Does Rapid Urbanization Improve Green Water-Use Efficiency? Based on the Investigation of Guangdong Province, China
Abstract
:1. Introduction
2. Methodology
2.1. Data Envelopment Analysis Model
2.2. Panel Regression Model
3. Empirical Estimation
3.1. Evaluation of Green Water-Use Efficiency
3.2. Green Water-Use Effect Test of Rapid Urbanization
4. Discussion
4.1. Analysis of Green Water-Use Efficiency
4.2. Analysis on the Relationship between Rapid Urbanization and Green Water-Use Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, M.Y. Research progress of new urbanization in China from the perspective of geography. Areal Res. Dev. 2022, 41, 46–51. [Google Scholar]
- White, H.; Shah, P. Attention in urban and natural environments. Yale J. Biol. Med. 2019, 92, 115–120. [Google Scholar] [PubMed]
- FAO; UN Water. Progress on Change in Water-Use Efficiency. Global Status and Acceleration Needs for SDG Indicator 6.4.1; FAO; UN Water: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Geng, N.N.; Shao, X.Y. Research on Coupling Coordination of Ecological Environment-Tourism Industry-Urbanization in the Yellow River Basin. Econ. Probl. 2022, 3, 13–19. [Google Scholar]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.L.; Kung, H.T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Wang, L.L.; Liu, X.J.; Qi, Y.L.; Li, D. Spatio-temporal evolution and drivers of the ecological response of urbanization in central plains urban agglomeration. Resour. Dev. Mark. 2021, 114, 106331. [Google Scholar]
- Liu, Q.R.; Tang, L. Empirical test of the growth trajectory of energy consumption in the process of urbanization. Stat. Decis. 2022, 38, 84–88. [Google Scholar]
- Dhakal, S. GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr. Opin. Environ. Sustain. 2010, 2, 277–283. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sezen, I.; Sari, E.N. The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey. Environ. Ecol. Stat. 2021, 28, 733–759. [Google Scholar] [CrossRef]
- Li, H.X.; Shao, D.G.; Yin, X.; Chen, S.; Xu, B.L. Evolution method for irrigation-water use efficiency based on principle component analysis and Copula function. Trans. Chin. Soc. Agric. Eng. 2015, 31, 96–102. [Google Scholar]
- Nithammer, C.M.; Mahabir, J.; Dikgang, J. Efficiency of South African water utilities: A double bootstrap DEA analysis. Appl. Econ. 2021, 54, 3055–3073. [Google Scholar] [CrossRef]
- Ma, H.L.; Zhang, Y.Q.; Wang, L. Measurement and convergence analysis of green water utilization efficiency. J. Nat. Resour. 2017, 32, 406–417. [Google Scholar]
- Tong, J.P.; Chen, J.; Zhao, L.L. Spatial spillover effects of green total-factor water use efficiency on economic growth in the Yangtze River Economic Zone. Ecol. Econ. 2019, 35, 159–164. [Google Scholar]
- Wang, M.Q.; Huang, Y.; Li, D. Assessing the performance of industrial water resource utilization systems in China based on a two-stage DEA approach with game cross efficiency. J. Clean. Prod. 2021, 312, 127722. [Google Scholar] [CrossRef]
- Chang, M.; Wang, X.Q.; Zhang, X.Y. Influence of management mode of farmland water conservancy on irrigation efficiency of farmers. J. Huazhong Agric. Univ. 2022, 2, 24–35. [Google Scholar]
- Rad, M.H.; Sarkheil, H.; Khojastehpour, R. Analysing water use efficiency and productivity in Iran’s metropolises. Proc. Inst. Civ. Eng.-Water Manag. 2019, 172, 102–108. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Gautam, T.K.; Paudel, K.P.; Guidry, K.M. An Evaluation of Irrigation Water Use Efficiency in Crop Production Using a Data Envelopment Analysis Approach: A Case of Louisiana, USA. Water 2020, 12, 3193. [Google Scholar] [CrossRef]
- Wu, Z.D.; Zhang, Y.; Wu, Z.L.; Cao, X.C.; Liang, X.Y.; Wu, Y.Z. Study on the spatio-temporal evolution and influencing factors of economic efficiency of generalized water use for crop production in China’s major grain-producing area. Resour. Environ. Yangtze Basin 2021, 30, 2763–2777. [Google Scholar]
- Njuki, E.; Bravo-Ureta, B.E. Irrigation water use and technical efficiencies: Accounting for technological and environmental heterogeneity in U.S. agriculture using random parameters. Water Resour. Econ. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Kan, D.X.; Lv, L.J. An empirical analysis of the impact of urbanization on water resources security: Based on the space correction system GMM method. Ind. Organ. Rev. 2018, 12, 152–167. [Google Scholar]
- Liang, D.Z.; Lu, H.W.; Feng, L.Y.; Qiu, L.H.; He, L. Assessment of the sustainable utilization level of water resources in the Wuhan Metropolitan Area based on a three-dimensional water ecological footprint model. Water 2021, 13, 3505. [Google Scholar] [CrossRef]
- Hai, X.; Li, W.F.; Wang, C.; Zhou, W.Q.; Han, L.J.; Qian, Y.G. lnteractions between water use efficiency and urbanization level in the Beijing-Tianjin-Hebei megaregion, China. Acta Ecol. Sin. 2018, 38, 4245–4256. [Google Scholar]
- Ding, X.H.; Fu, Z.; Jia, H.W. Study on urbanization level, urban primacy and industrial water utilization efficiency in the Yangtze River Economic Belt. Sustainability 2019, 11, 6571. [Google Scholar] [CrossRef] [Green Version]
- Avazdahandeh, S.; Khalilian, S. The effect of urbanization on agricultural water consumption and production: The extended positive mathematical programming approach. Environ. Geochem. Health 2020, 43, 247–258. [Google Scholar] [CrossRef]
- Cheng, K.M.; Liu, Q.L.; Zhuang, Y.J. Evolution, comparison and prospection of undesirable output processing methods in efficiency evaluation. J. Quant. Tech. Econ. 2021, 38, 154–171. [Google Scholar] [CrossRef]
- Dar, A.H.; Mathur, S.K.; Mishra, S. The efficiency of Indian banks: A DEA, Malmquist and SFA analysis with bad output. J. Quant. Econ. 2021, 19, 41–49. [Google Scholar] [CrossRef]
- Dickson, K.G.; Jin, H.; Magdalene, Z.A.A.; Mohammad, K. Network DEA models for assessing urban water utility efficiency. Util. Policy 2019, 57, 48–58. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Super-Efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.H.; Tang, N.; He, J.H. The threshold effect of environmental regulation, FDI agglomeration, and water utilization efficiency under “Double Control Actions”-An empirical test based on Yangtze River Economic Belt. Water 2019, 11, 452. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Chen, L. The heterogeneity of correlation between cross-section and time series. J. Quant. Tech. Econ. 2011, 28, 96–114. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. The estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Zhang, X.J.; Xu, W.X.; Liu, C.J. Spatio-temporal disparity of coupling coordination of economic-land-population-society urbanization in Guangdong-Hong Kong-Macao Region and its influencing factors. Inq. Into Econ. Issues 2019, 10, 54–64. [Google Scholar]
- Ahmad, M.; Rehman, A.; Shah, S.A.A.; Solangi, Y.A.; Chandio, A.A.; Jabeen, G. Stylized heterogeneous dynamic links among healthcare expenditures, land urbanization, and CO2 emissions across economic development levels. Sci. Total Environ. 2020, 753, 142228. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, X.M.; Shen, L.; Wang, Y.L. Analysis of the spatial effect of urban-rural integration on energy efficiency in the Yangtze River Economic Belt. J. Geo-Inf. Sci. 2020, 22, 2188–2198. [Google Scholar] [CrossRef]
- Wang, S.W.; Wang, J.C. Nonlinear relationship between municipal solid waste and economic growth: Empirical analysis based on environmental Kuznets curve. China Popul. Resour. Environ. 2022, 32, 63–70. [Google Scholar]
- Gu, J.H.; Wang, Y.Q. Influence of industrial structure change on regional high-quality green development and its spatial spillover effect: An empirical study based on China’s provincial panel data. J. Southwest Univ. 2021, 43, 116–128. [Google Scholar] [CrossRef]
- Liu, J.S.; Nong, B.Z. Green development: The new impetus of urbanization in Japan. Contemp. Econ. Jpn. 2015, 6, 34–41. [Google Scholar] [CrossRef]
- Islam, N.; Yokota, K. Lewis growth model and China’s industrialization. Asian Econ. J. 2008, 22, 359–396. [Google Scholar] [CrossRef]
- Arnaut, J.; Lidman, J. Environmental sustainability and economic growth in Greenland: Testing the Environmental Kuznets Curve. Sustainability 2021, 13, 1228. [Google Scholar] [CrossRef]
- Xiao, P.; Su, J.; Jiang, A.N. Eco-environmental effects of urbanization in the Dongting Lake area: Empirical analysis based on nonlinear PSTR model. J. Wuling 2021, 46, 46–51. [Google Scholar] [CrossRef]
- Nam, P.P.; Yen, T.T. Impact of urbanization on land complaints in Vinh City, Nghe An province. Land Use Policy 2022, 108, 105533. [Google Scholar] [CrossRef]
- Jin, D.; Dai, L.L. Temporal and spatial characteristics and driving factors of coordinated development between population urbanization and land urbanization in China. China Land Sci. 2021, 35, 74–84. [Google Scholar]
- Tian, P.; Li, J.L.; Cao, L.D.; Pu, R.L.; Wang, Z.Y.; Zhang, H.T.; Chen, H.L.; Gong, H.B. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Tan, J.Y.; Zhang, Y.H. Bonus of industrial agglomeration or reappearance of “Pollution Haven”? Based on the evidence in Guangdong Province. Res. Econ. Manag. 2015, 36, 82–89. [Google Scholar] [CrossRef]
Region | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|
Guangzhou | 0.52 | 0.54 | 0.57 | 0.58 | 0.61 | 0.61 | 0.61 | 0.62 | 0.62 | 0.62 | 1.00 |
Shenzhen | 0.67 | 0.73 | 0.82 | 0.88 | 0.96 | 1.01 | 0.99 | 1.01 | 1.03 | 1.00 | 1.00 |
Foshan | 0.49 | 0.51 | 0.52 | 0.52 | 0.53 | 0.53 | 0.54 | 0.55 | 0.55 | 0.56 | 0.58 |
Dongguan | 0.43 | 0.44 | 0.47 | 0.48 | 0.50 | 0.51 | 0.53 | 0.56 | 0.60 | 0.63 | 0.64 |
Zhongshan | 0.36 | 0.38 | 0.41 | 0.41 | 0.41 | 0.41 | 0.42 | 0.42 | 0.42 | 0.42 | 0.43 |
Zhuhai | 0.44 | 0.47 | 0.49 | 0.49 | 0.50 | 0.51 | 0.53 | 0.54 | 0.60 | 0.60 | 1.00 |
Jiangmen | 0.32 | 0.33 | 0.34 | 0.32 | 0.31 | 0.30 | 0.30 | 0.30 | 0.31 | 0.32 | 0.33 |
Zhaoqing | 0.22 | 0.23 | 0.25 | 0.24 | 0.24 | 0.25 | 0.25 | 0.25 | 0.26 | 0.27 | 0.28 |
Huizhou | 0.27 | 0.29 | 0.32 | 0.33 | 0.34 | 0.35 | 0.34 | 0.35 | 0.37 | 0.38 | 0.39 |
Pearl River Delta | 0.41 | 0.44 | 0.47 | 0.47 | 0.49 | 0.50 | 0.50 | 0.51 | 0.53 | 0.53 | 0.63 |
Shantou | 0.34 | 0.33 | 0.34 | 0.33 | 0.32 | 0.31 | 0.31 | 0.32 | 0.33 | 0.32 | 0.33 |
Chaozhou | 0.29 | 0.30 | 0.32 | 0.32 | 0.34 | 0.34 | 0.33 | 0.33 | 0.31 | 0.32 | 0.33 |
Jieyang | 0.25 | 0.24 | 0.25 | 0.25 | 0.27 | 0.27 | 0.26 | 0.28 | 0.27 | 0.29 | 0.29 |
Shanwei | 0.18 | 0.19 | 0.20 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 | 0.24 | 0.25 | 0.26 |
Eastern Guangdong | 0.26 | 0.27 | 0.28 | 0.28 | 0.29 | 0.29 | 0.28 | 0.29 | 0.29 | 0.30 | 0.30 |
Zhanjiang | 0.30 | 0.31 | 0.34 | 0.34 | 0.32 | 0.30 | 0.28 | 0.27 | 0.27 | 0.27 | 0.27 |
Maoming | 0.66 | 0.77 | 1.05 | 0.68 | 0.47 | 0.42 | 0.36 | 0.34 | 0.34 | 0.35 | 0.36 |
Yangjiang | 0.27 | 0.26 | 0.26 | 0.27 | 0.29 | 0.30 | 0.30 | 0.30 | 0.31 | 0.32 | 0.34 |
Yunfu | 0.18 | 0.17 | 0.18 | 0.17 | 0.17 | 0.17 | 0.17 | 0.19 | 0.20 | 0.21 | 0.22 |
Western Guangdong | 0.35 | 0.38 | 0.46 | 0.37 | 0.31 | 0.30 | 0.28 | 0.28 | 0.28 | 0.29 | 0.30 |
Shaoguan | 0.21 | 0.20 | 0.21 | 0.22 | 0.22 | 0.23 | 0.22 | 0.23 | 0.25 | 0.27 | 0.28 |
Qingyuan | 0.15 | 0.16 | 0.19 | 0.20 | 0.21 | 0.22 | 0.23 | 0.26 | 0.27 | 0.28 | 0.29 |
Meizhou | 0.25 | 0.26 | 0.27 | 0.27 | 0.27 | 0.26 | 0.25 | 0.24 | 0.23 | 0.23 | 0.23 |
Heyuan | 0.19 | 0.19 | 0.21 | 0.22 | 0.23 | 0.23 | 0.22 | 0.22 | 0.23 | 0.23 | 0.23 |
Northern Guangdong | 0.20 | 0.20 | 0.22 | 0.23 | 0.23 | 0.24 | 0.23 | 0.24 | 0.25 | 0.25 | 0.26 |
Variable | Mixed Effects Model | Fixed Effects Model | Random Effects Model | |||
---|---|---|---|---|---|---|
Coefficient | p Value | Coefficient | p Value | Coefficient | p Value | |
Industrial urbanization | 0.1840 | 0.175 | 0.3486 | 0.024 | 0.1893 | 0.133 |
Population urbanization | −0.1031 | 0.537 | −0.3577 | 0.170 | −0.1013 | 0.416 |
Land urbanization | 0.6694 | 0.003 | 0.6599 | 0.101 | 0.6787 | 0.000 |
Social urbanization | −0.0066 | 0.060 | −0.0041 | 0.076 | −0.0065 | 0.002 |
Urban–rural integration | −0.2566 | 0.148 | −0.5121 | 0.000 | −0.2688 | 0.023 |
Economic development level | 0.0287 | 0.000 | 0.0187 | 0.028 | 0.0284 | 0.000 |
Technological innovation level | 0.6308 | 0.377 | 0.4943 | 0.576 | 0.6405 | 0.393 |
Environmental regulation level | −0.0602 | 0.194 | −0.0148 | 0.680 | −0.0581 | 0.090 |
Foreign investment level | −0.9204 | 0.337 | −1.5083 | 0.013 | −0.9237 | 0.072 |
External dependence | 0.0287 | 0.455 | −0.0367 | 0.456 | 0.0278 | 0.379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Tong, C. Does Rapid Urbanization Improve Green Water-Use Efficiency? Based on the Investigation of Guangdong Province, China. Sustainability 2022, 14, 7481. https://doi.org/10.3390/su14127481
Zhou Q, Tong C. Does Rapid Urbanization Improve Green Water-Use Efficiency? Based on the Investigation of Guangdong Province, China. Sustainability. 2022; 14(12):7481. https://doi.org/10.3390/su14127481
Chicago/Turabian StyleZhou, Qiuxia, and Changfeng Tong. 2022. "Does Rapid Urbanization Improve Green Water-Use Efficiency? Based on the Investigation of Guangdong Province, China" Sustainability 14, no. 12: 7481. https://doi.org/10.3390/su14127481
APA StyleZhou, Q., & Tong, C. (2022). Does Rapid Urbanization Improve Green Water-Use Efficiency? Based on the Investigation of Guangdong Province, China. Sustainability, 14(12), 7481. https://doi.org/10.3390/su14127481