Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Hydroponic Experiment
2.2. Design of Pot Experiment
2.3. Determination of Cadmium
2.4. Statistical Analysis
3. Results
3.1. Absorption of Cadmium by B. juncea and B. pekinensis
3.2. Effects of Cadmium on Plant Growth
3.3. Evaluation of the Phytoextraction Potential
4. Discussion
4.1. Effects of Cadmium on B. juncea and B. pekinensis
4.2. Potential Phytoremediation of Moderate Cd-Contaminated Soil by B. juncea and B. pekinensis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLaughlin, M.J.; Singh, B.R. Cadmium in soil and plants: A global perspective. In Cadmium in Soil and Plants; McLaughlin, M.J., Singh, B.R., Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1999; pp. 13–21. [Google Scholar]
- Muhammad, S.; Ullah, R.; Jadoon, I. Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. Microchem. J. 2019, 149, 103971. [Google Scholar] [CrossRef]
- Murakami, M.; Ae, N. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J. Hazard. Mater. 2009, 162, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Arduini, I.; Masoni, A.; Mariotti, M.; Ercoli, L. Low cadmium application increase miscanthus growth and cadmium translocation. Environ. Exp. Bot. 2004, 52, 89–100. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, S.; Muhammad, S.; Hilal, Z.; Ali, M.; Khan, S.; Khattak, N.U. Spatial distribution of potentially toxic elements in urban soils of abbottabad city, (N Pakistan): Evaluation for potential risk. Microchem. J. 2020, 2020, 104489. [Google Scholar] [CrossRef]
- Lanzerstorfer, C.; Logiewa, A. The upper size limit of the dust samples in road dust heavy metal studies: Benefits of a combined sieving and air classification sample preparation procedure. Environ. Pollut. 2019, 245, 1079–1085. [Google Scholar] [CrossRef]
- Faridullah, F.; Umar, M.; Alam, A.; Sabir, M.A.; Khan, D. Assessment of heavy metals concentration in phosphate rock deposits, Hazara basin, lesser Himalaya Pakistan. Geosci. J. 2017, 21, 743–752. [Google Scholar] [CrossRef]
- Ullah, R.; Muhammad, S. Heavy metals contamination in soils and plants along with the mafic-ultramafic complex (ophiolites), baluchistan, pakistan: Evaluation for risk and phytoremediation potential. Environ. Technol. Innov. 2020, 19, 100931. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, Q.Q.; Wei, Z.J.; Yu, X.X.; Jia, G.D.; Jiang, J. Partitioning tree water usage into storage and transpiration in a mixed forest. For. Ecosyst. 2021, 8, 72. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A comparative study of cadmium phytoextraction by accumulator and weed species. Environ. Pollut. 2005, 133, 365–371. [Google Scholar] [CrossRef]
- Hernández, A.J.; Becerril, J.M.; Garbisu, C. Assessment of the phytoextraction potential of high biomass crop plants. Environ. Pollut. 2008, 152, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Noriharu, A.E.; Murakami, M.; Wagatsuma, T. Is Brassica juncea a suitable plant for phytoremediation of cadmium in soils with moderately low cadmium 315 contamination?—Possibility of using other plant species for Cd-phytoextraction. Soil Sci. Plant Nutr. 2006, 52, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Kamnev, A.A.; van der Lelie, D. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 2000, 20, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.P.; Shen, Z.G.; Li, X.D. Uptake of cadmium by different cultivars of Brassica pekinens 321 (Lour.) Rupr. and Brassica chinensis L. and their potential for phytoremediation. Bull. Environ. Contam. Toxicol. 2006, 76, 732–739. [Google Scholar] [CrossRef]
- Zhao, F.J.; Lombi, E.; McGrath, S.P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 2003, 249, 37–43. [Google Scholar] [CrossRef]
- Marchiol, L.; Sacco, P.; Assolari, S.; Zerbi, G. Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica Species. Water Air Soil Pollut. 2004, 158, 345–356. [Google Scholar] [CrossRef]
- Nanda, K.P.B.A.; Dushenkov, V.; Motto, H.; Raskin, I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 1995, 29, 1232–1238. [Google Scholar]
- Quartacci, M.F.; Argilla, A.; Baker, A.J.M.; Navari-Izzo, F. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 2006, 63, 918–925. [Google Scholar] [CrossRef]
- Reeves, R.; Schwartz, C.; Morel, J.; Edmondson, J. Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremed. 2001, 3, 145–172. [Google Scholar] [CrossRef]
- Saxena, G.; Purchase, D.; Mulla, S.I.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam. Toxicol. 2020, 249, 71–131. [Google Scholar]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Schwartz, C.; Echevarria, G.; Morel, J.L. Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 2003, 249, 27–35. [Google Scholar] [CrossRef]
- Schwartz, C.; Gérard, E.; Perronnet, K.; Morel, J.L. Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Sci. Total Environ. 2001, 279, 215–221. [Google Scholar] [CrossRef]
- Vassilev, A.; Vangronsveld, J.; Yordanov, I. Cadmium phytoextraction: Present state, biological interactions and research needs. Bulg. J. Plant Physiol. 2001, 28, 68–95. [Google Scholar]
- Jadoon, S.; Hilal, Z.; Ali, M.; Muhammad, S. Potentially toxic elements in drinking water and associated health risk assessment in Abbottabad city, northern Pakistan. Desalinat. Water Treat. 2019, 151, 392–402. [Google Scholar] [CrossRef]
- Zou, X.J.; Qiu, R.L.; Zhou, X.Y.; Zheng, W.H. Heavy metal contamination and health risk assessment in Dabao Mountain, China. Acta Sci. Circumst. 2008, 28, 1406–1412. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, R.; Xia, B.; Zeng, X.; Qiu, R.; Tang, Y.; Hu, Z. Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment. Sustainability 2022, 14, 429. https://doi.org/10.3390/su14010429
Ying R, Xia B, Zeng X, Qiu R, Tang Y, Hu Z. Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment. Sustainability. 2022; 14(1):429. https://doi.org/10.3390/su14010429
Chicago/Turabian StyleYing, Rongrong, Bing Xia, Xiaowen Zeng, Rongliang Qiu, Yetao Tang, and Zhewei Hu. 2022. "Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment" Sustainability 14, no. 1: 429. https://doi.org/10.3390/su14010429
APA StyleYing, R., Xia, B., Zeng, X., Qiu, R., Tang, Y., & Hu, Z. (2022). Adsorption of Cadmium by Brassica juncea (L.) Czern. and Brassica pekinensis (Lour.) Rupr in Pot Experiment. Sustainability, 14(1), 429. https://doi.org/10.3390/su14010429