Assessment of the Effects of Heavy Metals in Soils after Removal by Nanoscale Zero-Valent Iron with Three Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Analysis of Soil Samples
2.2. Preparation of the nZVI Solution
2.3. Preparation of Standard Solution
2.4. Assessment of the Effects of Heavy Metals
2.4.1. Removing the Heavy Metals by the Toxicity Leaching Method
2.4.2. Removing the Heavy Metals by the IVG (In Vitro Gastrointestinal) Method
2.4.3. Removing the Heavy Metals by the DGT (Diffusive Gradients in Thin-Films) Extraction Method
3. Results and Discussion
3.1. Characterization of nZVI
3.1.1. The Characterization of the nZVI Structure
3.1.2. Specific Surface Area (BET) of nZVI
3.2. The Leaching Effects of Heavy Metals on the Basis of the TCLP Method
3.3. The Leaching Effects of Heavy Metals on the Basis of the IVG Method
3.4. The Leaching Effects of Heavy Metals on the Basis of the DGT Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spirenkova, O.V.; Bik, Y.I.; Roshchina, E.V.; Tushina, A.S.; Pridanova, O.V.; Kozenkova, G.L. Geoecological assessment of water bodies in novosibirsk using cluster methods. IOP Conf. Ser. Earth Environ. Sci. 2021, 867, 012050. [Google Scholar] [CrossRef]
- Bezdicek, D.F.; Papendick, R.I.; Lal, R. Introduction: Importance of soil quality to health and sustainable land management. Methods Assess. Methods Assess. Soil Qual. 1996, 49, 1–8. [Google Scholar]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils e to mobilize or to immobilize? J. Hazard Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Hang, X.S.; Wang, H.Y.; Zhou, J.M.; Ma, C.L.; Du, C.W.; Chen, X.Q. Risk assessment of portentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of Yangtze River Delta. Environ. Pollut. 2009, 157, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J. Quantifying heavy metal inputs to agricultural soils in England and Wales. Water Environ. J. 2006, 20, 87–95. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Ye, Y. Heavy metal accumulation and its spatial distribution in agricultural soils: Evidence from Hunan province, China. RSC Adv. 2018, 8, 10665–10672. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and micronutrients-food safety issues. Field Crops Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- Petraitis, E. Research into heavy metal concentrations in agricultural soils. Ekologija 2007, 15, 606–611. [Google Scholar]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environ. Int. 2005, 31, 784–790. [Google Scholar] [CrossRef]
- Marin, A.R.; Masscheleyn, P.H.; Patrick, W.H. Soil redox–pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 1993, 152, 245–253. [Google Scholar] [CrossRef]
- Meharg, A.A.; Lombi, E.; Williams, P.N.; Scheckel, K.G.; Feldmann, J.; Raab, A.; Zhu, Y.G.; Islam, R. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 2008, 42, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.; Martinez, J.; Hidalgo, M.C.; Rojas, D. Heavy metal pollution in the Quaternary Garza basin: A multidisciplinary study of the environmental risks posed by mining (Linares, southern Spain). Catena 2013, 110, 234–242. [Google Scholar] [CrossRef]
- Dudka, S.; Miller, W.P. Accumulation of potentially toxic elements in plants and their transfer to human food chain. J Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 1999, 34, 681–708. [Google Scholar] [CrossRef] [PubMed]
- Perrodin, Y.; Boillot, C.; Angerville, R.; Donguy, G.; Emmanuel, E. Ecological risk assessment of urban and industrial systems: A review. Sci. Total Environ. 2011, 409, 5162–5176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suriyagoda, L.; Sirisena, D.; Somaweera, K.; Dissanayake, A.; De Costa, W.; Lambers, H. Incorporation of dolomite reduces iron toxicity, enhances growth and yield, and improves phosphorus and potassium nutrition in lowland rice (Oryza sativa L.). Plant Soil 2017, 410, 299–312. [Google Scholar] [CrossRef]
- Mackie, K.A.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Krishna, A.K.; Govil, P.K. Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environ. Monit. Assess. 2007, 124, 263–275. [Google Scholar] [CrossRef]
- Chen, X.M.; Zhu, Y.C.; Fu, X.Y. Source and enrichment situation of heavy metals in apple orchard soils of Tianshui area, China. J. Agro-Environ. Sci. 2011, 30, 893–898. [Google Scholar]
- Dahms, S.; Baker, N.J.; Greenfield, R. Ecological risk assessment of trace elements in sediment: A case study from Limpopo, South Africa. Ecotoxicol. Environ. Saf. 2017, 135, 106–114. [Google Scholar] [CrossRef]
- Ren, H.L.; Cui, B.S.; Bai, J.H.; Dong, S.K.; Hu, B.; Zhao, H. Distribution of heavy metal in paddy soil of Hani Terrace core zone and assessment on its potential ecological risk. Acta Ecol. Sin. 2008, 28, 1625–1634. [Google Scholar]
- Nicholson, F.; Smith, S.; Alloway, B.; Carlton-Smith, C.; Chambers, B. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Bangroo, S.; Najar, G.; Rasool, A. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena 2017, 158, 63–68. [Google Scholar] [CrossRef]
- Kou, M.; Jiao, J.Y.; Yin, Q.L.; Wang, N.; Wang, Z.J.; Li, Y.J.; Yu, W.J.; Wei, Y.H.; Yan, F.C.; Cao, B.T. Successional trajectory over 10 years of vegetation restoration of abandoned slope croplands in the hill-gully region of the Loess Plateau. Land Degrad. Dev. 2016, 27, 919–932. [Google Scholar] [CrossRef]
- Lucas, R.W.; Klaminder, J.; Futter, M.N.; Bishop, K.H.; Egnell, G.; Laudon, H.; Högberg, P. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For. Ecol. Manag. 2011, 262, 95–104. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, Q.B.; Zhang, Y.W.; Lim, C.Y.H.; Khoo, B.C. Effect of particle size on erosion characteristics. Wear 2016, 348–349, 126–137. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.L.; Honeycutt, C.W.; Arshad, M.A.; Schomberg, H.H.; Hons, F.M. Climatic influences on active fractions of soil organic matter. Soil Biol. Biochem. 2001, 33, 1103–1111. [Google Scholar] [CrossRef]
- Dawson, J.J.; Smith, P. Carbon losses from soil and its consequences for land-use management. Sci. Total Environ. 2007, 382, 165–190. [Google Scholar] [CrossRef]
- Ghimire, P.; Bhatta, B.; Pokhrel, B.; Kafle, G.; Paudel, P. Soil organic carbon stocks under different land uses in Chure region of Makawanpur district, Nepal. SAARC J. Agric. 2019, 16, 13–23. [Google Scholar] [CrossRef]
- Reubens, B.; Achten, W.M.J.; Maes, W.H.; Danjon, F.; Aerts, R.; Poesen, J.; Muys, B. More than biofuel? Jatropha curcas root system symmetry and potential for soil erosion control. J. Arid Environ. 2011, 75, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Mer, G.S.; Singh, S.P.; Rawat, Y.S. Seasonal pattern of total soil respiration in undisturbed and disturbed ecosystems of Central Himalaya. Biol. Fert. Soils. 1991, 11, 267–272. [Google Scholar] [CrossRef]
- Singh, S.; Ghoshal, N.; Singh, K.P. Variations in soil microbial biomass and crop roots due to differing resource quality inputs in a tropical dryland agroecosystem. Soil Biol. Biochem. 2007, 39, 76–86. [Google Scholar] [CrossRef]
- Yilmaz, G. Seasonal variation of cumulative CO2 emission from a vertisol under apricot orchard in semi-arid southeast Turkey. Pedosphere 2012, 22, 322–332. [Google Scholar] [CrossRef]
- Litton, C.M.; Ryan, M.G.; Knight, D.H.; Stahl, P.D. Soil-surface carbon dioxide efflux and microbial biomass in relation to tree density 13 years after a stand replacing fire in a lodgepole pine ecosystem. Glob. Chang. Biol. 2003, 9, 680–696. [Google Scholar] [CrossRef]
Main Physical and Chemical Properties | Testing Soil |
---|---|
Particle size distribution (mm) a | |
0.2–2.0 (%) | 33.1 |
0.02–0.2 (%) | 32.6 |
0.002–0.02 (%) | 28.4 |
<0.002 (%) | 5.9 |
pH b | 5.32 |
Soil organic matter (g/kg) | 31.6 |
CEC (cmol/kg) | 6.38 |
Zn (mg/kg) | 1830 |
Pb (mg/kg) | 749 |
Cr (mg/kg) | 70.3 |
Cu (mg/kg) | 32.4 |
NZVI Potency (g/L) | Lower Bioavailability (%) | ||||
---|---|---|---|---|---|
Cr | Cu | Zn | Pb | ||
The stomach | 0.5 | 12.70 | 30.71 | 6.12 | 14.27 |
1.0 | 42.83 | 72.10 | 20.85 | 48.24 | |
Small intestine | 0.5 | 38.64 | 4.16 | 18.27 | 17.66 |
1.0 | 91.07 | 13.54 | 46.35 | 36.22 |
Soil Sample | Cr | Cu | Zn | Pb |
---|---|---|---|---|
S1 | 20.23 ± 2.03a | 6.22 ± 0.37a | 474.62 ± 5.09c | 156.38 ± 4.15c |
S2 | 2.53 ± 0.03b | 3.74 ± 0.20b | 391.65 ± 8.33b | 31.28 ± 2.06b |
S3 | / | / | 253.03 ± 10.21a | 8.39 ± 0.34a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Xia, B.; Lu, Y.; Zhang, X.; Chen, H.; Ying, R.; Jin, S. Assessment of the Effects of Heavy Metals in Soils after Removal by Nanoscale Zero-Valent Iron with Three Methods. Sustainability 2022, 14, 2273. https://doi.org/10.3390/su14042273
Zhang T, Xia B, Lu Y, Zhang X, Chen H, Ying R, Jin S. Assessment of the Effects of Heavy Metals in Soils after Removal by Nanoscale Zero-Valent Iron with Three Methods. Sustainability. 2022; 14(4):2273. https://doi.org/10.3390/su14042273
Chicago/Turabian StyleZhang, Tianen, Bing Xia, Yuanyuan Lu, Xiaoyu Zhang, Hongfeng Chen, Rongrong Ying, and Shu Jin. 2022. "Assessment of the Effects of Heavy Metals in Soils after Removal by Nanoscale Zero-Valent Iron with Three Methods" Sustainability 14, no. 4: 2273. https://doi.org/10.3390/su14042273
APA StyleZhang, T., Xia, B., Lu, Y., Zhang, X., Chen, H., Ying, R., & Jin, S. (2022). Assessment of the Effects of Heavy Metals in Soils after Removal by Nanoscale Zero-Valent Iron with Three Methods. Sustainability, 14(4), 2273. https://doi.org/10.3390/su14042273