Performance of Concrete Pavement Incorporating Portland Limestone Cement in Cold Weather
Abstract
:1. Introduction
Research Significance
2. Field Application
2.1. Materials and Mixtures
2.2. Pavement Description and Construction Procedures
2.3. Testing Methods
3. Results and Discussion
3.1. Fresh Properties
3.2. Hardened Properties after Construction
3.3. Long-Term Assessment
3.3.1. Visual Features
3.3.2. Fluid Transport Properties
3.4. Microstructural Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CSA A3001; Cementitious Materials for Use in Concrete. Canadian Standards Association: Mississauga, ON, Canada, 2018.
- Tennis, P.D.; Thomas, M.D.A.; Weiss, W.J. State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%; SN3148; Portland Cement Association: Skokie, IL, USA, 2011. [Google Scholar]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H. A review on effects of limestone powder on the properties of concrete. Const. Build. Mater. 2008, 192, 153–166. [Google Scholar] [CrossRef]
- ASTM C150/C150M; Standard Specification for Portland Cement. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM C595/C595M; Standard Specification for Blended Hydraulic Cements. ASTM: West Conshohocken, PA, USA, 2021.
- EN 197-1; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2000.
- NBR 11578; Cimento Portland Compost. Associação Brasileira de Normas Técnicas: Rio De Janeiro, Brazil, 1991.
- IRAM 50000; Cemento para uso genera. Instituto Argentino de Normalización y Certificación: Buenos Aires, Argentina, 2000.
- NMC-414-ONNCCE; Industria de la Construcción-Cementantes Hidráulicos-Especificaciones y Métodos de Ensayo. la Norma Mexicana: Mexico City, Mexico, 2017.
- Moon, G.D.; Oh, S.; Jung, S.H.; Choi, Y.C. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Const. Build. Mater. 2017, 135, 129–136. [Google Scholar] [CrossRef]
- Amin, M.; Bassuoni, M.T. Response of concrete with blended binders and nanoparticles to sulfuric acid attack. Mag. Concr. Res. 2018, 70, 617–632. [Google Scholar] [CrossRef]
- Amin, M.; Bassuoni, M.T. Performance of concrete with blended binders in ammonium-sulphate solution. J. Sustain. Cem. Based Mater. 2018, 7, 15–37. [Google Scholar] [CrossRef]
- Ghazy, A.; Bassuoni, M.T.; Islam, A.K.M.R. Response of Concrete with blended binders and nanosilica to freezing–thawing cycles and different concentrations of deicing salts. J. Mater. Civ. Eng. 2018, 30, 04018214. [Google Scholar] [CrossRef]
- Ghazy, A.; Bassuoni, M.T. Response of concrete to cyclic environments and chloride-based salts. Mag. Concr. Res. 2019, 71, 533–547. [Google Scholar] [CrossRef]
- Tiburzi, N.B.; Garcia, J.; Drimalas, T.; Folliard, K.J. Sulfate resistance of portland-limestone cement concrete systems: Linking laboratory and field performances. Const. Build. Mater. 2020, 250, 118750. [Google Scholar] [CrossRef]
- Thomas, M.D.; Delagrave, A.; Blair, B.; Barcelo, L. Equivalent durability performance of portland limestone cement. Concr. Int. 2013, 35, 39–45. [Google Scholar]
- Bonavetti, V.; Donza, H.; Rahhal, V.; Irassar, E. Influence of initial curing on the properties of concrete containing limestone blended cement. Cem. Concr. Res. 2000, 30, 703–708. [Google Scholar] [CrossRef]
- CW3310-R17; Portland Cement Concrete Pavement Works. City of Winnipeg Specification, City of Winnipeg: Winnipeg, MB, Canada, 2015.
- ASTM C494/C494M; Standard Specification for Chemical Admixtures for Concrete. ASTM: West Conshohocken, PA, USA, 2019.
- ASTM C260/C260M; Standard Specification for Air-Entraining Admixtures for Concrete. ASTM: West Conshohocken, PA, USA, 2016.
- CSA A23.1; Concrete Materials and Methods of Concrete Construction. Canadian Standards Association: Mississauga, ON, Canada, 2019.
- ASTM C309; Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete. ASTM: West Conshohocken, PA, USA, 2019.
- Tiznobaik, M.; Bassuoni, M.T. Application of Curing Compounds on Concrete Pavements. Can. J. Civ. Eng. 2017, 44, 452–461. [Google Scholar] [CrossRef] [Green Version]
- ASTM D6690; Standard Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM C143/C143M; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM: West Conshohocken, PA, USA, 2020.
- ASTM C231/C231M; Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM C1202; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM: West Conshohocken, PA, USA, 2019.
- ASTM C672/C672M; Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals. ASTM: West Conshohocken, PA, USA, 2019.
- Bassuoni, M.T.; Nehdi, M.L.; Greenough, T.R. Enhancing the reliability of evaluating chloride ingress in concrete using the ASTM C 1202 rapid chloride penetrability test. J. ASTM Int. 2005, 3, 1–13. [Google Scholar]
- Tiznobaik, M.; Bassuoni, M.T. A test protocol for evaluating absorption of joints in concrete pavements. J. Test. Eval. 2017, 46, 1636–1649. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
Mixture ID | Cement (kg) | Fly Ash (kg) | Water (kg) | Coarse Aggregate (kg) | Fine Aggregate (kg) |
---|---|---|---|---|---|
Slipform Paving | |||||
PLC | 323 | 57 | 144 | 1190 | 641 |
GU | 323 | 57 | 144 | 1192 | 642 |
Hand Placement | |||||
PLC | 323 | 57 | 171 | 1144 | 616 |
GU | 323 | 57 | 171 | 1145 | 617 |
Core ID | Location | Placement Method | Surface Condition | Tests |
---|---|---|---|---|
PLC-1 | Mid-slab | Hand | Middle | RCPT |
PLC-2 | Joint | -- | Wheel Path | Absorption |
PLC-3 | Joint | -- | Middle | Absorption |
PLC-4 | Joint | -- | Wheel Path | DSC/SEM * |
PLC-5 | Mid-slab | Slipform | Middle | RCPT |
PLC-6 | Mid-slab | Hand | Middle | RCPT |
GU-7 | Mid-slab | Hand | Middle | RCPT |
GU-8 | Joint | -- | Wheel Path | Absorption |
GU-9 | Joint | -- | Middle | DSC/SEM * |
GU-10 | Mid-slab | Slipform | Middle | RCPT |
Mixture ID | ||||
---|---|---|---|---|
Slipform | Hand Placement | |||
PLC | GU | PLC | GU | |
Concrete temperature at discharge point before paving (°C) | 29 | 24 | 27 | 23 |
Slump (mm) | 70 | 65 | 80 | 65 |
Air content (%) | 5.5 | 7 | 6 | 6.5 |
Time of saw-cutting after finishing (h) | 6.3 | 7.2 | 7.3 | 8.2 |
Mixture ID | ANOVA | ||
---|---|---|---|
PLC | GU | ||
Compressive strength (MPa)—standard curing conditions | F * | ||
1 day | 14.9 (0.29) | 12.3 (0.21) | 156 α |
3 days | 22.5 (0.36) | 19.6 (0.49) | 54 α |
7 days | 33.8 (0.53) | 29.7 (0.58) | 19 α |
28 days | 43.1 (0.86) | 38.3 (0.78) | 23 α |
Compressive strength (MPa)—field conditions | |||
1 day | 16.2 (0.34) | 12.1 (0.33) | 109 α |
3 days | 25.7 (0.51) | 22.3 (0.49) | 46 α |
7 days | 32.3 (0.24) | 26.1 (0.56) | 85 α |
28 days | 36.3 (0.9) | 34.3 (0.83) | 9.8 α |
Passing Charges (Coulombs) | |||
736 (20.2) (very low) | 1317 (44.8) (low) | 475 α |
RCPT | F * |
---|---|
Hand placement | |
Top part | 12.1 α |
Bottom part | 9.8 α |
Slipform | |
Top part | 138 α |
Bottom part | 194 α |
Absorption | F * |
Wheel path | |
Top part | 4.7 |
Bottom part | 10.7 α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasien, A.; Ghazy, A.; Bassuoni, M. Performance of Concrete Pavement Incorporating Portland Limestone Cement in Cold Weather. Sustainability 2022, 14, 183. https://doi.org/10.3390/su14010183
Yasien A, Ghazy A, Bassuoni M. Performance of Concrete Pavement Incorporating Portland Limestone Cement in Cold Weather. Sustainability. 2022; 14(1):183. https://doi.org/10.3390/su14010183
Chicago/Turabian StyleYasien, Ahmed, Ahmed Ghazy, and Mohamed Bassuoni. 2022. "Performance of Concrete Pavement Incorporating Portland Limestone Cement in Cold Weather" Sustainability 14, no. 1: 183. https://doi.org/10.3390/su14010183
APA StyleYasien, A., Ghazy, A., & Bassuoni, M. (2022). Performance of Concrete Pavement Incorporating Portland Limestone Cement in Cold Weather. Sustainability, 14(1), 183. https://doi.org/10.3390/su14010183