Scholar] [CrossRef]
Area of Italy | City | High COVID-19 Period (9 March 2020–15 June 2020) | Non-High COVID-19 Period (1 February 2020–8 March 2020 and 16 June 2020–15 August 2020) | Percentage Variation | |||
---|---|---|---|---|---|---|---|
PM10 (μg/m3) | PM2.5 (μg/m3) | PM10 (μg/m3) | PM2.5 (μg/m3) | PM10 (%) | PM2.5 (%) | ||
Nord | Milan | 23 | 15 | 31 | 20 | –25% | –27% |
Turin | 22 | 13 | 34 | 22 | –35% | –42% | |
Genoa | 18 | 11 | 20 | 12 | –8% | –12% | |
Bologna | 18 | 11 | 23 | 14 | –24% | –24% | |
Venice | 24 | n.a. | 32 | n.a. | –25% | n.a. | |
Center | Rome | 27 | 18 | 30 | 18 | –9% | 1% |
Florence | 17 | 10 | 21 | 12 | –18% | –13% | |
Prato | 19 | 10 | 22 | 12 | –14% | –14% | |
Livorno | 18 | 9 | 22 | 10 | –17% | –6% | |
Sud/Island | Naples | 25 | 14 | 29 | 15 | –16% | –6% |
Foggia | 20 | 12 | 18 | 12 | 11% | –1% | |
Palermo | 21 | n.a. | 24 | n.a. | –13% | n.a. | |
Cagliari | 22 | 14 | 26 | 15 | –15% | –10% |
Macro Area | City | Optimal Traslation Threshold (Days) | Pearson’s r | Spearman’s ρ | Kendall’s τ(b) | Goodman’s γ | Somers’ D | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | |||
Nord | Milan | 25 | 0.62 | 0.66 | 0.58 | 0.61 | 0.36 | 0.38 | 0.39 | 0.42 | 0.39 | 0.42 |
Turin | 24 | 0.54 | 0.54 | 0.46 | 0.51 | 0.31 | 0.34 | 0.35 | 0.39 | 0.35 | 0.39 | |
Genoa | 18 | 0.27 | 0.41 | 0.21 | 0.21 | 0.12 | 0.13 | 0.13 | 0.15 | 0.13 | 0.15 | |
Bologna | 19 | 0.44 | 0.53 | 0.49 | 0.54 | 0.31 | 0.31 | 0.34 | 0.38 | 0.34 | 0.38 | |
Venice | 24 | 0.53 | n.a. | 0.56 | n.a. | 0.34 | n.a. | 0.42 | n.a. | 0.42 | n.a. | |
Center | Rome | 19 | 0.33 | 0.31 | 0.38 | 0.34 | 0.24 | 0.19 | 0.28 | 0.25 | 0.28 | 0.25 |
Florence | 21 | 0.40 | 0.58 | 0.41 | 0.53 | 0.23 | 0.30 | 0.30 | 0.39 | 0.30 | 0.39 | |
Prato | 19 | 0.35 | 0.33 | 0.36 | 0.40 | 0.20 | 0.16 | 0.26 | 0.20 | 0.26 | 0.20 | |
Livorno | 19 | 0.39 | 0.14 | 0.30 | 0.16 | 0.19 | 0.10 | 0.20 | 0.12 | 0.20 | 0.12 | |
Sud/Island | Naples | 23 | 0.14 | 0.27 | 0.21 | 0.30 | 0.14 | 0.15 | 0.15 | 0.22 | 0.15 | 0.22 |
Foggia | 18 | 0.11 | 0.21 | 0.20 | 0.31 | 0.13 | 0.13 | 0.13 | 0.22 | 0.13 | 0.22 | |
Palermo | 26 | 0.12 | n.a. | 0.20 | n.a. | 0.13 | n.a. | 0.17 | n.a. | 0.17 | n.a. | |
Cagliari | 22 | 0.18 | 0.47 | 0.29 | 0.58 | 0.18 | 0.28 | 0.19 | 0.33 | 0.19 | 0.33 |
Macro Area | City | Pearson’s r | Spearman’s ρ | Kendall’s τb | Goodman’s γ | Somers’ D | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | ||
Nord | Milan | 0.61 | 0.58 | 0.37 | 0.33 | 0.24 | 0.22 | 0.25 | 0.22 | 0.25 | 0.22 |
Turin | 0.67 | 0.64 | 0.44 | 0.43 | 0.28 | 0.28 | 0.29 | 0.28 | 0.29 | 0.28 | |
Bologna | 0.46 | 0.56 | 0.23 | 0.28 | 0.14 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | |
Venice | 0.42 | n.a. | 0.24 | n.a. | 0.13 | n.a. | 0.13 | n.a. | 0.13 | n.a. | |
Center | Rome | 0.31 | 0.29 | 0.19 | 0.25 | 0.15 | 0.11 | 0.13 | 0.11 | 0.13 | 0.11 |
Florence | 0.45 | 0.34 | 0.44 | 0.32 | 0.31 | 0.10 | 0.32 | 0.11 | 0.32 | 0.11 | |
Prato | 0.35 | 0.32 | 0.30 | 0.23 | 0.19 | 0.13 | 0.21 | 0.13 | 0.21 | 0.13 | |
Livorno | 0.39 | 0.22 | 0.31 | 0.20 | 0.20 | 0.11 | 0.23 | 0.10 | 0.23 | 0.10 | |
Sud/Island | Naples | 0.30 | 0.20 | 0.28 | 0.18 | 0.18 | 0.10 | 0.19 | 0.10 | 0.19 | 0.10 |
Palermo | 0.36 | n.a. | 0.52 | n.a. | 0.35 | n.a. | 0.36 | n.a. | 0.36 | n.a. | |
Cagliari | 0.43 | 0.32 | 0.35 | 0.21 | 0.29 | 0.13 | 0.24 | 0.15 | 0.24 | 0.15 |
Macro Area | City | Optimal Traslation Threshold (Days) | Pearson’s r | Spearman’s ρ | Kendall’s τ(b) | Goodman’s γ | Somers’ D |
---|---|---|---|---|---|---|---|
Nord | Milan | 22 | 0.53 | 0.22 | 0.14 | 0.14 | 0.14 |
Turin | 22 | 0.22 | 0.16 | 0.12 | 0.12 | 0.12 | |
Bologna | 23 | 0.56 | 0.35 | 0.24 | 0.25 | 0.25 | |
Venice | 22 | 0.34 | 0.21 | 0.15 | 0.11 | 0.11 | |
Center | Rome | 22 | 0.56 | 0.30 | 0.19 | 0.22 | 0.22 |
Florence | 24 | 0.27 | 0.17 | 0.12 | 0.12 | 0.12 | |
Prato | 23 | 0.51 | 0.29 | 0.23 | 0.21 | 0.21 | |
Livorno | 23 | 0.52 | 0.23 | 0.23 | 0.23 | 0.23 | |
Sud/Island | Naples | 23 | 0.43 | 0.29 | 0.17 | 0.17 | 0.17 |
Palermo | 24 | 0.55 | 0.35 | 0.31 | 0.26 | 0.26 | |
Cagliari | 21 | 0.31 | 0.15 | 0.16 | 0.15 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartenì, A.; Cascetta, F.; Di Francesco, L.; Palermo, F. Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale. Sustainability 2021, 13, 4553. https://doi.org/10.3390/su13084553
Cartenì A, Cascetta F, Di Francesco L, Palermo F. Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale. Sustainability. 2021; 13(8):4553. https://doi.org/10.3390/su13084553
Chicago/Turabian StyleCartenì, Armando, Furio Cascetta, Luigi Di Francesco, and Felisia Palermo. 2021. "Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale" Sustainability 13, no. 8: 4553. https://doi.org/10.3390/su13084553
APA StyleCartenì, A., Cascetta, F., Di Francesco, L., & Palermo, F. (2021). Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale. Sustainability, 13(8), 4553. https://doi.org/10.3390/su13084553