Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Production
2.2. Biochar Characterization
2.3. Sorption Tests
2.3.1. Adsorption Test Preparation
2.3.2. Heavy Metal Sorption Capacities of the Biochars
2.3.3. Isotherm Studies
2.3.4. Kinetic Studies
3. Results and Discussion
3.1. Biochar Characterization
3.1.1. Fundamental Properties
3.1.2. Elemental Analysis
3.1.3. FTIR Analysis
3.2. Adsorption Isotherms
3.3. Adsorption Kinetics
3.4. Sorption of Hg, Cd, or Pb by Maize Biochar Produced under Different Temperatures
3.5. Comparison of BC400 and WBC400 Heavy Metal Adsorption
3.6. BC400 Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theologides, C.P.; Christou, A.; Costa, K.; Ioannis, K. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 6–22. [Google Scholar]
- Duwiejuah, A.B.; Cobbina, S.J.; Quainoo, A.K. Adsorption of Potentially Toxic Metals from Mono and Multi-Metal Systems Using Groundnut and Shea Nut Shell Biochars. J. Health Pollut. 2018, 8, 180602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, P.; Yang, Q. Analysis of the Cd(II) Adsorption Performance and Mechanisms by Soybean Root Biochar: Effect of Pyrolysis Temperatures. Bull. Environ. Contam. Toxicol. 2021, 107, 553–558. [Google Scholar] [CrossRef]
- Peng, J.F.; Song, Y.H.; Yuan, P. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef]
- Bordoloi, N.; Goswami, R.; Kumar, M.; Kataki, R. Biosorption of Co(II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresour. Technol. 2017, 244, 1465–1469. [Google Scholar] [CrossRef]
- Magid, A.; Islam, M.S.; Chen, Y. Enhanced adsorption of polystyrene Nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature. Sci. Total Environ. 2021, 784, 147115. [Google Scholar]
- Bhuyar, P.; Farez, F.; Rahim, M. Removal of nitrogen and phosphorus from agro-industrial wastewater by using microalgae collected from coastal region of peninsular Malaysia. Afr. J. Biol. Sci. 2021, 3, 58–66. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Hassan, S.M. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2021, 278, 119510. [Google Scholar] [CrossRef]
- Chu, C.Y.; Zheng, J.L.; Chen, T.H. High Performance of Biohydrogen Production in Packed-Filter Bioreactor via Optimizing Packed-Filter Position. Int. J. Environ. Res. Public Health 2021, 18, 7462. [Google Scholar] [CrossRef]
- Koskela, A.; Heikkil, A.; Bergna, D. Effects of Briquetting and High Pyrolysis Temperature on Hydrolysis Lignin Char Properties and Reactivity in CO-CO2-N2 Conditions. Minerals 2021, 11, 187. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Lv, Q. Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars. Int. J. Environ. Res. Public Health 2019, 16, 845. [Google Scholar] [CrossRef] [Green Version]
- Fristak, V.; Pipiska, M.; Lesny, J. Utilization of biochar sorbents for Cd(2)(+), Zn(2)(+), and Cu(2)(+) ions separation from aqueous solutions: Comparative study. Environ. Monit. Assess. 2015, 187, 4093. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Varnoosfaderani, S. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 2013, 130, 457–462. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Creamer, A.E.; Gao, B.; Zhang, M. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem. Eng. J. 2014, 249, 174–179. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.Q. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, R.K.; Jiang, T.Y.; Li, Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012, 229–230, 145–150. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Uchimiya, M.; Chang, S.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 190, 432–441. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Uthayakumar, H.; Radhakrishnan, P.; Shanmugam, K. Growth of MWCNTs from Azadirachta indica oil for optimization of chromium(VI) removal efficiency using machine learning approach. Environ. Sci. Pollut. Res. 2022, 29, 34841–34860. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Ahmed, W.; Mehmood, S.A.; Núez, D. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Sci. Total Environ. 2021, 784, 147136. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef]
- Fumihiko, O.M.K.; Yuka, I.; Ayaka, U.; Yuko, T.; Naohito, K. A Study on the Adsorption of Heavy Metals by Using Raw Wheat Bran Bioadsorbent in Aqueous Solution Phase. Chem. Pharm. Bull. 2014, 62, 247–253. [Google Scholar]
- Aline, P.P.; Leônidas, C.; Azevedo, M.; Cleide, A.A. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res. 2015, 164, 25–33. [Google Scholar]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea Aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 2018, 194, 579–587. [Google Scholar] [CrossRef]
- Fuertes, A.B.; Camps, M.; Arbestain, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 2010, 48, 618–626. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, H.; Jia, G.D.; Yu, X.X.; Jiang, J. Evidence of foliar water uptake in a conifer species. Agric. Water Manag. 2021, 255, 106993. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Sun, H.; Ro, K.S. Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour. Technol. 2017, 234, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, N.; Chen, H.; Feng, Q. Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean. Prod. 2017, 165, 221–230. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, Q.Q.; Wei, Z.J.; Yu, X.X.; Jia, G.D.; Jiang, J. Partitioning tree water usage into storage and transpiration in a mixed forest. For. Ecosyst. 2021, 8, 13. [Google Scholar] [CrossRef]
- Li, W.C.; Law, F.Y.; Chan, Y.H. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ. Sci. Pollut. Res. Int. 2017, 24, 8903–8915. [Google Scholar] [CrossRef]
- Venegas, A.; Rigol, A.; Vidal, M. Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 2015, 119, 190–198. [Google Scholar] [CrossRef]
- Wang, Z. Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb (II) adsorption properties in aqueous solutions. J. Anal. Appl. Pyrolysis 2021, 157, 105214. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Zhao, B.; David, O.C.; Zhang, J. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Kbc, A.; Pgh, A.; Mu, B. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar]
- Brewer, C.E.; Hall, E.T.; Schmidt, R.K. Temperature and reaction atmosphere effects on the properties of corn stover biochar. Environ. Progress Sustain. Energy 2016, 36, 696–707. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, D.; Jin, F. Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci. Total Environ. 2019, 655, 751–758. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; AbuLail, N. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Minori, U.L. Sorption of Deisopropylatrazine on Broiler Litter Biochars. J. Agric. Food Chem. 2010, 58, 12350–12356. [Google Scholar]
- Roscher, L.; Halbach, M.; Nguyen, M.T. Microplastics in two German wastewater treatment plants: Year-long effluent analysis with FTIR and Py-GC/MS. Sci. Total Environ. 2022, 817, 152619. [Google Scholar] [CrossRef]
- Sun, D. Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate. Sci. Total Environ. 2022, 829, 154599. [Google Scholar] [CrossRef]
- Prakash, B.; Dang, D.H.; Emelina, M.; Mohd, H.A.; Rahim, G.P.M.; Natanamurugaraj, G. Desalination of Polymer and Chemical industrial wastewater by using green photosynthetic microalgae, Chlorella sp. Maejo Int. J. Energy Environ. Commun. 2019, 1, 9–19. [Google Scholar] [CrossRef]
- Liang, L.; Li, X.; Guo, Y. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. J. Hazard. Mater. 2021, 404, 124057. [Google Scholar] [CrossRef]
- Soares, M.B.; Milori, D.; Alleoni, L. How does the biochar of sugarcane straw pyrolysis temperature change arsenic and lead availabilities and the activity of the microorganisms in a contaminated sediment? J. Soils Sediments 2021, 21, 3185–3200. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Silva, E. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Geleto, M.A.; Forján, R.; Arco-Lázaro, E. Influence of pyrolysis temperature and feedstock biomass on Cu2+, Pb2+, and Zn2+ sorption capacity of biochar. Int. J. Environ. Sci. Technol. 2022, 1–10. [Google Scholar] [CrossRef]
- Park, J.H.; Ok, Y.S.; Kim, S.H. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of heavy metals from wastewater using agricultural byproducts. J. Water. Supply Res. Technol.-Aqua 2020, 69, 99–112. [Google Scholar] [CrossRef]
Biochar | BC300 | BC400 | BC500 |
---|---|---|---|
pH | 7.49 | 8.95 | 9.85 |
EC (mS/cm) | 3.22 | 5.74 | 2.79 |
Ash content/% | 21.31 | 22.78 | 24.54 |
Water-soluble phosphorus (mg/kg) | 477.33 | 596.75 | 233.53 |
SA (m2/g) | 29.598 | 12.110 | 23.303 |
PV (cm3/g) | 0.03295 | 0.02517 | 0.03170 |
Biochar | BC300 | BC400 | BC500 |
---|---|---|---|
C/% | 54.88 | 55.00 | 61.71 |
H/% | 3.792 | 3.192 | 2.706 |
N/% | 2.18 | 2.26 | 2.08 |
O/% | 17.838 | 16.768 | 8.964 |
H/C | 0.069 | 0.058 | 0.044 |
O/C | 0.325 | 0.305 | 0.145 |
(O+N)/C | 0.365 | 0.346 | 0.179 |
Metal Ion | Biochar | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g) | n | R2 | ||
Hg2+ | BC300 | 129.31 | 0.00192 | 0.963 | 0.729 | 1.440 | 0.951 |
BC400 | 173.27 | 0.00152 | 0.995 | 0.553 | 1.308 | 0.966 | |
BC500 | 190.24 | 0.00100 | 0.985 | 0.497 | 1.310 | 0.973 | |
Cd2+ | BC300 | 9.27 | 0.02700 | 0.964 | 1.947 | 4.034 | 0.839 |
BC400 | 22.83 | 0.00656 | 0.965 | 1.482 | 2.374 | 0.856 | |
BC500 | 17.59 | 0.02213 | 0.975 | 1.798 | 2.731 | 0.860 | |
Pb2+ | BC300 | 45.45 | 0.00457 | 0.938 | 2.315 | 2.472 | 0.834 |
BC400 | 81.47 | 0.00479 | 0.942 | 1.479 | 1.841 | 0.824 | |
BC500 | 56.84 | 0.00010 | 0.979 | 1.938 | 2.111 | 0.801 |
Metal Ions | Biochar | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (min−1) | R2 | qe (mg/g) | k2 (mg/g min) | R2 | ||
Hg2+ | BC300 | 34.10 | 0.001 | 0.820 | 50.51 | 0.0001 | 0.995 |
BC400 | 28.95 | 0.002 | 0.914 | 50.00 | 0.0003 | 0.999 | |
BC500 | 27.98 | 0.001 | 0.892 | 47.17 | 0.0002 | 0.997 | |
Cd2+ | BC300 | 6.16 | 0.001 | 0.948 | 8.72 | 0.0007 | 0.988 |
BC400 | 8.20 | 0.001 | 0.945 | 15.87 | 0.0008 | 0.999 | |
BC500 | 6.17 | 0.001 | 0.945 | 11.39 | 0.0009 | 0.996 | |
Pb2+ | BC300 | 25.12 | 0.001 | 0.508 | 38.61 | 0.0001 | 0.988 |
BC400 | 51.56 | 0.002 | 0.991 | 68.49 | 0.0001 | 0.996 | |
BC500 | 28.41 | 0.001 | 0.600 | 54.05 | 0.00002 | 0.991 |
Metal Ions | Biochar | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | KF (mg1-n/(g·Ln) | n | R2 | ||
Hg2+ | BC400 | 217.39 | 0.001 | 0.995 | 2.55 | 1.31 | 0.972 |
WBC400 | 256.41 | 0.001 | 0.999 | 0.39 | 1.21 | 0.990 | |
Pb2+ | BC400 | 128.21 | 0.003 | 0.993 | 1.81 | 1.77 | 0.861 |
WBC400 | 21.88 | 0.011 | 0.981 | 1.72 | 2.71 | 0.887 | |
Cd2+ | BC400 | 29.24 | 0.011 | 0.983 | 1.69 | 2.31 | 0.856 |
WBC400 | 17.48 | 0.013 | 0.990 | 1.09 | 2.33 | 0.863 |
Metal Ions | Biochar | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (min−1) | R2 | qe (mg/g) | k2 (mg/g min) | R2 | ||
Hg2+ | BC400 | 28.95 | 0.002 | 0.914 | 50.00 | 0.0003 | 0.999 |
WBC400 | 23.18 | 0.0017 | 0.987 | 37.31 | 0.0002 | 0.998 | |
Pb2+ | BC400 | 51.56 | 0.002 | 0.991 | 68.49 | 0.0001 | 0.999 |
WBC400 | 6.20 | 0.0009 | 0.806 | 19.56 | 0.0012 | 0.994 | |
Cd2+ | BC400 | 8.20 | 0.001 | 0.945 | 15.87 | 0.0008 | 0.996 |
WBC400 | 6.16 | 0.0008 | 0.964 | 12.07 | 0.0008 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, R.; Xia, B.; Ying, R.; Hu, Z.; Tao, X.; Yu, H.; Xiao, F.; Chu, Q.; Chen, H.; et al. Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. Sustainability 2022, 14, 9022. https://doi.org/10.3390/su14159022
Hu X, Zhang R, Xia B, Ying R, Hu Z, Tao X, Yu H, Xiao F, Chu Q, Chen H, et al. Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. Sustainability. 2022; 14(15):9022. https://doi.org/10.3390/su14159022
Chicago/Turabian StyleHu, Xuebo, Ruigang Zhang, Bing Xia, Rongrong Ying, Zhewei Hu, Xu Tao, Hao Yu, Fabao Xiao, Qiaoying Chu, Hongfeng Chen, and et al. 2022. "Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar" Sustainability 14, no. 15: 9022. https://doi.org/10.3390/su14159022
APA StyleHu, X., Zhang, R., Xia, B., Ying, R., Hu, Z., Tao, X., Yu, H., Xiao, F., Chu, Q., Chen, H., & Qian, J. (2022). Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. Sustainability, 14(15), 9022. https://doi.org/10.3390/su14159022