The Adoption of Digital Technologies and Artificial Intelligence in Urban Health: A Scoping Review
Abstract
:1. Background
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Data Synthesis
3. Results
3.1. Study Selection and Characteristics
3.2. Urban Health Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2018 Revision. United Nations Department of Economic and Social Affairs 2018. Available online: https://esa.un.org/unpd/wup (accessed on 15 January 2022).
- Wei, T.; Wu, J.; Chen, S. Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Front. Sustain. Cities 2021, 3, 381. [Google Scholar] [CrossRef]
- World Health Organization. Why Urban Health Matter; World Health Organization: Geneva, Switzerland, 2010.
- Ompad, D.C.; Galea, S.V.D. Urban Health Systems: Overview. Int. Encycl. Public Health 2008, 6, 463–470. [Google Scholar]
- Sclar, E.D.; Volavka-Close, N. Urban Health: An Overview. Encycl. Environ. Health 2011, 556–564. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Kahn, M.E.; Lozano-Gracia, N.; Soppelsa, M.E. Pollution’s role in reducing urban quality of life in the developing world. J. Econ. Surv. 2021, 35, 330–347. [Google Scholar] [CrossRef]
- Aletta, F.; Oberman, T.; Mitchell, A.; Erfanian, M.; Lionello, M.; Kachlicka, M.; Kang, J. Associations between soundscape experience and self-reported wellbeing in open public urban spaces: A field study. Lancet 2019, 394, S17. [Google Scholar] [CrossRef]
- Tong, H.; Kang, J. Relationship between noise complaints and urban density across cities of different levels of density: A crowd-sourced big data analysis. Lancet 2021, 398, S86. [Google Scholar] [CrossRef]
- Chu, Y.-T.; Li, D.; Chang, P.-J. Effects of Urban Park Quality, Environmental Perception, and Leisure Activity on Well-Being among the Older Population. Int. J. Environ. Res. Public Health 2021, 18, 11402. [Google Scholar] [CrossRef]
- Capolongo, S.; Rebecchi, A.; Buffoli, M.; Appolloni, L.; Signorelli, C.; Fara, G.M.; D’Alessandro, D. COVID-19 and Cities: From Urban Health strategies to the pandemic challenge. A Decalogue of Public Health opportunities. Acta Biomed. 2020, 91, 13–22. [Google Scholar] [CrossRef]
- Gabrys, J. Planetary health in practice: Sensing air pollution and transforming urban environments. Humanit. Soc. Sci. Commun. 2020, 7, 35. [Google Scholar] [CrossRef]
- Bini, S.A. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J. Arthroplast. 2018, 33, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr. Rev. Musculoskelet. Med. 2020, 13, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Mbunge, E.; Muchemwa, B.; Jiyane, S.; Batani, J. Sensors and healthcare 5.0: Transformative shift in virtual care through emerging digital health technologies. Glob. Health J. 2021, 5, 169–177. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- McKinsey & Company. Smart Cities: Digital Solutions for a More Livable Future; McKinsey & Company: Seoul, Korea, 2018. [Google Scholar]
- Jain, G.; Espey, J. Lessons from nine urban areas using data to drive local sustainable development. NPJ Urban Sustain. 2022, 2, 7. [Google Scholar] [CrossRef]
- Buttazzoni, A.; Veenhof, M.; Minaker, M.L. Smart City and High-Tech Urban Interventions Targeting Human Health: An Equity-Focused Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 2325. [Google Scholar] [CrossRef] [Green Version]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Ronquillo, Y.; Meyers, A.; Scott, J.K. Digital Health; StatPearls: Orlando, FL, USA, 2022. [Google Scholar]
- Pala, D.; Caldarone, A.A.; Franzini, M.; Malovini, A.; Larizza, C.; Casella, V.; Bellazzi, R. Deep Learning to Unveil Correlations between Urban Landscape and Population Health †. Sensors 2020, 20, 2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candelieri, A.; Archetti, F.; Giordani, I.; Arosio, G.; Sormani, R. Smart cities management by integrating sensors, models and user generated contents. WIT Trans. Ecol. Environ. 2013, 179, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Bravo, Y.; Ferrer, J.; Luque, G.; Alba, E. Smart mobility by optimizing the traffic lights: A new tool for traffic control centers. In International Conference on Smart Cities; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Alhussein, M. Monitoring Parkinson’s Disease in Smart Cities. IEEE Access 2017, 5, 19835–19841. [Google Scholar] [CrossRef]
- Mora, H.; Gilart-Iglesias, V.; Hoyo, R.P.-D.; Andújar-Montoya, M.D. A Comprehensive System for Monitoring Urban Accessibility in Smart Cities. Sensors 2017, 17, 1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihăiţă, A.S.; Dupont, L.; Camargo, M. Multi-objective traffic signal optimization using 3D mesoscopic simulation and evolutionary algorithms. Simul. Model. Pract. Theory 2018, 86, 120–138. [Google Scholar] [CrossRef]
- Zaheer, T.; Malik, A.W.; Rahman, A.U.; Zahir, A.; Fraz, M.M. A vehicular network–based intelligent transport system for smart cities. Int. J. Distrib. Sens. Netw. 2019, 15, 845. [Google Scholar] [CrossRef]
- Bardhan, R.; Debnath, R.; Gama, J.; Vijay, U. REST framework: A modelling approach towards cooling energy stress mitigation plans for future cities in warming Global South. Sustain. Cities Soc. 2020, 61, 102315. [Google Scholar] [CrossRef]
- Jia, J.; Wu, X. A Multidimensional Assessment Model Using RE–3DSG Sensors on Net ES and GVR for Sustainable and Smart Cities. Sensors 2020, 20, 1259. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.; Liu, X.; Manwar, A.; Zang, D.Y.; Evans, G.; Brook, J.; Rousseau, B.; Clark, C.; MacIsaac, J. Application Of Distributed Urban Sensor Networks For Actionable Air Quality Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, VI-4/W2-20, 119–126. [Google Scholar] [CrossRef]
- Nagarajan, S.M.; Deverajan, G.G.; Chatterjee, P.; Alnumay, W.; Ghosh, U. Effective task scheduling algorithm with deep learning for Internet of Health Things (IoHT) in sustainable smart cities. Sustain. Cities Soc. 2021, 71, 102945. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Moselhi, O.; Bagchi, A.; Salem, A. Development of an IoT and BIM-based automated alert system for thermal comfort monitoring in buildings. Sustain. Cities Soc. 2020, 66, 102602. [Google Scholar] [CrossRef]
- Junior, C.M.; Ribeiro, D.M.N.M.; Viana, A.B. NPublic Health in Times of Crisis: An Overlooked Variable in City Management Theories? Sustain. Cities Soc. 2021, 66, 102671. [Google Scholar]
- Chigbu, U.E.; Onyebueke, V.U. The COVID-19 pandemic in informal settlements: (Re)considering urban planning interventions. Town Plan. Rev. 2021, 92, 115–121. [Google Scholar] [CrossRef]
- Carmichael, L.; Prestwood, E.; Marsh, R.; Ige, J.; Williams, B.; Pilkington, P.; Michalec, A. Healthy Buildings for a Healthy City: Is the Public Health Evidence Base Informing Current Building Policies? Sci. Total Environ. 2020, 719, 137146. [Google Scholar] [CrossRef]
- UN. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN. Available online: https://www.un.org/sw/desa/68-world-population-projected-live-urban-areas-2050-says-un (accessed on 20 January 2022).
- WHO. Ethics and Governance of Artificial Intelligence for Health; WHO: Cham, Switzerland, 2021.
- Singh, J.A. Artificial Intelligence and global health: Opportunities and challenges. Emerg. Top. Life Sci. 2019, 3, 741–746. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S.; Kannan, D.; Govindan, K.; Singh, R.; Purohit, H.C. Internet of Things (IoT) adoption barriers of smart cities’ waste management: An Indian context. J. Clean. Prod. 2020, 270, 122047. [Google Scholar] [CrossRef]
- Marten, R.; Yangchen, S.; Campbell-Lendrum, D.; Prats, E.V.; Neira, M.P.; Ghaffar, A. Climate change: An urgent priority for health policy and systems research. Health Policy Plan. 2021, 36, 218–220. [Google Scholar] [CrossRef]
- Murray, V.; Chadborn, T. Climate change adaptation and societal transformation: What are the public health challenges? In Climate Adaptation Modelling; Springer: Cham, Switzerland, 2022; pp. 195–204. [Google Scholar] [CrossRef]
- Thompson, J.; Stevenson, M.; Wijnands, J.S.; Nice, K.A.; Aschwanden, G.D.; Silver, J.; Nieuwenhuijsen, M.; Rayner, P.; Schofield, R.; Hariharan, R.; et al. A global analysis of urban design types and road transport injury: An image processing study. Lancet Planet. Heal. 2020, 4, e32–e42. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Rubio, O.; Daher, C.; Fanjul, G.; Gascon, M.; Mueller, N.; Pajín, L.; Plasencia, A.; Rojas-Rueda, D.; Thondoo, M.; Nieuwenhuijsen, M.J. Urban health: An example of a “health in all policies” approach in the context of SDGs implementation. Glob. Health 2019, 15, 87. [Google Scholar] [CrossRef]
ACY | Urban Health Area | Citizen Involvement | Scenario | Scope | Beneficiary | Use of Health Data | Journal | Measured Population Health Impact |
---|---|---|---|---|---|---|---|---|
Candelieri A, Italy, 2013 [26] | Outdoor and indoor air pollution | No | Real world | Decision making and individual support | Decision maker, group and individual | No | WIT Transactions on Ecology and the Environment | No |
Bravo Y, Spain, 2016 [27] | Urban transport | No | Real world | Decision making | Decision maker | No | Lecture Notes in Computer Science book series | No |
Alhussein M, Saudi Arabia, 2017 [28] | Health and social services | Yes | Simulation | Individual support | Individual | Yes | IEEE Access | No |
Mora H, Spain, 2017 [29] | Urban transport | Yes | Real world | Decision making and individual support | Decision maker, group and individual | Yes | Sensors (Basel) | No |
Mihăiţă AS, France, 2018 [30] | Urban transport | No | Real world | Decision making | Decision maker, group and individual | No | Simulation Modelling Practice and Theory (SIMUL MODEL PRACT TH) | No |
Zaheer T, Pakistan, 2019 [31] | Urban transport | No | Simulation | Individual support | Individual | No | International Journal of distributed sensor networks | No |
Bardhan R, India, 2020 [32] | Climate change | No | Simulation | Decision making | Group | No | Sustainable Cities and Society (SCS) | No |
Jia J, China, 2020 [33] | Outdoor and indoor air pollution | No | Real world | Decision making | Decision maker | No | Sensors (Basel) | No |
Morris E, Canada, 2020 [34] | Outdoor and indoor air pollution | No | Real world | Decision making | Decision maker | No | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | No |
Pala D, USA, 2020 [25] | Outdoor and indoor air pollution | No | Real world | Decision making | Decision maker | Yes | Sensors (Basel) | Yes |
Nagarajan SM, India, 2021 [35] | Health and social services | No | Real world | Decision making | Decision maker | Yes | Sustainable Cities and Society (SCS) | No |
Valinejadshoubi M, Canada, 2021 [36] | Housing | No | Real world | Decision making | Group | No | Sustainable Cities and Society (SCS) | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapienza, M.; Nurchis, M.C.; Riccardi, M.T.; Bouland, C.; Jevtić, M.; Damiani, G. The Adoption of Digital Technologies and Artificial Intelligence in Urban Health: A Scoping Review. Sustainability 2022, 14, 7480. https://doi.org/10.3390/su14127480
Sapienza M, Nurchis MC, Riccardi MT, Bouland C, Jevtić M, Damiani G. The Adoption of Digital Technologies and Artificial Intelligence in Urban Health: A Scoping Review. Sustainability. 2022; 14(12):7480. https://doi.org/10.3390/su14127480
Chicago/Turabian StyleSapienza, Martina, Mario Cesare Nurchis, Maria Teresa Riccardi, Catherine Bouland, Marija Jevtić, and Gianfranco Damiani. 2022. "The Adoption of Digital Technologies and Artificial Intelligence in Urban Health: A Scoping Review" Sustainability 14, no. 12: 7480. https://doi.org/10.3390/su14127480
APA StyleSapienza, M., Nurchis, M. C., Riccardi, M. T., Bouland, C., Jevtić, M., & Damiani, G. (2022). The Adoption of Digital Technologies and Artificial Intelligence in Urban Health: A Scoping Review. Sustainability, 14(12), 7480. https://doi.org/10.3390/su14127480