Zero-Cement Concrete Resistance to External Sulfate Attack: A Critical Review and Future Needs
Abstract
:1. Introduction
2. Chemistry and Physics behind External Sulfate Attack
3. AAM Deterioration
4. Current Standards and Specifications for Sulfate Resistance
4.1. North America
4.2. Australia
4.3. Europe
4.4. India
4.5. Brazil
4.6. China
5. Type and Concentration of Sulfate
6. Specimens’ Composition, Shape, and Size
7. pH of the Solution
8. Single Damage-Factor Tests
9. Multiple Damage-Factor Tests
10. Modeling the Sulfate Attack in Concrete
- (a)
- Concrete mixtures made of cement with low C3A content (i.e., <8%)Exp = 0.0246 + [0.0180(t)(w/c)] + [0.00016(t)(C3A)]
- (b)
- Concrete mixtures made of cement with high C3A content (>10%)ln(Exp) = −3.753 + [0.930(t)] + [0.0998 ln((t)(C3A))]
11. Conclusions, Remarks, Recommendations
- Understanding the resistance of zero-cement concrete developed by using a high volume of waste materials that have been alkaline-activated using a wide range of activators requires a high level of effort to be spent on the relevant standards for the recognition of decay and deterioration mechanisms of these binders. Further validation is needed in both laboratory and field studies to determine the concrete mixtures’ overall permeability to control AAMs’ transport properties.
- Sulfate attack tests for assessing the zero-cement concrete or AAMs’ sulfate resistance are based on test methods for conventional OPC concrete mixtures, despite their different reactions’ mechanisms and microstructures. Therefore, selecting the correct test conditions and techniques will allow the accurate assessment of zero-cement concrete performance under different aggressive conditions.
- Particular attention should be paid to cation accompanying salt and its concentration in sulfate-rich environments while analyzing AAM structures’ resistance. This will alter AAMs’ deterioration mechanism, leading to the decay of these binders when exposed to aggressive environments.
- Monitoring mechanisms for mass loss, strength loss, leaching of active minerals, and matrix cracking due to chemical attacks are recommended to help determine the degradation mechanisms of AAMs exposed to external sulfate attacks.
- Developing holistic assessment techniques to detect sulfate attacks’ synergistic effects and single to multiple damage mechanisms under accelerated real-field conditions to determine potential durability is needed.
- In the literature, there is a lack of studies that focus on modeling the behavior of zero-cement concrete or AAMs under sulfate attack. Therefore, to improve the durability of future green concrete structures, more effort needs to be devoted to developing reliable models capable of predicting the behavior of zero-cement concrete or AAMs when exposed to sulfate attacks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baldermann, C.; Baldermann, A.; Furat, O.; Krüger, M.; Nachtnebel, M.; Schroettner, H.; Juhart, J.; Schmidt, V.; Tritthart, J. Mineralogical and microstructural response of hydrated cement blends to leaching. Constr. Build. Mater. 2019, 229, 116902. [Google Scholar] [CrossRef]
- Galan, I.; Baldermann, A.; Kusterle, W.; Dietzel, M.; Mittermayr, F. Durability of shotcrete for underground support– Review and update. Constr. Build. Mater. 2019, 202, 465–493. [Google Scholar] [CrossRef]
- Skalny, J.P.; Thaulow, N. Sulfate attack in North America. In Proceedings of the 1st International Conference on Thaumasite in Cementitious Materials, Garston, UK, 20–22 June 2002. [Google Scholar]
- Komljenovic, M.; Baščarević, Z.; Marjanović, N.; Nikolic, V. External sulfate attack on alkali-activated slag. Constr. Build. Mater. 2013, 49, 31–39. [Google Scholar] [CrossRef]
- Bassuoni, M.; Nehdi, M. Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading. Cem. Concr. Res. 2009, 39, 206–226. [Google Scholar] [CrossRef]
- Skalny, J.; Pierce, J. Sulfate attack: An overview. In Materials Science of Concrete: Sulfate Attack Mechanisms; Marchand, J., Skalny, J.P., Eds.; The American Ceramic Society: Westerville, OH, USA, 1999; pp. 49–64. [Google Scholar]
- Cohen, M.D.; Mather, B. Sulfate attack on concrete: Research needs. Mater. J. 1991, 88, 62–69. [Google Scholar]
- Marchand, J.; Odler, I.; Skalny, J.P. Sulfate Attack on Concrete; CRC Press: London, UK; Spon Press: London, UK, 2002. [Google Scholar] [CrossRef]
- Myers, R.J.; Lothenbach, B.; Bernal, S.A.; Provis, J.L. Corrigendum to “Thermodynamic modelling of alkali-activated slag-based cements”. Appl. Geochem. 2016, 67, 186. [Google Scholar] [CrossRef]
- Taylor, R.; Richardson, I.G.; Brydson, R.M.D. Composition and microstructure of 20-year-old ordinary Portland cement–ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem. Concr. Res. 2010, 40, 971–983. [Google Scholar] [CrossRef]
- Wang, S.-D.; Scrivener, K.L. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1995, 25, 561–571. [Google Scholar] [CrossRef]
- Park, S.; Park, H.M.; Yoon, H.N.; Seo, J.; Yang, C.-M.; Provis, J.L.; Yang, B. Hydration kinetics and products of MgO-activated blast furnace slag. Constr. Build. Mater. 2020, 249, 118700. [Google Scholar] [CrossRef]
- Gonzalez, M.A.; Irassar, E.F. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution. Cem. Concr. Res. 1997, 27, 1061–1071. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cem. Concr. Res. 2003, 33, 325–332. [Google Scholar] [CrossRef]
- Tian, B.; Cohen, M.D. Does gypsum formation during sulfate attack on concrete lead to expansion? Cem. Concr. Res. 2000, 30, 117–123. [Google Scholar] [CrossRef]
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Nijland, T.G.; Larbi, J.A. Microscopic examination of deteriorated concrete. In Non-destructive Evaluation of Reinforced Concrete Structures; Woodhead Publishing: Cambridge, UK, 2010; pp. 137–179. [Google Scholar]
- Komljenović, M.; Džunuzović, N.; Nikolic, V. Resistance to external sulfate attack—Comparison of two alkali-activated binders. MATEC Web Conf. 2018, 163, 06001. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, H.A.; Abo, E.E.S.; Khater, H.M.; Hasanein, S.A. Resistance of alkali activated water-cooled slag geopolymer to sulphate attack. Ceram.-Silikáty 2011, 55, 153–160. [Google Scholar]
- Puertas, F.; Gutierrez, R.D.; Fernández-Jiménez, A.; Delvasto, S.; Maldonado, J. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater. Constr. 2002, 52, 55–71. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; Van Deventer, J.S. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2013, 46, 361–373. [Google Scholar] [CrossRef]
- Valencia Saavedra, W.G.; Angulo, D.E.; Mejía de Gutiérrez, R. Fly ash slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack. J. Mater. Civ. Eng. 2016, 28, 04016148. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Zhang, Z.; Ou, Z. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr. Build. Mater. 2017, 152, 598–613. [Google Scholar] [CrossRef]
- Bakharev, T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem. Concr. Res. 2005, 35, 1233–1246. [Google Scholar] [CrossRef]
- Thokchom, S.; Ghosh, P.; Ghosh, S. Performance of Fly ash Based Geopolymer Mortars in Sulphate Solution. J. Eng. Sci. Technol. Rev. 2010, 3, 36–40. [Google Scholar] [CrossRef]
- Hooton, R.D. Bridging the gap between research and standards. Cem. Concr. Res. 2008, 38, 247–258. [Google Scholar] [CrossRef]
- Hooton, R.D.; Day, R.L. Development of Performance Tests for Sulfate Attack on Cementitious Systems. Cem. Concr. Aggreg. 2000, 22, 169. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002, 32, 211–216. [Google Scholar] [CrossRef]
- Pan, Z.; Li, D.; Yu, J.; Yang, N. Properties and microstructure of the hardened alkali-activated red mud–slag cementitious material. Cem. Concr. Res. 2003, 9, 33. [Google Scholar] [CrossRef]
- Mithun, B.M.; Narasimhan, M.C. Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J. Clean. Prod. 2016, 112, 837–844. [Google Scholar] [CrossRef]
- Locher, F.W. Cement: Principles of Production and Use; Verlag Bau+ Technik: Düsseldorf, Germany, 2013. [Google Scholar]
- Li, X.J.; Zhang, J. A Survey of Sulfate Resistance Test Methods. Appl. Mech. Mater. 2012, 166–169, 1859–1862. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, P.V.; Roy, D. Alkali-Activated Cements and Concretes; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Yusuf, M.O. Performance of slag blended alkaline activated palm oil fuel ash mortar in sulfate environments. Constr. Build. Mater. 2015, 98, 417–424. [Google Scholar] [CrossRef]
- Salami, B.A.; Megat Johari, M.A.; Ahmad, Z.A.; Maslehuddin, M. Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFA-EACC) mortar in sulfate environment. Constr. Build. Mater. 2017, 131, 229–244. [Google Scholar] [CrossRef]
- Aragón, P.; Robayo-Salazar, R.A.; Mejía de Gutiérrez, R. Alkali-Activated Concrete Based on Natural Volcanic Pozzolan: Chemical Resistance to Sulfate Attack. J. Mater. Civ. Eng. 2020, 32, 04020106. [Google Scholar] [CrossRef]
- Xu, A.; Shayan, A.; Baburamani, P. Test Methods for Sulfate Resistance of Concrete and Mechanism of Sulfate Attack: A State-of-the-Art Review; ARRB Transport Research: Vermont South, VIC, Australia, 1998. [Google Scholar]
- Frierson, J.; Higgins, D. Effect of test procedures on the assessment of the sulfate resistance of slag cements. Spec. Publ. 1995, 153, 975–994. [Google Scholar]
- Yeginobali, A.; Dilek, F. Sulfate resistance of mortars containing silica fumes as evaluated by different methods. Spec. Publ. 1995, 795–814, 153. [Google Scholar]
- Locher, F. The Problem of the Sulphate Resistance of Slag Cements; BAUVERLAG GMBH: Düsseldorf, Germany, 1966. [Google Scholar]
- Bonen, D. A microstructural study of the effect produced by magnesium sulfate on plain and silica fume-bearing Portland cement mortars. Cem. Concr. Res. 1993, 23, 541–553. [Google Scholar] [CrossRef]
- Giergiczny, Z. Sulphate resistance of cements with mineral admixtures. In Proceedings of the 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden, 2–6 June 1997. [Google Scholar]
- Mehta, P.K.; Pirtz, D.; Polivka, M. Properties of alite cements. Cem. Concr. Res. 1979, 9, 439–450. [Google Scholar] [CrossRef]
- Mehta, P. Sulfate attack on concrete—A critical review. Mater. Sci. Concr. 1992, III, 105–130. [Google Scholar]
- Bonen, D. The microstructure of concrete subjected to high magnesium and high-magnesium sulfate brine attack. In Proceedings of the 10th International Congress on Chemistry of Cement, Gothenburg, Sweden, 2–6 June 1997. [Google Scholar]
- Eglinton, M. Resistance of Concrete to Destructive. In Lea’s Chemistry of Cement and Concrete; Elsiver: Oxford, UK, 1998; pp. 299–342. [Google Scholar]
- Bate, S.C.C. High Alumina Cement Concrete in Existing Building Structures; Report BR235; HMSO: London, UK, 1984. [Google Scholar]
- Santhanam, M.; Cohen, M.D.; Olek, J. Mechanism of sulfate attack: A fresh look. Cem. Concr. Res. 2002, 32, 915–921. [Google Scholar] [CrossRef]
- Beltrame, N.A.M.; Angulski da Luz, C.; Perardt, M.; Hooton, R.D. Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Constr. Build. Mater. 2020, 238, 117710. [Google Scholar] [CrossRef]
- Costa, L.C.B.; Escoqui, J.M.R.; Oliveira, T.M.; Fonseca, L.G.D.; Farage, M.C.R. Sodium sulfate attack on Portland cement structures: Experimental and analytical approach. REM-Int. Eng. J. 2018, 71, 531–542. [Google Scholar] [CrossRef]
- Yu, C.; Sun, W.; Scrivener, K. Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem. Concr. Res. 2013, 43, 105–111. [Google Scholar] [CrossRef]
- Bellmann, F.; Möser, B.; Stark, J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cem. Concr. Res. 2006, 36, 358–363. [Google Scholar] [CrossRef]
- Lothenbach, B.; Bary, B.; Le Bescop, P.; Schmidt, T.; Leterrier, N. Sulfate ingress in Portland cement. Cem. Concr. Res. 2010, 40, 1211–1225. [Google Scholar] [CrossRef]
- Hooton, R.D.; Wafa, F.F. Accelerated Sulfate Attack on Concrete in a Hot Climate Cement. Cem. Concr. Aggreg. 1994, 16, 31–35. [Google Scholar] [CrossRef]
- Rodríguez, E.; Bernal, S.; de Gutiérrez, R.M.; Puertas, F. Alternative concrete based on alkali-activated slag. Mater. Constr. 2008, 58, 53–67. [Google Scholar]
- Heikal, M.; Nassar, M.Y.; El-Sayed, G.; Ibrahim, S.M. hysico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Constr. Build. Mater. 2014, 69, 60–72. [Google Scholar] [CrossRef]
- Planel, D.; Sercombe, J.; Le Bescop, P.; Adenot, F.; Torrenti, J.-M. Long-term performance of cement paste during combined calcium leaching–sulfate attack: Kinetics and size effect. Cem. Concr. Res. 2006, 36, 137–143. [Google Scholar] [CrossRef]
- Ferraris, C.; Stutzman, P.; Peltz, M.; Winpigler, J. Developing a more rapid test to assess sulfate resistance of hydraulic cements. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 529–540. [Google Scholar] [CrossRef]
- Fixen, P.E. Soil test levels in North America. Better Crops 2002, 86, 12–15. [Google Scholar]
- Wang, J. Sulfate attack on hardened cement paste. Cem. Concr. Res. 1994, 24, 735–742. [Google Scholar] [CrossRef]
- Mehta, P. Evaluation of the Sulfate Resistance of Cements by A New Test Method. Am. Concr. Inst. 1975, 72, 573–575. [Google Scholar]
- Brown, P.W. An evaluation of the sulfate resistance of cements in a controlled environment. Cem. Concr. Res. 1981, 11, 719–727. [Google Scholar] [CrossRef]
- Cao, H.T.; Bucea, L.; Ray, A.; Yozghatlian, S. The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements. Cem. Concr. Compos. 1997, 19, 161–171. [Google Scholar] [CrossRef]
- Fernandez-Altable, V. Availability of Al2O3 in slag blended cements: Sulphate attack mplications. In Proceedings of the Final Conference of the NANOCEM Marie Curie Research Training Network, Villars-sur-Ollon, Switzerland, 1–3 September 2009. [Google Scholar]
- Chabrelie, A. Mechanisms of Degradation of Concrete by External Sulfate Ions under Laboratory and Field Conditions. Ph.D. Dissertation, École Polytechnique Fédérale De Lausanne, Lausanne, Switzerland, 2020. [Google Scholar]
- Abora, K.; Beleña, I.; Bernal, S.A.; Dunster, A.; Nixon, P.A.; Provis, J.L.; Tagnit-Hamou, A.; Winnefeld, F. Durability and testing–Chemical matrix degradation processes. In Alkali Activated Materials; Springer: London, UK, 2014; pp. 177–221. [Google Scholar]
- Van Eijk, R.J.; Brouwers, H.J.H. Study of the relation between hydrated Portland cement composition and leaching resistance. Cem. Concr. Res. 1998, 28, 815–828. [Google Scholar] [CrossRef]
- Taylor, H.F. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997. [Google Scholar]
- Suleiman, A. Physical Sulphate Attack on Concrete. Master’s Thesis, Western Univeristy, London, ON, Canada, 2014. [Google Scholar]
- Nehdi, M.L.; Suleiman, A.R.; Soliman, A.M. Investigation of concrete exposed to dual sulfate attack. Cem. Concr. Res. 2014, 64, 42–53. [Google Scholar] [CrossRef]
- Suleiman, A.R.; Nehdi, M.L.; Soliman, A.M. Effect of surface treatment on durability of concrete exposed to physical sulfate attack. Constr. Build. Mater. 2014, 73, 647–681. [Google Scholar] [CrossRef]
- Suleiman, A.R.; Nehdi, M.L. Exploring effects of supplementary cementitious materials in concrete exposed to physical salt attack. Mag. Concr. Res. 2017, 69, 576–585. [Google Scholar] [CrossRef]
- Boyd, A.J.; Mindess, S. The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack. Cem. Concr. Res. 2004, 34, 373–377. [Google Scholar] [CrossRef]
- Haynes, H.; O’Neill, R.; Neff, M.; Mehta, P.K. Salt weathering distress on concrete exposed to sodium sulfate environment. ACI Mater. J. 2008, 105, 35–43. [Google Scholar]
- Mittermayr, F.; Baldermann, A.; Kurta, C.; Rinder, T.; Klammer, D.; Leis, A.; Tritthart, J.; Dietzel, M. Evaporation—A key mechanism for the thaumasite form of sulfate attack. Cem. Concr. Res. 2013, 49, 55–64. [Google Scholar] [CrossRef]
- Kalousek, G.L.; Porter, L.C.; Benton, E.J. Concrete for long-time service in sulfate environment. Cem. Concr. Res. 1972, 2, 79–89. [Google Scholar] [CrossRef]
- De Almeida, I.R. Resistance of high strength concrete to sulfate attack: Soaking and drying test. Spec. Publ. 1991, 126, 1073–1092. [Google Scholar]
- Nehdi, M.; Hayek, M. Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cem. Concr. Res. 2005, 35, 731–742. [Google Scholar] [CrossRef]
- Sahmaran, M.; Erdem, T.K.; Yaman, I.O. Sulfate resistance of plain and blended cements exposed to wetting–drying and heating–cooling environments. Constr. Build. Mater. 2007, 21, 1771–1778. [Google Scholar] [CrossRef]
- Loser, R.; Leemann, A. An accelerated sulfate resistance test for concrete. Mater. Struct. 2015, 49, 3445–3457. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Slavik, R.; Bednarik, V.; Vondruska, M.; Nemec, A. Preparation of geopolymer from fluidized bed combustion bottom ash. J. Mater. Processing Technol. 2008, 200, 265–270. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl. Clay Sci. 2010, 49, 1–6. [Google Scholar] [CrossRef]
- Häkkinen, T. The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties. Cem. Concr. Res. 1993, 23, 407–421. [Google Scholar] [CrossRef]
- Atkinson, A.; Goult, D.J.; Hearne, J.A. An Assessment of the Long-Term Durability of Concrete in Radioactive Waste Repositories. MRS Proc. 1985, 50, 239–246. [Google Scholar] [CrossRef]
- Kurtis, K.; Monteiro, P.; Madanat, S. Empirical models to predict concrete expansion caused by sulfate attack. ACI Mater. 2000, 97, 156–161. [Google Scholar]
- Atkinson, A.; Hearne, J. Mechanistic model for the durability of concrete barriers exposed to sulphate-bearing groundwaters. Mater. Res. Soc. Symp. Proc. 1990, 176, 149–156. [Google Scholar] [CrossRef]
- Cefis, N.; Comi, C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cem. Concr. Res. 2017, 93, 57–70. [Google Scholar] [CrossRef]
- Tixier, R.; Mobasher, B. Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation. J. Mater. Civ. Eng. 2003, 15, 305–313. [Google Scholar] [CrossRef]
- Sarkar, S.; Mahadevan, S.; Meeussen, J.; van der Sloot, H.; Kosson, D. Numerical simulation of cementitious materials degradation under external sulfate attack. Cem. Concr. Compos. 2010, 32, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Ikumi, T.; Cavalaro, S.; Segura, I.; Aguado, A. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cem. Concr. Res. 2014, 63, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Snyder, K.; Clifton, J. 4SIGHT: A Computer Program for Modeling Degradation of Underground Low Level Concrete Vaults; NISTIR 5612; National Institute of Standards and Technology: Gaithersburg, MA, USA, 1995. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916573 (accessed on 8 February 2022).
- Gu, Y.; Dangla, P.; Martin, R.; Metalssi, O.O.; Fen-Chong, T. Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. Cem. Concr. Res. 2022, 152, 106676. [Google Scholar] [CrossRef]
- Clifton, J.R.; Frohnsdorff, G.J.; Ferraris, C.F. Standards for evaluating the susceptibility of cement-based materials to external sulfate attack. In Proceedings of the Materials Science of Concrete Conference, Quebec City, QC, Canada, 5–6 October 1998. [Google Scholar]
- Hearn, N.; Young, F. W/C ratio, porosity and sulfate attack–A review. In Materials Science of Concrete: Sulefate Attack Mechanisms; Marchand, E., Skalny, J.P., Eds.; American Ceramic Society: Westerville, OH, USA, 1999; pp. 189–205. [Google Scholar]
Standard | Class of Exposure | Category | Concentration of Sulfates as | Max. w/cm | Min. Strength (MPa) | Cementitious Material | |
---|---|---|---|---|---|---|---|
Dissolved in Water (ppm) | Water-Soluble in Soil (% by Mass) | ||||||
ACI318 (2014) | S0 | Negligible | <150 | <0.10 | N/A | 17 | N/A |
S1 | Moderate | ≥150 and <1500 | ≥0.10 and <0.20 | 0.50 | 28 | Type II or equivalent § | |
S2 | Severe | ≥1500 and ≤10,000 | ≥0.20 and ≤2.00 | 0.45 | 31 | Type V or equivalent § | |
S3 | V. Severe | >10,000 | >2.00 | 0.40 | 31 | Type V plus pozzolan/slag cement | |
CSA A23.1(2014) | S-l | V. Severe | >10,000 | >2.00 | 0.40 | 35 b | HS or HSb |
S-2 | Severe | 1500–10,000 | 0.60–2.00 | 0.45 | 32 b | HS | |
S-3 | Moderate | 150–1500 | 0.20–0.60 | 0.50 | 30 b | MS, MSb | |
NBR 12,655 (2015) | I | Low | 0–150 | <0.10 | 0.60 | 20 | SR |
II | Moderate | 150–1500 | ≥0.10 and <0.20 | 0.50 | 35 | SR | |
III and IV | Severe and V. Severe | >1500 | ≥0.20 | 0.45 | 40 | SR | |
EN 206-1:2013 | XA1 | Mild | ≥200 and ≤600 | ≥0.20 and ≤0.30 | 0.55 | 30 | High SRPC CEM III/B |
XA2 | Moderate | >600 and ≤3000 | ≥0.30 and ≤1.20 | 0.5 | 30 | High SRPC CEM III/B | |
XA3 | V. Severe | >3000 and ≤6000 | >1.20 and ≤2.40 | 0.45 | 35 | High SRPC CEM III/B | |
IS 456 (2000) | I | Mild | <300 | <0.2 | 0.55 | 20 | OPC or OPC/slag or OPC/pozzolan cement |
II | Moderate | 300–1200 | 0.2–0.5 | 0.50 | 25 | OPC or OPC/slag or OPC/pozzolan cement or SRPC | |
III | Severe | 1200–2500 | 0.5–1.0 | 0.45 | 30 | OPC/slag or OPC/pozzolan or SRPC | |
IV | V. Severe | 2500–5000 | 1.0–2.0 | 0.45 | 35 | SRPC | |
V | Extreme | >5000 | >2.0 | 0.40 | 40 | SRPC | |
AS 3972 | A2 | Mild | <1000 | <0.50 | 0.55 | 25 | GP, GB |
B1 | Moderate | 1000–3000 | 0.50–1.0 | 0.55 | 32 | GP, GB | |
B2 | Moderate | 3000–10,000 | 1.0–2.0 | 0.50 | 40 | SR | |
C1 and C2 | Severe and V. Severe | >10,000 | >2.0 | 0.45 | ≥50 | SR |
Precursors | Activators | Sulfates | Aging Protocol | Reference | ||
---|---|---|---|---|---|---|
Corrosion Period | Corrosion Products | Deteriorating Environment | ||||
Slag | NaOH + Na2SiO3 | 5% Na2SO4 5% MgSO4 | 12-month | Gypsum | 5% MgSO4 | [28] |
FA | NaOH NaOH + KOH | 5% Na2SO4 5% MgSO4 5% (Na2SO4 + MgSO4) | 5-month | Precipitates | 5% Na2SO4 5% MgSO4 | [24] |
FA | NaOH + Na2SiO3 | 10% MgSO4 | 24-week | Anhydrite, Ettringite | 10% MgSO4 | [25] |
Slag | NaOH + Na2SiO3 | 5% Na2SO4 | 3-month | Gypsum, Ettringite | 5% Na2SO4 | [4] |
Slag + POFA | NaOH + Na2SiO3 | 5% Na2SO4 5% MgSO4 | 6-month | Anhydrite, Brucite, Serpentine | 5% Na2SO4 | [34] |
Slag | NaOH + Na2SiO3 | 10% Na2SO4 10% MgSO4 | 12-month | Gypsum, M-S-H | 10% MgSO4 | [30] |
Slag + NVP | NaOH + Na2SiO3 | 5% Na2SO4 5% MgSO4 | 730-day | Gypsum, Brucite | 5% MgSO4 | [36] |
Standard | Class of Exposure | Performance Requirements—Maximum Expansion (%) | Sample Size | |||||
---|---|---|---|---|---|---|---|---|
At 14 Days | At 112 Days | At 3 Months | At 6 Months | At 12 Months | At 18 Months | |||
ACI 318 (2014) | S-0 | 25 × 25 × 285 | ||||||
S-1 | 0.10 | |||||||
S-2 | 0.05 | 0.10 | ||||||
S-3 | 0.10 | |||||||
ASTM C452 | * | 0.04 | 25 × 25 × (285) or 160 | |||||
ASTM C1038-95 | * | 0.04 | 25 × 25 × 285 | |||||
ASTM C1012 | * | 0.05 | 0.1 | 25 × 25 × 285 | ||||
AS 2350-14 | * | 0.09 | 15 × 40 × 160 | |||||
CSA A3004-C8 | S-1 | 0.05 | 0.10 | 0.10 § | 25 × 25 × 285 | |||
S-2 | 0.05 | 0.10 | 0.10 § | |||||
S-3 | 0.10 | 0.10 | 0.10 § | |||||
DIN 1164:1985 | ≤0.50 a | 10 × 40 × 160 | ||||||
GB 2420 and 749 | ≤0.08 ** | 10 × 10 × 60 | ||||||
IS 12330-1988 | * | ≤0.045 | 25 × 25 × 250 | |||||
NBR 13583 | 25 × 25 × 285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanaan, D.; Soliman, A.M.; Suleiman, A.R. Zero-Cement Concrete Resistance to External Sulfate Attack: A Critical Review and Future Needs. Sustainability 2022, 14, 2078. https://doi.org/10.3390/su14042078
Kanaan D, Soliman AM, Suleiman AR. Zero-Cement Concrete Resistance to External Sulfate Attack: A Critical Review and Future Needs. Sustainability. 2022; 14(4):2078. https://doi.org/10.3390/su14042078
Chicago/Turabian StyleKanaan, Dima, Ahmed M. Soliman, and Ahmed R. Suleiman. 2022. "Zero-Cement Concrete Resistance to External Sulfate Attack: A Critical Review and Future Needs" Sustainability 14, no. 4: 2078. https://doi.org/10.3390/su14042078
APA StyleKanaan, D., Soliman, A. M., & Suleiman, A. R. (2022). Zero-Cement Concrete Resistance to External Sulfate Attack: A Critical Review and Future Needs. Sustainability, 14(4), 2078. https://doi.org/10.3390/su14042078