Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Method and Soil Collection
2.3. Soil Analysis
2.4. Statistical Analysis
3. Results
3.1. Changes of Soil Temperature
3.2. Changes of Soil Moisture
3.3. Soil Physicochemical Properties Changes
4. Discussion
4.1. Hydrothermal Dynamic Changes
4.2. Correlation Analysis of Soil Characteristics with Hydrothermal Changes
5. Conclusions
- (1)
- In subtropical subalpine areas, the trends of soil temperature and water content change differently at different freeze-thaw stages, and change more slowly during the thawing period.
- (2)
- During the initial freeze-thaw period, soil hydrothermal trends in the subtropical subalpine region are consistent with those in the seasonal permafrost and permafrost zones.
- (3)
- Soil hydrothermal and physicochemical properties are intrinsically linked differently at different freeze-thaw stages. The soil ammonia nitrogen content positively correlated with soil water content after freeze-thaw. Total phosphorus, fast-acting phosphorus, total nitrogen and nitrate nitrogen showed no significant correlation with soil heat and soil moisture content after freeze-thaw.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, H.; Bian, J.; Zhang, H.; Li, Y. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel. Front. Environ. Sci. Eng. 2021, 15, 10. [Google Scholar] [CrossRef]
- Meng, F.; Hou, R.; Li, T.; Fu, Q. Variability of Soil Water Heat and Energy Transfer under Different Cover Conditions in a Seasonally Frozen Soil Area. Sustainability 2020, 12, 1782. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Lai, Y.; You, Z.; Ren, J. Simulation of heat-water-mechanics process in a freezing soil under stepwise freezing. Permafr. Periglac. Process. 2020, 31, 200–212. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Gao, S.; Hou, Y. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region. Environ. Earth Sci. 2017, 76, 194. [Google Scholar] [CrossRef]
- Fuss, C.B.; Driscoll, C.T.; Green, M.B.; Groffman, P.M. Hydrologic flowpaths during snowmelt in forested headwater catchments under differing winter climatic and soil frost regimes. Hydrol. Process. 2016, 30, 4617–4632. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, R.; Li, T.; Jiang, R.; Yan, P.; Ma, Z.; Zhou, Z. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China. Sci. Rep. 2018, 8, 1325. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhao, L.; Li, R.; Hu, G.; Du, E.; Qiao, Y.; Ma, L. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau. Sci. Total Environ. 2020, 712, 136392. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Li, Z.; Hou, J.; Xiao, L.; Ren, Z.; Xu, G.; Yu, K.; Su, Y. The effects of freeze-thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China. Sci. Total Environ. 2019, 666, 721–730. [Google Scholar] [CrossRef]
- Lai, J.; Wang, X.; Qiu, J.; Zhang, G.; Chen, J.; Xie, Y.; Luo, Y. A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China. Renew. Sustain. Energy Rev. 2018, 82, 3554–3569. [Google Scholar] [CrossRef]
- Liu, T.; Xu, X.; Yang, J. Experimental study on the effect of freezing-thawing cycles on wind erosion of black soil in Northeast China. Cold Reg. Sci. Technol. 2017, 136, 1–8. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bilbrough, C.; Welker, J.M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 2004, 36, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Van Bochove, E.; Jones, H.G.; Bertrand, N.; Prévost, D. Winter fluxes of green-house gases from snow-covered agricultual soil: Intra- and interannual variations. Glob. Biogeochem. Cycles 2000, 14, 113–125. [Google Scholar] [CrossRef]
- Soulides, D.A.; Allison, F.E. Effect of drying and freezing soils on carbon dioxide production, available mineral nutrients, aggregation, and bacterial population. Soil Sci. 1961, 91, 291–298. [Google Scholar] [CrossRef]
- Urakawa, R.; Shibata, H.; Kuroiwa, M.; Inagaki, Y.; Tateno, R.; Hishi, T.; Fukuzawa, K.; Hirai, K.; Toda, H.; Oyanagi, N.; et al. Effects of freeze-thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago. Soil Biol. Biochem. 2014, 74, 82–94. [Google Scholar] [CrossRef]
- Grogan, P.; Michelsen, A.; Ambus, P.; Jonasson, S. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biol. Biochem. 2004, 36, 641–654. [Google Scholar] [CrossRef]
- Lehrsch, G.A.; Sojka, R.E.; Carter, D.L.; Jolley, P.M. Freezing Effects on Aggregate Stability Affected by Texture, Mineralogy, and Organic Matter. Soil Sci. Soc. Am. J. 1991, 55, 1401–1406. [Google Scholar] [CrossRef]
- Wickland, K.P.; Striegl, R.G.; Mast, M.A.; Clow, D.W. Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Glob. Biogeochem. Cycles 2001, 15, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, H.; Anenkhonov, O.A.; Shangguan, H.; Sandanov, D.V.; Korolyuk, A.Y.; Hu, G.; Wu, X. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agric. For. Meteorol. 2018, 252, 10–17. [Google Scholar] [CrossRef]
- Tokida, T.; Mizoguchi, M.; Miyazaki, T.; Kagemoto, A.; Nagata, O.; Hatano, R. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 2008, 70, 165–171. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Lai, Y. Hydro-thermal boundary conditions at different underlying surfaces in a permafrost region of the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 670, 1190–1203. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G.; Gao, Y.; Wang, Y. The influence of seasonal snow on soil thermal and water dynamics under different vegetation covers in a permafrost region. J. Mt. Sci. 2014, 11, 727–745. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, W.; Jiang, L.; Wu, Y.; Jiang, D.; Zhou, Y. Thermal Stability Evaluation Method Based on Pile’s Bearing Capacity in a Permafrost Region. IOP Conf. Ser. Earth Environ. Sci. 2020, 570, 22001. [Google Scholar]
- Ahmadi, S.; Ghasemzadeh, H.; Changizi, F. Effects of a Low-Carbon Emission Additive on Mechanical Properties of Fine-Grained Soil under Freeze-Thaw Cycles. J. Clean. Prod. 2021, 304, 127157. [Google Scholar] [CrossRef]
- Qin, Y.; Bai, Y.; Chen, G.; Liang, Y.; Li, X.; Wen, B.; Lu, X.; Li, X. The effects of soil freeze-thaw processes on water and salt migrations in the western Songnen Plain, China. Sci. Rep. 2021, 11, 3888. [Google Scholar] [CrossRef]
- Zheng, M.; Li, X.; Liu, X. Experimental Study on Freeze-Thaw Characteristics of Powdery Clay in Seasonal Frozen Soil under Different Freezing Conditions. J. Suihua Univ. 2019, 39, 157–160. [Google Scholar]
- Wang, G.; Li, Y.; Hu, H.; Wang, Y. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet. Hydrol. Process. 2010, 22, 3310–3320. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Wu, X.; Li, R.; Wu, T.; Xie, C.; Pang, Q.; Zou, D. Comparison of the thermal conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions. Catena 2017, 156, 244–251. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, G.; Niu, F.; Ni, W.; Chen, T. Experimental Study of the Mechanical Properties of Coarse-Grained Soils from High Altitude and Cold Areas under Freeze-Thaw Cycle. In Proceedings of the China—Europe Conference on Geotechnical Engineering, Vienna, Austria, 13–16 August 2018; pp. 1399–1402. [Google Scholar]
- Liu, J.; Engel, B.A.; Wang, Y.; Wu, Y.; Zhang, Z.; Zhang, M. Runoff Response to Soil Moisture and Micro-Topographic Structure on the Plot Scale. Sci. Rep. 2019, 9, 2532. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Cheng, G.; Zhang, T.; Wu, Q.; Jin, H.; Jin, R. Distribution of permafrost in China: An overview of existing permafrost maps. Permafr. Periglac. Process. 2012, 23, 322–333. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Le, K.V.; Botula, Y.-D.; Cornelis, W.M. Evaluation of soil water retention pedotransfer functions for Vietnamese Mekong Delta soils. Agric. Water Manag. 2015, 158, 126–138. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Cao, B.; Wang, Q.; Wang, K.; Shao, W.; Guo, H. Changes in Freezing-Thawing Index and Soil Freeze Depth over the Heihe River Basin, Western China. Arct. Antarct. Alp. Res. 2017, 48, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Scherler, M.; Hauck, C.; Hoelzle, M.; Stähli, M.; Völksch, I. Meltwater infiltration into the frozen active layer at an alpine permafrost site. Permafr. Periglac. Process. 2011, 21, 325–334. [Google Scholar] [CrossRef]
- Dong, X.; Liu, C.; Li, M.; Ma, D.; Cheng, Q.; Zang, S. Variations in active layer soil hydrothermal dynamics of typical wetlands in permafrost region in the Great Hing’an Mountains, northeast China. Ecol. Indic. 2021, 129, 107880. [Google Scholar] [CrossRef]
- Zhang, Y.; Ohata, T.; Kadota, T. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. J. Hydrol. 2003, 283, 41–56. [Google Scholar] [CrossRef]
- Bo, L.; Li, Z.; Li, P.; Xu, G.; Xiao, L.; Ma, B. Soil freeze-thaw and water transport characteristics under different vegetation types in seasonal freeze-thaw areas of the Loess Plateau. Front. Earth Sci. 2021, 9, 565. [Google Scholar] [CrossRef]
- Bao, W.; Bai, Y.; Zhao, Y.; Zhang, X.; Wang, Y.; Zhong, Y. Effect of Biochar on Soil Water Infiltration and Water Holding Capacity in the Arid Regions of Middle Ningxia. Chin. J. Soil Sci. 2018, 6, 1326–1332. [Google Scholar]
- Curtin, D.; Campbell, C.A.; Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
- Liao, N.; Jiang, L.; Li, J.; Zhang, L.; Zhang, J.; Zhang, Z. Effects of Freeze-Thaw Cycles on Phosphorus from Sediments in the Middle Reaches of the Yarlung Zangbo River. Int. J. Environ. Res. Public Health 2019, 16, 3783. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Yang, X.; Wang, C.; Hao, X.; Hong, J.; Lin, X. Dynamics of available and enzymatically hydrolysable soil phosphorus fractions during repeated freeze-thaw cycles. Geoderma 2019, 345, 1–4. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Xiang, X.; Wang, R.; Tian, W. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. J. Earth Sci. 2019, 10, 397–406. [Google Scholar] [CrossRef]
- Panikov, N.S.; Dedysh, S.N. Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Glob. Biogeochem. Cycles 2000, 14, 1071–1080. [Google Scholar] [CrossRef]
- Lipson, D.A.; Schadt, C.W.; Schmidt, S.K. Changes in Soil Microbial Community Structure and Function in an Alpine Dry Meadow Following Spring Snow Melt. Microb. Ecol. 2002, 43, 307–314. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Hou, A.; Miao, Y.; Yang, G.; Zhang, J. Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xing’anling Mountains, Northeast China. Environ. Earth Sci. 2014, 72, 1853–1860. [Google Scholar] [CrossRef]
Column A (cm) | Column B (cm) | Column C (cm) |
---|---|---|
50 | 50 | 50 |
100 | 100 | 100 |
120 | 150 | 150 |
150 | 200 | |
250 |
Column A | Column B | Column C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Depth (cm) | 50 | 100 | 120 | 150 | 50 | 100 | 150 | 50 | 100 | 150 | 200 | 250 |
pH | 4.41 | 4.43 | 4.70 | 4.75 | 4.61 | 4.58 | 4.86 | 4.89 | 4.20 | 4.40 | 4.46 | 4.70 |
TP (mg kg−1) | 2.93 | 1.81 | 1.52 | 1.45 | 2.73 | 1.85 | 1.69 | 2.88 | 1.64 | 1.62 | 1.21 | 0.94 |
AP (mg kg−1) | 2.22 | 1.94 | 1.87 | 1.71 | 2.41 | 2.20 | 1.69 | 2.39 | 2.01 | 1.77 | 1.23 | 1.01 |
TN (mg kg−1) | 19.81 | 18.13 | 16.78 | 15.98 | 18.76 | 17.96 | 16.33 | 19.84 | 17.20 | 15.40 | 14.14 | 13.03 |
NO3 (mg kg−1) | 11.31 | 11.71 | 9.66 | 9.49 | 10.51 | 8.88 | 8.31 | 11.46 | 11.92 | 10.27 | 8.73 | 6.03 |
NH4+-N (mg kg−1) | 11.56 | 10.82 | 10.53 | 10.22 | 8.74 | 7.89 | 7.13 | 11.78 | 11.27 | 10.25 | 9.28 | 7.83 |
Soil Characteristics | Soil Temperature | Soil Water Content | ||
---|---|---|---|---|
R | p | R | p | |
TP | 0.531 | 0.076 | 0.307 | 0.332 |
AP | 0.481 | 0.113 | 0.166 | 0.606 |
TN | 0.393 | 0.207 | 0.356 | 0.256 |
NO3 | 0.019 | 0.952 | 0.504 | 0.095 |
NH4+-N | −0.363 | 0.247 | 0.705 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhou, S.; Li, Z.; Zhang, M.; Zhang, Z. Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing. Sustainability 2022, 14, 13115. https://doi.org/10.3390/su142013115
Pan Y, Zhou S, Li Z, Zhang M, Zhang Z. Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing. Sustainability. 2022; 14(20):13115. https://doi.org/10.3390/su142013115
Chicago/Turabian StylePan, Yueyan, Shijun Zhou, Zhen Li, Mingxiang Zhang, and Zhenming Zhang. 2022. "Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing" Sustainability 14, no. 20: 13115. https://doi.org/10.3390/su142013115
APA StylePan, Y., Zhou, S., Li, Z., Zhang, M., & Zhang, Z. (2022). Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing. Sustainability, 14(20), 13115. https://doi.org/10.3390/su142013115