Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. PASSI and PASSI d’Argento Surveillance Systems Data
2.1.2. Italian Municipalities Classification
- high population density municipalities—at least 50% of the population lives in densely populated areas;
- intermediate population density municipalities—less than 50% of the population lives in rural areas and less than 50% in densely populated areas;
- low population density municipalities—more than 50% of the population falls into rural areas.
2.2. Statistical Analysis
3. Results
3.1. PASSI
3.1.1. Self-Reported Health Status
3.1.2. Prevention
3.1.3. Lifestyle
3.2. Passi d’Argento
3.2.1. Lifestyle and Self-Reported Health Status
3.2.2. Elderly Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. 2018 Revision of World Urbanization Prospects; Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2019. [Google Scholar]
- Breckenkamp, J.; Patterson, L.; Scharlach, M.; Hellmeier, W.; Verma, A. Definitions of urban areas feasible for examining urban health in the European Union. Eur. J. Public Health 2017, 27 (Suppl. 2), 19–24. [Google Scholar] [CrossRef] [Green Version]
- Urban Population (% of Total Population). Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 2 March 2022).
- Verma, A.; Van Ameijden, E.; Birt, C.; Bocsan, I.; Pope, D.; on behalf of the EURO-URHIS 1 and 2 consortia. Why investigate urban health indicators? Eur. J. Public Health 2017, 27 (Suppl. 2), 1–3. [Google Scholar] [CrossRef] [Green Version]
- Crane, M.; Lloyd, S.; Haines, A.; Ding, D.; Hutchinson, E.; Belesova, K.; Davies, M.; Osrin, D.; Zimmermann, N.; Capon, A.; et al. Transforming cities for sustainability: A health perspective. Environ. Int. 2021, 147, 106366. [Google Scholar] [CrossRef]
- Capolongo, S.; Buffoli, M.; Brambilla, A.; Rebecchi, A. Healthy urban planning and design strategies to improve urban quality and attractiveness of places. TECHNE—J. Technol. Archit. Environ. 2020, 19, 271–279. [Google Scholar] [CrossRef]
- Glouberman, S.; Gemar, M.; Campsie, P.; Miller, G.; Armstrong, J.; Newman, C.; Siotis, A.; Groff, P. A framework for improving health in cities: A discussion paper. J. Urban Health 2006, 83, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Fehr, R.; Capolongo, S. Promozione della salute nei contesti urbani: L’approccio urban health. Epidemiol. Prev. 2016, 40, 151–152. [Google Scholar] [CrossRef]
- Talukder, S.; Capon, A.; Nath, D.; Kolb, A.; Jahan, S.; Boufford, J. Urban health in the post-2015 agenda. Lancet 2015, 385, 745. [Google Scholar] [CrossRef]
- Rydin, Y.; Bleahu, A.; Davies, M.; Dávila, J.D.; Friel, S.; De Grandis, G.; Groce, N.; Hallal, P.C.; Hamilton, I.; Howden-Chapman, P.; et al. Shaping cities for health: Complexity and the planning of urban environments in the 21st century. Lancet 2012, 379, 2079–2108. [Google Scholar] [CrossRef] [Green Version]
- Vardoulakis, S.; Salmond, J.; Krafft, T.; Morawska, L. Urban environmental health interventions towards the Sustainable Development Goals. Sci. Total Environ. 2020, 748, 141530. [Google Scholar] [CrossRef]
- Pineo, H.; Zhou, K.; Niu, Y.; Hale, J.; Willan, C.; Crane, M.; Zimmermann, N.; Michie, S.; Liu, Q.; Davies, M. Evidence-informed urban health and sustainability governance in two Chinese cities. Build. Cities 2021, 2, 550–567. [Google Scholar] [CrossRef]
- Prime Minister’s Office. DPCM 3rd March 2017 on Registries and Surveillances (GU Serie Generale n.109 del 12-05-2017—All.A). Available online: https://www.gazzettaufficiale.it/eli/id/2017/05/12/17A03142/sg (accessed on 1 March 2022).
- American Association for Public Opinion Research. Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys. 9th Edition. Available online: https://www.aapor.org/AAPOR_Main/media/publications/Standard-Definitions20169theditionfinal.pdf (accessed on 20 March 2022).
- Baldissera, S.; Campostrini, S.; Binkin, N.; Minardi, V.; Minelli, G.; Ferrante, G.; Salmaso, S.; PASSI Coordinating Group. Features and initial assessment of the Italian Behavioral Risk Factor Surveillance System (PASSI), 2007–2008. Prev. Chronic Dis. 2010, 8, A24. [Google Scholar]
- Baldissera, S.; Ferrante, G.; Quarchioni, E.; Minardi, V.; Possenti, V.; Carrozzi, G.; Masocco, M.; Salmaso, S.; PASSI Coordinating Group. Field substitution of nonresponders can maintain sample size and structure without altering survey estimates-the experience of the Italian behavioral risk factors surveillance system (PASSI). Ann. Epidemiol. 2014, 24, 241–245. [Google Scholar] [CrossRef]
- Contoli, B.; Carrieri, P.; Masocco, M.; Penna, L.; Perra, A.; PDA Study Group. PASSI d’Argento (Silver Steps): The main features of the new nationwide surveillance system for the ageing Italian population, Italy 2013–2014. Ann. Ist. Super Sanità 2016, 52, 536–542. [Google Scholar] [CrossRef]
- Principali Statistiche Geografiche Sui Comuni. Available online: https://www.istat.it/it/archivio/156224 (accessed on 1 February 2022).
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the Odds Ratio. BMC Med Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The physical activity scale for the elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Aroogh, M.D.; Shahboulaghi, F.M. Social Participation of Older Adults: A Concept Analysis. Int. J. Community Based Nurs. Midwifery 2020, 8, 55–72. [Google Scholar] [CrossRef]
- Possenti, V.; Minardi, V.; Contoli, B.; Gallo, R.; Lana, S.; Bertozzi, N.; Campostrini, S.; Carrozzi, G.; Cristofori, M.; D’Argenzio, A.; et al. The two behavioural risk factor surveillances on the adult and elderly populations as information systems for leveraging data on health-related sustainable development goals in Italy. Int. J. Med. Inform. 2021, 152, 104443. [Google Scholar] [CrossRef]
- Jiang, X.; Li, D.; Boyce, W.; Pickett, W. Alcohol Consumption and Injury among Canadian Adolescents: Variations by Urban–Rural Geographic Status. J. Rural Health 2008, 24, 143–147. [Google Scholar] [CrossRef]
- Pappagallo, M. Le città obesogene. Urbes Mag. 2018, 4, 104–105. [Google Scholar]
- NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnikoff, R.C.; Mayhew, A.; Birkett, N.; Loucaides, C.A.; Fodor, G. Age, gender, and urban–rural differences in the correlates of physical activity. Prev. Med. 2004, 39, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- De Mei, B.; Cadeddu, C.; Luzi, P.; Spinelli, S. Movimento, Sport e Salute: L’importanza Delle Politiche di Promozione Dell’attività Fisica e Le Ricadute Sulla Collettività; Rapporto ISTISAN; Istituto Superiore di Sanità: Roma, Italy, 2018. [Google Scholar]
- Ricciardi, W.; Guerra, R.; Galeone, D.; Siliquini, R. “Guadagnare Salute” in città. Health Policy Noncommun. Dis. Diabetes 2017, 4, 14–18. [Google Scholar]
- World Health Organization & UN-Habitat. Global Report on Urban Health: Equitable Healthier Cities for Sustainable Development; World Health Organization: Generva, Switzerland, 2016; Available online: https://apps.who.int/iris/handle/10665/204715 (accessed on 15 March 2022).
- Venturelli, F.; Sampaolo, L.; Carrozzi, G.; PASSI Working Group; Zappa, M.; Rossi, P.G. Associations between cervical, breast and colorectal cancer screening uptake, chronic diseases and health-related behaviours: Data from the Italian PASSI nationwide surveillance. Prev. Med. 2019, 120, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Palmer, S.; Gallacher, J.; Marsden, T.; Fone, D. A systematic review of the relationship between objective measurements of the urban environment and psychological distress. Environ. Int. 2016, 96, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Chandak, A.; Nayar, P.; Lin, G. Rural-Urban Disparities in Access to Breast Cancer Screening: A Spatial Clustering Analysis. J. Rural Health 2019, 35, 229–235. [Google Scholar] [CrossRef]
- Osservatorio Nazionale Screening. Rapporto 2018. Available online: https://www.osservatorionazionalescreening.it/content/rapporto (accessed on 10 March 2022).
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Overweight | 42.40 | 42.30 | 1.00 | 40.90 | 44.90 | 0.89 *** |
(41.9–43.0) | (41.9–42.6) | (0.97–1.03) | (40.3–41.5) | (44.4–45.4) | (0.86–0.93) | |
Obesity | 10.60 | 10.80 | 0.97 | 9.90 | 11.70 | 0.88 *** |
(10.2–11.0) | (10.6–11.0) | (0.93–1.02) | (9.5–10.3) | (11.3–12.0) | (0.84–0.93) | |
Depressive symptoms | 7.20 | 5.40 | 1.26 ***(1) | 7.10 | 5.50 | 1.27 ***(1) |
(6.8–7.5) | (5.2–5.5) | (1.20–1.33) | (6.8–7.4) | (5.2–5.7) | (1.19–1.35) | |
Diabetes | 5.10 | 4.60 | 1.09 ***(2) | 4.70 | 5.10 | 1.00 (2) |
(4.8–5.4) | (4.4–4.7) | (1.02–1.16) | (4.4–5.0) | (4.8–5.3) | (0.93–1.08) | |
Respiratory system diseases | 7.80 | 5.70 | 1.24 ***(3) | 7.80 | 6.40 | 1.21 ***(3) |
(7.5–8.2) | (5.4–6.0) | (1.18–1.30) | (7.4–8.1) | (6.2–6.7) | (1.13–1.29) | |
Cancer diseases | 3.90 | 3.70 | 1.12 ***(4) | 3.90 | 3.60 | 1.06 (4) |
(3.7–4.2) | (3.6–3.8) | (1.05–1.20) | (3.7–4.1) | (3.4–3.8) | (0.98–1.15) | |
Cardio-cerebrovascular system diseases | 5.20 | 4.80 | 1.09 ***(5) | 4.90 | 5.10 | 1.00 (5) |
(5.0–5.5) | (4.7–5.0) | (1.03–1.15) | (4.7–5.2) | (4.9–5.3) | (0.93–1.07) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Breast cancer screeing | 71.70 | 75.00 | 0.91 *** | 73.20 | 73.10 | 0.95 |
total | (70.5–72.9) | (74.3–75.6) | (0.84–0.97) | (72.0–74.4) | (72.1–74.2) | (0.87–1.04) |
Breast cancer screeing | 47.60 | 58.00 | 0.82 ***(1) | 49.80 | 56.90 | 0.87 ***(1) |
organized public programs | (46.4–48.9) | (57.3–58.6) | (0.75–0.88) | (48.6–51.1) | (55.7–58.0) | (0.79–0.95) |
Breast cancer screeing | 23.50 | 16.70 | 1.24 ***(1) | 22.90 | 15.90 | 1.34 ***(1) |
personal initiative | (22.4–24.7) | (16.1–17.2) | (1.13–1.37) | (21.8–24.1) | (15.1–16.8) | (1.19–1.51) |
Uterine cervix cancer screening | 79.20 | 79.40 | 1.06 ** | 79.50 | 77.80 | 1.05 |
total | (78.4–80.0) | (79.0–79.9) | (1.00–1.12) | (78.7–80.3) | (77.1–78.5) | (0.98–1.13) |
Uterine cervix cancer screening | 38.40 | 50.60 | 0.93 **(1) | 38.70 | 51.20 | 0.87 ***(1) |
organized public programs | (37.5–39.3) | (50.1–51.1) | (0.87–0.99) | (37.9–39.6) | (50.4–52.0) | (0.81–0.93) |
Uterine cervix cancer screening | 40.20 | 28.40 | 1.30 ***(1) | 40.20 | 26.20 | 1.42 ***(1) |
personal initiative | (39.3–41.1) | (28.0–28.9) | (1.12–1.39) | (39.3–41.2) | (25.4–26.9) | (1.32–1.54) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Sedentary lifestyle | 32.70 | 25.80 | 1.31 *** | 30.20 | 27.50 | 1.16 *** |
(32.2–33.3) | (25.6–26.1) | (1.27–1.35) | (29.6–30.7) | (27.0–28.0) | (1.12–1.21) | |
Smoking | 26.90 | 25.10 | 1.10 *** | 27.00 | 25.40 | 1.14 *** |
(26.4–27.5) | (24.8–25.4) | (1.06–1.13) | (26.5–27.6) | (24.9–25.8) | (1.10–1.19) | |
At-risk alcohol consumption | 15.60 | 17.90 | 0.92 *** | 16.60 | 17.80 | 0.92 *** |
(15.1–16.0) | (17.7–18.1) | (0.88–0.95) | (16.2–17.0) | (16.8–17.3) | (0.88–0.97) | |
Fruits and vegetables consumption (5 portions) | 10.50 | 9.50 | 1.16 *** | 10.20 | 9.50 | 1.03 |
(10.2–10.9) | (9.3–9.7) | (1.11–1.21) | (9.9–10.6) | (9.2–9.8) | (0.98–1.09) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Sedentary lifestyle | 43.80 | 37.90 | 1.21 *** | 43.80 | 37.10 | 1.35 *** |
(41.3–44.3) | (36.8–39.1) | (1.11–1.33) | (42.4–45.2) | (35.2–39.0) | (1.21–1.50) | |
Smoking | 10.50 | 9.40 | 1.08 | 11.40 | 8.60 | 1.28 *** |
(9.7–11.3) | (8.8–10.1) | (0.96–1.21) | (10.6–12.2) | (7.8–9.5) | (1.12–1.47) | |
At–risk alcohol consumption | 17.00 | 19.40 | 0.85 *** | 16.90 | 20.20 | 0.79 *** |
(16.0–17.4) | (18.4–20.2) | (0.77–0.94) | (16.0–17.8) | (19.0–21.5) | (0.71–0.89) | |
Fruits and vegetables consumption (3 portions) | 51.60 | 57.60 | 0.75 *** | 53.20 | 56.30 | 0.83 *** |
(50.3–53.0) | (56.6–58.6) | (0.70–0.81) | (51.9–54.5) | (54.9–57.8) | (0.76–0.90) | |
Depressive symptoms | 13.90 | 13.10 | 1.14 ** | 15.00 | 12.30 | 1.35 *** |
(12.9–14.9) | (12.3–14.9) | (1.00–1.30) | (14.0–16.0) | (11.2–13.6) | (1.16–1.56) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Neighborhood security perception | 82.10 | 85.50 | 0.78 *** | 80.40 | 87.90 | 0.57 *** |
(81.0–83.2) | (84.6–86.3) | (0.70–0.87) | (79.3–81.5) | (86.7–89.0) | (0.50–0.65) | |
Satisfaction with life | 75.80 | 80.20 | 0.74 *** | 77.60 | 78.00 | 0.93 |
(74.4–77.1) | (79.3–81.1) | (0.66–0.83) | (76.5–78.8) | (76.4–79.6) | (0.82–1.05) | |
Problems in health services access | 31.30 | 31.80 | 1.04 | 29.10 | 34.70 | 0.82 *** |
(30.1–32.6) | (30.9–32.8) | (0.95–1.13) | (27.9–30.3) | (33.3–36.1) | (0.74–0.92) | |
Problems in daily services access | 31.60 | 33.00 | 1.01 | 29.30 | 35.90 | 0.79 *** |
(30.4–32.8) | (32.0–33.9) | (0.92–1.11) | (28.1–30.5) | (34.5–37.3) | (0.71–0.88) | |
Elderly as “resouce” | 27.70 | 29.40 | 0.88 *** | 27.80 | 27.60 | 0.91 * |
(26.5–29.0) | (28.5–30.3) | (0.81–0.96) | (26.7–29.0) | (26.2–29.0) | (0.83–1.01) | |
Support for cohabitants | 18.40 | 19.50 | 0.87 *** | 17.70 | 18.10 | 0.90 * |
(17.4–19.4) | (18.7–20.4) | (0.79–0.95) | (16.7–18.7) | (17.1–19.3) | (0.80–1.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobile, F.; Gallo, R.; Minardi, V.; Contoli, B.; Possenti, V.; Masocco, M. Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data. Sustainability 2022, 14, 5931. https://doi.org/10.3390/su14105931
Nobile F, Gallo R, Minardi V, Contoli B, Possenti V, Masocco M. Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data. Sustainability. 2022; 14(10):5931. https://doi.org/10.3390/su14105931
Chicago/Turabian StyleNobile, Federica, Rosaria Gallo, Valentina Minardi, Benedetta Contoli, Valentina Possenti, and Maria Masocco. 2022. "Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data" Sustainability 14, no. 10: 5931. https://doi.org/10.3390/su14105931
APA StyleNobile, F., Gallo, R., Minardi, V., Contoli, B., Possenti, V., & Masocco, M. (2022). Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data. Sustainability, 14(10), 5931. https://doi.org/10.3390/su14105931