Virgin Natural Cork Characterization as a Sustainable Material for Use in Acoustic Solutions
Abstract
:1. Introduction
2. Methodology
2.1. Cork Sample Collection and Treatment
2.2. Testing Methodology
2.3. Samples Analyzed
2.4. Calculation Method
2.5. Sound Absorption Indexes According to the ASTM C423-17 Standard
3. Results and Discussion
3.1. Samples of Standardized Size
3.2. Decorative Absorber Panels
3.3. Comparison with Other Recycled Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, A.P.; Bordado, J.C. Cork—A renewable raw material: Forecast of industrial potential and development priorities. Front. Mater. 2015, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rives, J.; Fernandez-Rodriguez, I.; Rieradevall, J.; Gabarrell, X. Environmental analysis of raw cork extraction in cork oak forests in southern Europe (Catalonia-Spain). J. Environ. Manag. 2012, 110, 236–245. [Google Scholar] [CrossRef] [PubMed]
- ISO 633:2019. Cork—Vocabulary; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Lisbon, Portugal, 2007; p. 336. ISBN 13-978-0-444-52967-1. [Google Scholar]
- Silva, S.P.; Sabino, M.A.; Fernandas, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Knapic, S.; Oliveira, V.; Machado, J.S.; Pereira, H. Cork as a building material: A review. Eur. J. Wood Wood Prod. 2016, 74, 775–791. [Google Scholar] [CrossRef]
- Kounina, A.; Tatti, E.; Humbert, S.; Pfister, R.; Pike, A.; Ménard, J.-F.; Loerincik, Y.; Jolliet, O. The Importance of Considering Product Loss Rates in Life Cycle Assessment: The Example of Closure Systems for Bottled Wine. Sustainability 2012, 4, 2673–2706. [Google Scholar] [CrossRef] [Green Version]
- Parra, C.; Sánchez, E.M.; Miñano, I.; Benito, F.; Hidalgo, P. Recycled Plastic and Cork Waste for Structural Lightweight Concrete Production. Sustainability 2019, 11, 1876. [Google Scholar] [CrossRef] [Green Version]
- Pacheco Menor, M.C.; Serna Ros, P.; Macías García, A.; Arévalo Caballero, M.J. Granulated cork with bark characterised as environment-friendly lightweight aggregate for cement based materials. J. Clean. Prod. 2019, 229, 358–373. [Google Scholar] [CrossRef]
- Pereira, H.; Ferreira, E. Scanning electron microscopy observations of insulation cork agglomerates. Mater. Sci. Eng. A 1989, 111, 217–225. [Google Scholar] [CrossRef]
- EEA. Environmental Noise in Europe—2020; European Environment Agency: København, Denmark; Publications Office of the European Union: Luxembourg, 2020; Available online: https://www.eea.europa.eu/publications/environmental-noise-in-europe (accessed on 25 March 2021).
- Park, T.; Kim, M.; Jang, C.; Choung, T.; Sim, K.-A.; Seo, D.; Chang, S.I. The Public Health Impact of Road-Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance. Sustainability 2018, 10, 2947. [Google Scholar] [CrossRef] [Green Version]
- Fediuk, R.; Amran, M.; Vatin, N.; Vasilev, Y.; Lesovik, V.; Ozbakkaloglu, T. Acoustic Properties of Innovative Concretes: A Review. Materials 2021, 14, 398. [Google Scholar] [CrossRef]
- Azkorra, Z.; Pérez, G.; Coma, J.; Cabeza, L.F.; Bures, S.; Álvaro, J.E.; Erkoreka, A.; Urrestarazu, M. Evaluation of green walls as a passive acoustic insulation system for buildings. Appl. Acoust. 2015, 89, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Torresin, S.; Albatici, R.; Aletta, F.; Babich, F.; Kang, J. Assessment Methods and Factors Determining Positive Indoor Soundscapes in Residential Buildings: A Systematic Review. Sustainability 2019, 11, 5290. [Google Scholar] [CrossRef] [Green Version]
- Lauria, A.; Secchi, S.; Vessella, L. Acoustic Comfort as a Salutogenic Resource in Learning Environments—A Proposal for the Design of a System to Improve the Acoustic Quality of Classrooms. Sustainability 2020, 12, 9733. [Google Scholar] [CrossRef]
- Cantero, B.; Sáez del Bosque, I.F.; Matías, A.; Sánchez de Rojas, M.I.; Medina, C. Water transport mechanisms in concretes bearing mixed recycled aggregates. Cem. Concr. Compos. 2020, 107, 103486. [Google Scholar] [CrossRef]
- Gómez Escobar, V.; Rey Gozalo, G.; Pérez, C.J. Variability and performance study of the sound absorption of used cigarette butts. Materials 2019, 12, 2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Mohamed, M.; Al Halo, N.; Benkreira, H. Acoustical properties of novel sound absorbers made from recycled granulates. Appl. Acoust. 2017, 127, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Maderuelo-Sanz, R.; Martin-Castizo, M.; Vílchez-Gómez, R. The performance of resilient layers made from recycled rubber fluff for impact noise reduction. Appl. Acoust. 2011, 72, 823–828. [Google Scholar] [CrossRef]
- Maderuelo-Sanz, R.; Gómez Escobar, V.; Meneses-Rodríguez, J.M. Potential use of cigarette filters as sound porous absorber. Appl. Acoust. 2018, 129, 86–91. [Google Scholar] [CrossRef]
- Martellotta, F.; Cannavale, A.; De Matteis, V.; Ayr, U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Appl. Acoust. 2018, 141, 71–78. [Google Scholar] [CrossRef]
- Mohajerani, A.; Kadir, A.A.; Larobina, L. A practical proposal for solving the world’s cigarette butt problem: Recycling in fired clay bricks. Waste Manag. 2016, 52, 228–244. [Google Scholar] [CrossRef]
- Del Rey, R.; Alba, J.; Ramis, J.; Sanchis, V.J. New absorbent acoustic materials from plastic bottle remnants. Mater. Constr. 2011, 61, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Adhika, D.R.; Prasetiyo, I.; Noeriman, A.; Hidayah, N.; Widayani, S. Sound absorption characteristics of pineapple leaf/epoxy composite. Arch. Acoust. 2020, 45, 233–240. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Bihola, D.V. Acoustic properties of kapok fibre. Int. J. Eng. Adv. Technol. 2019, 9, 2164–2168. [Google Scholar] [CrossRef]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Del Rey, R.; Uris, A.; Alba, J.; Candelas, P. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 2017, 10, 1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maderuelo-Sanz, R.; Barrigón Morillas, J.M.; Gómez Escobar, V. Acoustical performance of loose cork granulates. Eur. J. Wood Wood Prod. 2014, 72, 321–330. [Google Scholar] [CrossRef]
- Maderuelo-Sanz, R.; Barrigón Morillas, J.M.; Gómez Escobar, V. The performance of resilient layers made from cork granulates mixed with resins for impact noise reduction. Eur. J. Wood Wood Prod. 2014, 72, 833–835. [Google Scholar] [CrossRef]
- Arshadi, M.; Attard, T.M.; Lukasik, R.M.; Brncic, M.; da Costa Lopes, A.M.; Finell, M.; Geladi, P.; Gerchesnon, L.M.; Gogus, F.; Herrero, M.; et al. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 2016, 18, 6160–6204. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.; Borges, C.; Serralheiro, M.L.M.; Minhalma, M.; Pacheco, R. Cork processing wastewaters components fractioned by ultrafiltration membranes–studies of antioxidant and antitumoral activity. J. Chem. Technol. Biotechnol. 2018, 93, 861–870. [Google Scholar] [CrossRef]
- Ponce-Robles, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Trinidad-Lozano, M.J.; Yuste, F.J.; Malato, S. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies. Environ. Sci. Pollut. Res. 2017, 24, 6317–6328. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yuste-Córdoba, F.J.; Cintas, P.; Wu, Z.; Boffa, L.; Mantegna, S.; Cravotto, G. Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes. Ultrason. Sonochem. 2018, 40, 3–8. [Google Scholar] [CrossRef] [PubMed]
- ISO 10534-2. Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedances Tubes-Part 2: Transfer-Function Method; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO 354. Acoustics-Measurement of Sound Absorption in a Reverberation Room; International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- Oldham, D.J.; Egan, C.A.; Cookson, R.D. Sustainable acoustic absorbers from the biomass. Appl. Acoust. 2011, 72, 350–363. [Google Scholar] [CrossRef]
- ISO 11654. Acoustics-Sound Absorbers for Use in Buildings. Rating of Sound Absorption; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- ASTM C423-17. Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method; ASTM Standard; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar] [CrossRef]
- Prieto Gajardo, C.; Barrigón Morillas, J.M.; Vílchez-Gómez, R.; Gómez Escobar, V.; Rey Gozalo, G.; Méndez Sierra, J.A.; Carmona del Río, F.J. Acondicionamiento de la cámara reverberante de la Universidad de Extremadura. In Proceedings of the VIII Congreso Iberoamericano de Acústica, Evora, Portugal, 1–3 October 2012. [Google Scholar]
- ISO 3741. Acoustics—Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure. Precision Methods for Reverberation Test Rooms; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- ISO 3740. Acoustics—Determination of Sound Power Levels of Noise Sources. Guidelines for the Use of Basic Standards; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- ISO 12999-2. Acoustics-Determination and Application of Measurement Uncertainties in Building Acoustics. Part 2: Sound Absorption; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- ANSI/ASA S12.60. Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools. Part 1: Permanent Schools; American National Standards Institute, Inc.: New York, NY, USA; Acoustical Society of America: Melville, NY, USA, 2010. [Google Scholar]
Sample | Area (m2) | Average Thickness (cm) | Description |
---|---|---|---|
S1 | 10.2 | 6 | Outer bark facing upwards |
S2 | 10.2 | 6 | Outer bark facing downwards |
S3 | 10.1 | 4 | Panel with outer bark facing upwards (S1) with cork decorative elements of S2 |
S4 | 2.64 | 4 | Panel with outer bark facing upwards (S1) with diagonal decorative elements of S2 |
S5 | 2.64 | 4 | Panel with outer bark facing upwards (S1) with square decorative elements of S2 |
S6 | 2.64 | 4 | Panel with outer bark facing upwards (S1) with V-shaped decorative elements of S2 |
S7 | 2.64 | 4 | Panel with outer bark facing upwards (S1) with horizontal line decorative elements of S2 |
Sound Absorption Classes | αw |
---|---|
A | 0.90; 0.95; 1.00 |
B | 0.80; 0.85 |
C | 0.60; 0.65; 0.70; 0.75 |
D | 0.30; 0.35; 0.40; 0.45; 0.50; 0.55 |
E | 0.25; 0.20; 0.15 |
Unclassified | 0.10; 0.05; 0.00 |
Sample | αw | Ur (95%) | Sound Absorption Class | NRC | SAA |
---|---|---|---|---|---|
S1 | 0.35 (MH) | 0.04 | D | 0.40 | 0.42 |
S2 | 0.35 | 0.04 | D | 0.35 | 0.35 |
S3 | 0.40 (H) | 0.04 | D | 0.45 | 0.42 |
Sample | αw | Ur (95%) | Sound Absorption Class | NRC | SAA |
---|---|---|---|---|---|
S4 | 0.35 (MH) | 0.04 | D | 0.45 | 0.43 |
S5 | 0.30 (MH) | 0.04 | D | 0.40 | 0.41 |
S6 | 0.45 | 0.04 | D | 0.45 | 0.43 |
S7 | 0.40 (H) | 0.04 | D | 0.45 | 0.45 |
Sample | αw | Ur (95%) | Sound Absorption Class | NRC | SAA |
---|---|---|---|---|---|
Sheep Wool | 0.75 | 0.04 | C | 0.70 | 0.70 |
PET | 0.70 (H) | 0.04 | C | 0.60 | 0.62 |
Virgin cork (S1) | 0.35 (MH) | 0.04 | D | 0.40 | 0.42 |
Virgin cork (S2) | 0.35 | 0.04 | D | 0.35 | 0.35 |
Virgin cork (S3) | 0.40 (H) | 0.04 | D | 0.45 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrigón Morillas, J.M.; Montes González, D.; Vílchez-Gómez, R.; Gómez Escobar, V.; Maderuelo-Sanz, R.; Rey Gozalo, G.; Atanasio Moraga, P. Virgin Natural Cork Characterization as a Sustainable Material for Use in Acoustic Solutions. Sustainability 2021, 13, 4976. https://doi.org/10.3390/su13094976
Barrigón Morillas JM, Montes González D, Vílchez-Gómez R, Gómez Escobar V, Maderuelo-Sanz R, Rey Gozalo G, Atanasio Moraga P. Virgin Natural Cork Characterization as a Sustainable Material for Use in Acoustic Solutions. Sustainability. 2021; 13(9):4976. https://doi.org/10.3390/su13094976
Chicago/Turabian StyleBarrigón Morillas, Juan Miguel, David Montes González, Rosendo Vílchez-Gómez, Valentín Gómez Escobar, Rubén Maderuelo-Sanz, Guillermo Rey Gozalo, and Pedro Atanasio Moraga. 2021. "Virgin Natural Cork Characterization as a Sustainable Material for Use in Acoustic Solutions" Sustainability 13, no. 9: 4976. https://doi.org/10.3390/su13094976
APA StyleBarrigón Morillas, J. M., Montes González, D., Vílchez-Gómez, R., Gómez Escobar, V., Maderuelo-Sanz, R., Rey Gozalo, G., & Atanasio Moraga, P. (2021). Virgin Natural Cork Characterization as a Sustainable Material for Use in Acoustic Solutions. Sustainability, 13(9), 4976. https://doi.org/10.3390/su13094976