Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. MRIO Model Construction
3.2. SDA Model Construction
3.3. Data
4. Results and Discussion
4.1. Embodied Carbon Flow Overview
4.2. The Embodied Carbon Emissions from China to G7
4.2.1. Embodied Carbon between China and G7
4.2.2. Embodied Carbon between China and the US
4.2.3. Embodied Carbon between China and Japan
4.2.4. Embodied Carbon between China and Germany
4.2.5. Embodied Carbon between China and Other G7 Countries
4.3. The SDA of China-G7 Trade Embodied Carbon Net Export
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | China’s Trade Embodied Carbon Emissions | G7’s Trade Embodied Carbon Emissions | China–G7 Trade Embodied Carbon Emissions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Export | Import | Net Export | Ratio | Export | Import | Net Import | Ratio | Export | Import | Net Export | Ratio | |
2000 | 845.62 | 336.54 | 509.08 | 13.88 | 2139.51 | 3826.27 | 1686.76 | 16.54 | 409.76 | 39.25 | 370.51 | 10.10 |
2001 | 863.38 | 387.98 | 475.40 | 12.26 | 2110.81 | 3726.38 | 1615.57 | 15.86 | 412.68 | 47.92 | 364.75 | 9.41 |
2002 | 1053.13 | 475.82 | 577.31 | 13.77 | 2048.61 | 3734.65 | 1686.04 | 16.82 | 486.06 | 55.87 | 430.19 | 10.26 |
2003 | 1443.96 | 647.54 | 796.41 | 16.44 | 2056.11 | 4070.38 | 2014.27 | 19.87 | 671.59 | 69.75 | 601.83 | 12.42 |
2004 | 1961.23 | 813.28 | 1147.96 | 20.57 | 2146.27 | 4524.30 | 2378.03 | 23.42 | 894.93 | 86.54 | 808.38 | 14.49 |
2005 | 2443.22 | 928.09 | 1515.14 | 24.14 | 2222.39 | 4880.98 | 2658.58 | 26.14 | 1127.86 | 92.06 | 1035.79 | 16.50 |
2006 | 2838.86 | 1133.60 | 1705.26 | 24.60 | 2343.15 | 5203.79 | 2860.64 | 28.50 | 1216.88 | 110.47 | 1106.41 | 15.96 |
2007 | 3022.79 | 1192.52 | 1830.27 | 24.30 | 2517.38 | 5140.41 | 2623.04 | 25.87 | 1213.87 | 130.64 | 1083.22 | 14.38 |
2008 | 2791.72 | 1342.84 | 1448.88 | 18.86 | 2442.95 | 4949.94 | 2506.99 | 25.61 | 1071.25 | 135.52 | 935.73 | 12.18 |
2009 | 2273.00 | 1210.65 | 1062.35 | 12.90 | 1879.14 | 3969.72 | 2090.58 | 23.04 | 867.86 | 122.55 | 745.32 | 9.05 |
2010 | 2759.29 | 1518.83 | 1240.46 | 13.84 | 2156.91 | 4499.39 | 2342.48 | 24.76 | 1024.46 | 155.03 | 869.43 | 9.70 |
2011 | 2929.76 | 1785.56 | 1144.19 | 11.68 | 2273.08 | 4755.63 | 2482.55 | 26.80 | 1031.31 | 164.28 | 867.03 | 8.85 |
2012 | 2827.25 | 1792.31 | 1034.94 | 10.31 | 2232.44 | 4615.52 | 2383.09 | 26.12 | 959.54 | 156.95 | 802.58 | 8.00 |
2013 | 2858.62 | 1838.17 | 1020.44 | 9.68 | 2237.45 | 4453.06 | 2215.60 | 24.00 | 953.49 | 173.77 | 779.73 | 7.39 |
2014 | 2717.36 | 1768.76 | 948.60 | 9.01 | 2305.45 | 4453.30 | 2147.84 | 23.52 | 894.95 | 191.59 | 703.36 | 6.68 |
Sum | 33629.17 | 17172.48 | 16456.69 | - | 33111.65 | 66803.71 | 33692.06 | - | 13236.47 | 1732.20 | 11504.27 | - |
Aver | 2241.94 | 1144.83 | 1097.11 | 15.75 | 2207.44 | 4453.58 | 2246.14 | 23.12 | 882.43 | 115.48 | 766.95 | 11.03 |
Year | Embodied Carbon Emissions for China–US | Embodied Carbon Emissions for China–Japan | Embodied Carbon Emissions for China–Germany | ||||||
---|---|---|---|---|---|---|---|---|---|
Export | Import | Net Export | Export | Import | Net Export | Export | Import | Net Export | |
2000 | 173.58 | 8.84 | 164.74 | 126.79 | 18.42 | 108.37 | 35.95 | 5.23 | 30.71 |
2001 | 172.43 | 10.35 | 162.08 | 130.87 | 22.82 | 108.04 | 36.18 | 7.35 | 28.83 |
2002 | 216.23 | 9.83 | 206.40 | 142.93 | 29.37 | 113.57 | 40.17 | 8.60 | 31.57 |
2003 | 289.76 | 12.41 | 277.34 | 194.17 | 36.51 | 157.66 | 62.84 | 11.65 | 51.20 |
2004 | 388.03 | 16.69 | 371.35 | 246.13 | 44.27 | 201.86 | 84.21 | 14.14 | 70.07 |
2005 | 510.89 | 17.82 | 493.07 | 285.86 | 47.44 | 238.42 | 109.49 | 14.21 | 95.28 |
2006 | 560.51 | 21.09 | 539.42 | 282.92 | 57.77 | 225.15 | 126.17 | 17.32 | 108.84 |
2007 | 542.56 | 25.57 | 517.00 | 264.38 | 68.78 | 195.60 | 138.42 | 19.55 | 118.87 |
2008 | 462.27 | 30.25 | 432.02 | 235.58 | 69.69 | 165.89 | 125.18 | 17.65 | 107.53 |
2009 | 382.07 | 29.26 | 352.80 | 184.93 | 58.17 | 126.76 | 105.29 | 16.96 | 88.34 |
2010 | 442.24 | 37.31 | 404.93 | 220.84 | 72.07 | 148.77 | 119.37 | 22.79 | 96.58 |
2011 | 436.15 | 41.40 | 394.75 | 234.15 | 72.22 | 161.93 | 122.11 | 24.62 | 97.50 |
2012 | 429.95 | 41.92 | 388.03 | 214.19 | 64.03 | 150.16 | 100.83 | 23.65 | 77.18 |
2013 | 416.92 | 43.58 | 373.34 | 207.16 | 80.48 | 126.67 | 105.79 | 23.09 | 82.70 |
2014 | 402.07 | 48.11 | 353.96 | 199.45 | 90.28 | 109.17 | 97.93 | 24.28 | 73.65 |
Sum | 5825.67 | 394.44 | 5431.23 | 3170.36 | 832.31 | 2338.04 | 1409.93 | 251.09 | 1158.84 |
Aver | 388.38 | 26.30 | 362.08 | 211.36 | 55.49 | 155.87 | 94.00 | 16.74 | 77.26 |
Year | Embodied Carbon for China–UK | Embodied Carbon for China–Canada | Embodied Carbon for China–France | Embodied Carbon for China–Italy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Export | Import | Net Export | Export | Import | Net Export | Export | Import | Net Export | Export | Import | Net Export | |
2000 | 25.45 | 1.34 | 24.11 | 16.83 | 2.60 | 14.23 | 18.63 | 1.76 | 16.87 | 12.52 | 1.05 | 11.47 |
2001 | 26.21 | 1.42 | 24.79 | 16.87 | 2.75 | 14.12 | 17.29 | 1.79 | 15.50 | 12.83 | 1.44 | 11.39 |
2002 | 29.33 | 1.56 | 27.77 | 22.73 | 2.82 | 19.90 | 18.26 | 1.99 | 16.27 | 16.41 | 1.69 | 14.72 |
2003 | 37.90 | 1.75 | 36.16 | 32.32 | 3.11 | 29.22 | 30.94 | 2.39 | 28.55 | 23.65 | 1.95 | 21.70 |
2004 | 53.67 | 2.09 | 51.58 | 46.24 | 4.20 | 42.04 | 43.06 | 2.83 | 40.23 | 33.59 | 2.33 | 31.26 |
2005 | 68.43 | 2.38 | 66.05 | 60.11 | 4.51 | 55.60 | 52.90 | 3.25 | 49.65 | 40.18 | 2.45 | 37.73 |
2006 | 71.56 | 2.54 | 69.01 | 68.96 | 5.06 | 63.90 | 56.20 | 3.65 | 52.55 | 50.56 | 3.03 | 47.52 |
2007 | 76.43 | 3.10 | 73.33 | 71.91 | 6.48 | 65.44 | 65.16 | 4.14 | 61.02 | 55.00 | 3.03 | 51.98 |
2008 | 73.08 | 3.83 | 69.25 | 64.36 | 6.56 | 57.80 | 58.17 | 4.57 | 53.60 | 52.62 | 2.97 | 49.65 |
2009 | 55.16 | 3.53 | 51.62 | 53.08 | 7.61 | 45.47 | 49.89 | 4.15 | 45.74 | 37.45 | 2.86 | 34.59 |
2010 | 69.91 | 4.79 | 65.12 | 62.12 | 8.21 | 53.92 | 57.16 | 5.59 | 51.57 | 52.81 | 4.28 | 48.52 |
2011 | 66.65 | 5.32 | 61.33 | 65.56 | 10.30 | 55.26 | 56.06 | 5.73 | 50.33 | 50.62 | 4.69 | 45.93 |
2012 | 65.46 | 5.81 | 59.65 | 66.44 | 11.58 | 54.86 | 47.39 | 6.24 | 41.14 | 35.28 | 3.73 | 31.56 |
2013 | 79.31 | 5.07 | 74.25 | 63.55 | 11.83 | 51.72 | 45.85 | 6.06 | 39.79 | 34.92 | 3.66 | 31.26 |
2014 | 58.23 | 9.27 | 48.96 | 59.26 | 9.72 | 49.53 | 43.86 | 6.16 | 37.70 | 34.16 | 3.77 | 30.39 |
Sum | 856.77 | 53.79 | 802.98 | 770.33 | 97.33 | 673.00 | 660.82 | 60.30 | 600.52 | 542.60 | 42.93 | 499.67 |
Aver | 57.12 | 3.59 | 53.53 | 51.36 | 6.49 | 44.87 | 44.05 | 4.02 | 40.03 | 36.17 | 2.86 | 33.31 |
Year | China | US | Japan | Germany | UK | Canada | France | Italy |
---|---|---|---|---|---|---|---|---|
2000 | 3.29 | 0.71 | 0.64 | 0.61 | 0.42 | 1.09 | 0.35 | 0.45 |
2001 | 3.07 | 0.65 | 0.72 | 0.57 | 0.43 | 0.93 | 0.34 | 0.42 |
2002 | 3.12 | 0.59 | 0.77 | 0.55 | 0.45 | 1.00 | 0.32 | 0.43 |
2003 | 3.43 | 0.65 | 0.73 | 0.52 | 0.48 | 1.00 | 0.30 | 0.40 |
2004 | 3.63 | 0.66 | 0.72 | 0.50 | 0.42 | 0.97 | 0.30 | 0.39 |
2005 | 3.70 | 0.63 | 0.73 | 0.50 | 0.43 | 0.97 | 0.32 | 0.41 |
2006 | 3.51 | 0.59 | 0.80 | 0.50 | 0.43 | 0.94 | 0.33 | 0.40 |
2007 | 3.17 | 0.64 | 0.90 | 0.45 | 0.42 | 0.96 | 0.31 | 0.35 |
2008 | 2.68 | 0.69 | 0.87 | 0.36 | 0.46 | 0.88 | 0.30 | 0.33 |
2009 | 2.50 | 0.62 | 0.81 | 0.34 | 0.48 | 0.98 | 0.32 | 0.32 |
2010 | 2.44 | 0.69 | 0.78 | 0.37 | 0.52 | 0.90 | 0.36 | 0.39 |
2011 | 2.33 | 0.71 | 0.80 | 0.35 | 0.50 | 0.88 | 0.37 | 0.38 |
2012 | 2.11 | 0.67 | 0.81 | 0.36 | 0.47 | 0.87 | 0.39 | 0.37 |
2013 | 2.00 | 0.64 | 1.05 | 0.34 | 0.36 | 0.88 | 0.35 | 0.33 |
2014 | 1.78 | 0.67 | 1.09 | 0.31 | 0.53 | 0.85 | 0.32 | 0.32 |
Aver | 2.85 | 0.65 | 0.82 | 0.44 | 0.45 | 0.94 | 0.33 | 0.38 |
Influencing Factor | Growth of Embodied Carbon Emissions (Mt) | Contribution (%) | |||
---|---|---|---|---|---|
2000–2007 | 2008–2010 | 2000–2007 | 2008–2010 | ||
China–US | Carbon intensity | −146.51 | −163.85 | −39.87 | 116.66 |
Input structure | 100.10 | −105.18 | 27.24 | 74.89 | |
Export structure | −4.05 | 17.59 | −1.10 | −12.53 | |
Export scale | 417.91 | 110.99 | 113.73 | −79.02 | |
SUM | 367.45 | −140.45 | 100 | 100 | |
China–Japan | Carbon intensity | −82.65 | −84.70 | −60.34 | 130.20 |
Input structure | 61.61 | −51.09 | 44.98 | 78.54 | |
Export structure | 9.87 | 4.34 | 7.21 | −6.67 | |
Export scale | 148.15 | 66.40 | 108.15 | −102.07 | |
SUM | 136.98 | −65.05 | 100 | 100 | |
China–Germany | Carbon intensity | −35.08 | −41.20 | −34.38 | 101.36 |
Input structure | 22.35 | −29.53 | 21.90 | 72.66 | |
Export structure | −1.62 | 4.54 | −1.58 | −11.17 | |
Export scale | 116.38 | 25.55 | 114.06 | −62.85 | |
SUM | 102.04 | −40.65 | 100 | 100 | |
China–UK | Carbon intensity | −19.88 | −26.74 | −39.15 | 145.74 |
Input structure | 13.72 | −15.91 | 27.01 | 86.74 | |
Export structure | 0.63 | 2.98 | 1.23 | −16.22 | |
Export scale | 56.33 | 21.33 | 110.91 | −116.26 | |
SUM | 50.78 | −18.35 | 100 | 100 | |
China–Canada | Carbon intensity | −17.80 | −24.60 | −32.44 | 193.72 |
Input structure | 12.10 | −13.92 | 22.04 | 109.60 | |
Export structure | −1.49 | 3.71 | −2.71 | −29.24 | |
Export scale | 62.08 | 22.11 | 113.11 | −174.08 | |
SUM | 54.89 | −12.70 | 100 | 100 | |
China–France | Carbon intensity | −16.16 | −19.17 | −34.87 | 89.76 |
Input structure | 10.57 | −13.78 | 22.80 | 64.53 | |
Export structure | 1.39 | 1.19 | 3.00 | −5.58 | |
Export scale | 50.56 | 10.40 | 109.07 | −48.71 | |
SUM | 46.36 | −21.35 | 100 | 100 | |
China–Italy | Carbon intensity | −13.33 | −15.78 | −31.50 | 75.54 |
Input structure | 8.74 | −11.62 | 20.64 | 55.63 | |
Export structure | 1.86 | −0.93 | 4.39 | 4.43 | |
Export scale | 45.08 | 7.44 | 106.47 | −35.60 | |
SUM | 42.34 | −20.89 | 100 | 100 |
Influencing Factor | Growth of Embodied Carbon Emissions (Mt) | Contribution (%) | |||
---|---|---|---|---|---|
2000–2007 | 2008–2010 | 2000–2007 | 2000–2007 | ||
US–China | Carbon intensity | −2.82 | −1.62 | −16.95 | −7.20 |
Input structure | 1.04 | −2.93 | 6.21 | −13.04 | |
Export structure | 1.05 | 5.73 | 6.31 | 25.47 | |
Export scale | 17.41 | 21.32 | 104.43 | 94.76 | |
SUM | 16.67 | 22.50 | 100.00 | 100.00 | |
Japan–China | Carbon intensity | 3.01 | 5.60 | 5.98 | 26.23 |
Input structure | 13.86 | 10.13 | 27.57 | 47.44 | |
Export structure | −2.40 | −0.40 | −4.77 | −1.88 | |
Export scale | 35.82 | 6.03 | 71.22 | 28.22 | |
SUM | 50.29 | 21.36 | 100 | 100 | |
Germany–China | Carbon intensity | −7.52 | −4.73 | −52.69 | −100.72 |
Input structure | 2.96 | −1.43 | 20.70 | −30.53 | |
Export structure | 0.73 | −1.53 | 5.10 | −32.60 | |
Export scale | 18.11 | 12.40 | 126.90 | 263.85 | |
SUM | 14.27 | 4.70 | 100 | 100 | |
UK–China | Carbon intensity | −0.66 | −0.71 | −37.48 | −11.53 |
Input structure | 0.17 | 0.34 | 9.40 | 5.53 | |
Export structure | 0.46 | 1.82 | 25.92 | 29.44 | |
Export scale | 1.80 | 4.74 | 102.15 | 76.57 | |
SUM | 1.76 | 6.19 | 100 | 100 | |
Canada–China | Carbon intensity | −0.97 | −0.24 | −25.09 | −7.32 |
Input structure | 0.05 | 0.13 | 1.40 | 3.95 | |
Export structure | 0.52 | −0.90 | 13.54 | −27.61 | |
Export scale | 4.26 | 4.25 | 110.16 | 130.99 | |
SUM | 3.87 | 3.24 | 100 | 100 | |
France–China | Carbon intensity | −1.44 | −0.36 | −60.64 | −17.68 |
Input structure | 0.27 | 0.17 | 11.45 | 8.57 | |
Export structure | 0.85 | 0.17 | 35.80 | 8.46 | |
Export scale | 2.69 | 2.03 | 113.39 | 100.66 | |
SUM | 2.37 | 2.01 | 100 | 100 | |
Italy–China | Carbon intensity | −1.11 | −0.51 | −56.13 | −69.18 |
Input structure | 0.34 | 0.44 | 17.23 | 59.42 | |
Export structure | 0.15 | −0.24 | 7.68 | −32.22 | |
Export scale | 2.58 | 1.05 | 131.21 | 141.98 | |
SUM | 1.97 | 0.74 | 100 | 100 |
References
- BP (British Petroleum). BP Statistical Review of World Energy; BP: London, UK, 2021; Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 22 May 2022).
- Javanmard, M.E.; Ghaderi, S.F. A Hybrid Model with Applying Machine Learning Algorithms and Optimization Model to Forecast Greenhouse Gas Emissions with Energy Market Data. Sustain. Cities Soc. 2022, 82, 103886. [Google Scholar] [CrossRef]
- Jiang, S.; Chishti, M.Z.; Rjoub, H.; Rahim, S. Environmental R&D and trade-adjusted carbon emissions: Evaluating the role of international trade. Environ. Sci. Pollut. Res. 2022, Online ahead of print. [Google Scholar] [CrossRef]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanemoto, K.; Moran, D.; Lenzen, M.; Geschke, A. International trade undermines national emission reduction targets: New evidence from air pollution. Glob. Environ. Chang. 2014, 24, 52–59. [Google Scholar] [CrossRef]
- Long, R.; Li, J.; Chen, H.; Zhang, L.; Li, Q. Embodied carbon dioxide flow in international trade: A comparative analysis based on China and Japan. J. Environ. Manag. 2018, 209, 371–381. [Google Scholar] [CrossRef]
- Wang, S.; Tang, Y.; Du, Z.; Song, M. Export trade, embodied carbon emissions, and environmental pollution: An empirical analysis of China’s high-and-new-technology industries. J. Environ. Manag. 2020, 276, 111371. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Smyth, R.; Zhang, X. R&D intensity and carbon emissions in the G7: 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar] [CrossRef]
- Chaudhry, S.M.; Ahmed, R.; Shafiullah, M.; Duc Huynh, T.L. The impact of carbon emissions on country risk: Evidence from the G7 economies. J. Environ. Manag. 2020, 265, 110533. [Google Scholar] [CrossRef]
- Steen-Olsen, K.; Weinzettel, J.; Cranston, G.; Ercin, A.E.; Hertwich, E.G. Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade. Environ. Sci. Technol. 2012, 46, 10883–10891. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total Environ. 2020, 707, 134473. [Google Scholar] [CrossRef]
- Lin, B.; Sun, C. Evaluating carbon dioxide emissions in international trade of China. Energy Policy 2010, 38, 613–621. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q. Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world. Energy Policy 2011, 39, 2899–2909. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Agboola, P.O.; Ozturk, I.; Bekun, F.V.; Agboola, M.O. Environmental consequences of economic complexities in the EU amidst a booming tourism industry: Accounting for the role of brexit and other crisis events. J. Clean. Prod. 2021, 305, 127117. [Google Scholar] [CrossRef]
- Wang, N.; Fu, X.; Wang, S. Economic growth, electricity consumption, and urbanization in China: A tri-variate investigation using panel data modeling from a regional disparity perspective. J. Clean. Prod. 2021, 318, 128529. [Google Scholar] [CrossRef]
- Wu, X.D.; Guo, J.L.; Li, C.; Chen, G.Q.; Ji, X. Carbon emissions embodied in the global supply chain: Intermediate and final trade imbalances. Sci. Total Environ. 2020, 707, 134670. [Google Scholar] [CrossRef]
- Xu, Y.; Dietzenbacher, E. A structural decomposition analysis of the emissions embodied in trade. Ecol. Econ. 2014, 101, 10–20. [Google Scholar] [CrossRef]
- Deng, G.; Xu, Y. Accounting and structure decomposition analysis of embodied carbon trade: A global perspective. Energy 2017, 137, 140–151. [Google Scholar] [CrossRef]
- Chen, B.; Li, J.S.; Wu, X.F.; Han, M.Y.; Zeng, L.; Li, Z.; Chen, G.Q. Global energy flows embodied in international trade: A combination of environmentally extended input-output analysis and complex network analysis. Appl. Energy 2018, 210, 98–107. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L. Carbon emission transfer by international trade: Taking the case of Sino—US merchandise trade as an example. J. Resour. Ecol. 2010, 1, 155–163. [Google Scholar] [CrossRef]
- Xu, M.; Allenby, B.; Chen, W. Energy and air emissions embodied in China-US trade: Eastbound assessment using adjusted bilateral trade data. Environ. Sci. Technol. 2009, 43, 3378–3384. [Google Scholar] [CrossRef]
- Du, H.; Guo, J.; Mao, G.; Smith, A.M.; Wang, X.; Wang, Y. CO2 emissions embodied in China–US trade: Input–output analysis based on the emergy/dollar ratio. Energy Policy 2011, 39, 5980–5987. [Google Scholar] [CrossRef]
- Wang, Q.; Han, X. Is decoupling embodied carbon emissions from economic output in Sino-US trade possible? Technol. Forecast. Soc. Chang. 2021, 169, 120805. [Google Scholar] [CrossRef]
- Dong, Y.; Ishikawa, M.; Liu, X.; Wang, C. An analysis of the driving forces of CO2 emissions embodied in Japan–China trade. Energy Policy 2010, 38, 6784–6792. [Google Scholar] [CrossRef]
- Li, Y.; Hewitt, C.N. The effect of trade between China and the UK on national and global carbon dioxide emissions. Energy Policy 2008, 36, 1907–1914. [Google Scholar] [CrossRef]
- Andreoni, V.; Duriavig, M. The responsibility of CO2 embodied in Italy? China trade: A consumption-based approach. Int. J. Sustain. Econ. 2011, 3, 44–62. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Wang, H. Determinants of net carbon emissions embodied in Sino-German trade. J. Clean. Prod. 2019, 235, 1216–1231. [Google Scholar] [CrossRef]
- Peters, G.P.; Hertwich, E.G. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 2008, 42, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Sato, M. Embodied carbon in trade: A survey of the empirical literature. J. Econ. Surv. 2014, 28, 831–861. [Google Scholar] [CrossRef]
- Suh, S.; Lenzen, M.; Treloar, G.J.; Hondo, H.; Horvath, A.; Huppes, G.; Jolliet, O.; Klann, U.; Krewitt, W.; Moriguchi, Y. System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 2004, 38, 657–664. [Google Scholar] [CrossRef]
- Leontief, W.W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 1936, 18, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Yunfeng, Y.; Laike, Y. China’s foreign trade and climate change: A case study of CO2 emissions. Energy Policy 2010, 38, 350–356. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; He, L. Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China. Sustainability 2022, 14, 1969. [Google Scholar] [CrossRef]
- Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 2009, 69, 211–222. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.; Tian, X.; Zhang, B.; Zhou, H. Energy use embodied in international trade of 39 countries: Spatial transfer patterns and driving factors. Energy 2020, 195, 116988. [Google Scholar] [CrossRef]
- Yang, W.; Gao, H.; Yang, Y. Analysis of Influencing Factors of Embodied Carbon in China’s Export Trade in the Background of “Carbon Peak” and “Carbon Neutrality”. Sustainability 2022, 14, 3308. [Google Scholar] [CrossRef]
- Hoekstra, R.; van den Bergh, J.C.J.M. Comparing structural decomposition analysis and index. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Su, B.; Thomson, E. China’s carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012. Energy Econ. 2016, 59, 414–422. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, L.; Li, Z.; Ni, W. A Calculation and Decomposition Method Embedding Sectoral Energy Structure for Embodied Carbon: A Case Study of China’s 28 Sectors. Sustainability 2022, 14, 2593. [Google Scholar] [CrossRef]
- Liu, X.; Ishikawa, M.; Wang, C.; Dong, Y.; Liu, W. Analyses of CO2 emissions embodied in Japan–China trade. Energy Policy 2010, 38, 1510–1518. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, S.; Zhang, Z.; Liu, Y.; Ahmad, A. Driving factors of carbon emissions embodied in China–US trade: A structural decomposition analysis. J. Clean. Prod. 2016, 131, 678–689. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Factors driving embodied carbon in international trade: A multiregional input–output gravity model. Econ. Syst. Res. 2018, 30, 545–566. [Google Scholar] [CrossRef]
- Huang, L.; Kelly, S.; Lv, K.; Giurco, D. A systematic review of empirical methods for modelling sectoral carbon emissions in China. J. Clean. Prod. 2019, 215, 1382–1401. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B. Structural decomposition techniques: Sense and sensitivity. Econ. Syst. Res. 1998, 10, 307–324. [Google Scholar] [CrossRef]
- Timmer, M.P.; Dietzenbacher, E.; Los, B.; Stehrer, R.; de Vries, G.J. An Illustrated User Guide to the World Input–Output Database: The Case of Global Automotive Production. Rev. Int. Econ. 2015, 23, 575–605. [Google Scholar] [CrossRef]
- Corsatea, T.D.; Lindner, S.; Arto, I.; Román, M.V.; Rueda-Cantuche, J.M.; Velázquez Afonso, A.; Amores, A.F.; Neuwahl, F. World Input-Output Database Environmental Accounts. Update 2000–2016; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-64439-9. [Google Scholar] [CrossRef]
- Peters, G.P. Carbon footprints and embodied carbon at multiple scales. Curr. Opin. Environ. Sustain. 2010, 2, 245–250. [Google Scholar] [CrossRef]
- Jiang, M. Locating the Principal Sectors for Carbon Emission Reduction on the Global Supply Chains by the Methods of Complex Network and Susceptible–Infective Model. Sustainability 2022, 14, 2821. [Google Scholar] [CrossRef]
Method | Author | Object | Data | Content |
---|---|---|---|---|
MRIO | Chen and Chen [13] | Global (2004) | GTAP | The world was divided into three supranational alliances (G7, BRIC and Row) to study the carbon trade imbalance. |
MRIO | Long et al. [6] | China and Japan (2000–2014) | WIOD | The MRIO model was used to analyze the implied carbon of China and Japan in 2000 and 2014, and the rest of the world was used as a control group. |
MRIO | Wu et al. [16] | Global (2012) | EORA | The transfer of carbon emissions and related trade imbalances in the global supply chain were examined. |
BTIO + IDA | Dong et al. [24] | China and Japan (1990–2000) | JETRO | The driving factors were divided into three parts: trade scale, trade structure and trade carbon intensity. |
MRIO + SDA | Zhao et al. [41] | China and the USA (1995–2009) | WIOD | The driving factors were divided into 7 groups (14 in total): energy emission coefficient, energy use structure, energy intensity, trade structure of intermediate products, production technology, export share of final products, and total demand. |
MRIO + SDA | Wang et al. [27] | China and Germany (1995–2009) | WIOD | The driving factors were divided into 5 groups (10 in total): carbon emission coefficient, intermediate input structure, final demand country structure, final demand product structure and final demand scale. |
MRIO + Gravity model | Duarte et al. [42] | Global (1995–2009) | WIOD | The driving factors were investigated using the gravity model. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Wu, W. Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade. Sustainability 2022, 14, 7478. https://doi.org/10.3390/su14127478
Hu Y, Wu W. Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade. Sustainability. 2022; 14(12):7478. https://doi.org/10.3390/su14127478
Chicago/Turabian StyleHu, Yingying, and Wei Wu. 2022. "Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade" Sustainability 14, no. 12: 7478. https://doi.org/10.3390/su14127478
APA StyleHu, Y., & Wu, W. (2022). Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade. Sustainability, 14(12), 7478. https://doi.org/10.3390/su14127478