COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster
Abstract
:1. Introduction
2. The Impact of the Pandemic on Plastic Waste
3. Challenges in Waste Management
4. Scientific Strategies for Mitigating Medical Waste Plastics
4.1. Recycled Polymers for 3D Printing
4.1.1. Impact of Recycling on the Material Properties
4.1.2. Mechanical Properties
4.2. Methods to Recycle and Reuse Biomedical Plastics Waste
4.2.1. Thermal Processes
4.2.2. Chemical Processes
4.3. Use of Ionisation and Energetic Radiation
5. Environmentally Sustainable Management of Used Personal Protective Equipment
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IV | Intravenous |
Mt | Metric tonne |
GHG | Greenhouse gas |
PPE | Personal protective equipment |
LCA | Life cycle assessment |
MSW | Municipal solid waste |
References
- Rajmohan, K.V.S.; Ramya, C.; Viswanathan, M.R.; Varjani, S. Plastic pollutants: Effective waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. [Google Scholar] [CrossRef]
- Windfeld, E.S.; Brooks, M.S.-L. Medical waste management—A review. J. Environ. Manag. 2015, 163, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe—The Facts 2016. An Analysis of European Plastics Production, Demand and Waste Data. Plast. Eur. 2016, 1–38. Available online: https://www.plasticseurope.org/application/files/4315/1310/4805/plastic-the-fact-2016.pdf (accessed on 26 April 2020).
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.; LAW, K. Producción, uso y destino de todos los plásticos jamás fabricados. Sci. Adv. 2017, 3, 1207–1221. [Google Scholar]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Jambeck, J.; Geyer, R.; Wilcox, C.; Siegler, T.; Perryman, M.; Andrady, A.; Naray, R. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- MacKenzie, D. COVID-19 goes global. New Sci. 2020, 245, 7. [Google Scholar] [CrossRef]
- Babaji, P.; Singh, A.; Lau, H.; Lamba, G.; Somasundaram, P. Deletion of short arm of chromosome 18, Del (18p) syndrome. J. Indian Soc. Pedod. Prev. Dent. 2014, 32, 68. [Google Scholar] [CrossRef]
- Selvaraj, D.; Raja, J.; Prasath, S. Interdisciplinary approach for bilateral maxillary canine: First premolar transposition with complex problems in an adult patient. J. Pharm. Bioallied Sci. 2013, 5 (Suppl. 2), S190. [Google Scholar] [CrossRef]
- Liu, H.-C.; You, J.-X.; Lu, C.; Chen, Y.-Z. Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew. Sustain. Energy Rev. 2015, 41, 932–942. [Google Scholar] [CrossRef]
- Yu, H.; Sun, X.; Solvang, W.D.; Zhao, X. Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China). Int. J. Environ. Res. Public Health 2020, 17, 1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.M.; Mohammed, M.A.; Abdulkareem, K.H.; Damasevicius, R.; Mostafa, S.A.; Maashi, M.S.; Chopra, S.S. Artificial intelligence-based solution for sorting COVID related medical waste streams and supporting data-driven decisions for smart circular economy practice. Process Saf. Environ. Prot. 2021, 152, 482–494. [Google Scholar] [CrossRef]
- Zhao, W.; Van Der Voet, E.; Huppes, G.; Zhang, Y. Comparative life cycle assessments of incineration and non-incineration treatments for medical waste. Int. J. Life Cycle Assess. 2008, 14, 114–121. [Google Scholar] [CrossRef]
- Hong, J.; Zhan, S.; Yu, Z.; Hong, J.; Qi, C. Life-cycle environmental and economic assessment of medical waste treatment. J. Clean. Prod. 2018, 174, 65–73. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K.-A. The evolution of waste-to-energy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Bertschinger, N. Visual explanation of country specific differences in COVID-19 dynamics. arXiv 2020, arXiv:2004.07334. [Google Scholar]
- Saha, S.; Samanta, G.P.; Nieto, J.J. Epidemic model of COVID-19 outbreak by inducing behavioural response in population. Nonlinear Dyn. 2020, 102, 455–487. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, R.; Yang, C. Perspectives for low-temperature waste heat recovery. Energy 2019, 176, 1037–1043. [Google Scholar] [CrossRef]
- Dincer, B.; Inangil, D. The effect of Emotional Freedom Techniques on nurses’ stress, anxiety, and burnout levels during the COVID-19 pandemic: A randomized controlled trial. Explore 2021, 17, 109–114. [Google Scholar] [CrossRef]
- Huang, H.; Tang, L. Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers. Manag. 2007, 48, 1331–1337. [Google Scholar] [CrossRef]
- Singh, N.; Tang, Y.; Ogunseitan, O.A. Environmentally Sustainable Management of Used Personal Protective Equipment. Environ. Sci. Technol. 2020, 54, 8500–8502. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Tang, Y.; Zhang, Z.; Zheng, C. COVID-19 waste management: Effective and successful measures in Wuhan, China. Resour. Conserv. Recycl. 2020, 163, 105071. [Google Scholar] [CrossRef] [PubMed]
- Tikkinen, K.A.O.; Malekzadeh, R.; Schlegel, M.; Rutanen, J.; Glasziou, P. COVID-19 clinical trials: Learning from exceptions in the research chaos. Nat. Med. 2020, 26, 1671–1672. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Benson, N.U.; Bassey, D.E.; Palanisami, T. COVID pollution: Impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 2021, 7, e06343. [Google Scholar] [CrossRef]
- Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. JAMA 2020, 323, 1837–1838. [Google Scholar] [CrossRef]
- Petrov, A.; Petrova, D. Sustainability of Transport System of Large Russian City in the Period of COVID-19: Methods and Results of Assessment. Sustainability 2020, 12, 7644. [Google Scholar] [CrossRef]
- Prüss, A.; Giroult, E.; Rushbrook, P. Treatment and disposal technologies for health-care waste. In Safe Management of Wastes from Healthcare Activities; WHO: Geneva, Switzerland, 1999; pp. 77–111. [Google Scholar]
- Moriarty, D.G.; Zack, M.M.; Kobau, R. The Centers for Disease Control and Prevention’s Healthy Days Measures–Population tracking of perceived physical and mental health over time. Health Qual. Life Outcomes 2003, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Obtenido de Project Management Guide; CDC: Centers for Disease Control and Prevention: Atlanta, GA, USA. Available online: https://www2a.cdc.gov/cdcup/library (accessed on 26 April 2020).
- Klemeš, J.J.; Van Fan, Y.; Tan, R.R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020, 127, 109883. [Google Scholar] [CrossRef] [PubMed]
- Chapple, K. Planning Sustainable Cities and Regions: Towards More Equitable Development; Routledge: London, UK, 2014. [Google Scholar]
- Ravetz, J. Integrated assessment for sustainability appraisal in cities and regions. Environ. Impact Assess. Rev. 2000, 20, 31–64. [Google Scholar] [CrossRef]
- Al-Salem, S. Energy production from plastic solid waste (PSW). In Plastics to Energy; Elsevier: Cambridge, MA, USA, 2019; pp. 45–64. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Samal, B.; Dubey, B.K.; Bhattacharya, J. Bhattacharya, Emissions and environmental burdens associated with plastic solid waste management. In Plastics to Energy; Elsevier: Cambridge, MA, USA, 2019; pp. 313–342. [Google Scholar] [CrossRef]
- Mastellone, M.L. Technical description and performance evaluation of different packaging plastic waste management’s systems in a circular economy perspective. Sci. Total Environ. 2020, 718, 137233. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Gu, L.; Ozbakkaloglu, T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016, 51, 19–42. [Google Scholar] [CrossRef]
- Aboulkas, A.; El Harfi, K.; El Bouadili, A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers. Manag. 2010, 51, 1363–1369. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Cruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer recycling in an open-source additive manufacturing context: Mechanical issues. Addit. Manuf. 2017, 17, 87–105. [Google Scholar] [CrossRef]
- Vatsal, A.; Prasadh, S.; Deepamala, S.; Patil, A.; Sulochana, K.; Shruthi, D. Comparative evaluation of dimensional changes of elastomeric impression materials after disinfection with glutaraldehyde and microwave irradiation. J. Int. Oral Health 2015, 7, 44–46. [Google Scholar]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2020, 28, 12321–12333. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, P.; Ettappan, M.; Kumar, N.M.; Elangkeeran, N. Exhaust Gas Recirculation on a Nano-Coated Combustion Chamber of a Diesel Engine Fueled with Waste Plastic Oil. Sustainability 2022, 14, 1148. [Google Scholar] [CrossRef]
- Anderson, I. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Print. Addit. Manuf. 2017, 4, 110–115. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of multi-extruded poly (lactic acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Gkartzou, E.; Koumoulos, E.; Charitidis, C.A. Production and 3D printing processing of bio-based thermoplastic filament. Manuf. Rev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Pillin, I.; Montrelay, N.; Bourmaud, A.; Grohens, Y. Effect of thermo-mechanical cycles on the physico-chemical properties of poly (lactic acid). Polym. Degrad. Stab. 2008, 93, 321–328. [Google Scholar] [CrossRef]
- Zhao, X.G.; Hwang, K.-J.; Lee, D.; Kim, T.; Kim, N. Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing. Appl. Surf. Sci. 2018, 441, 381–387. [Google Scholar] [CrossRef]
- Pan, G.-T.; Chong, S.; Tsai, H.-J.; Lu, W.-H.; Yang, T.C.-K. The Effects of Iron, Silicon, Chromium, and Aluminum Additions on the Physical and Mechanical Properties of Recycled 3D Printing Filaments. Adv. Polym. Technol. 2018, 37, 1176–1184. [Google Scholar] [CrossRef]
- Yuan, X.; Kumar, N.M.; Brigljević, B.; Li, S.; Deng, S.; Byun, M.; Lee, B.; Lin, C.S.; Tsang, D.C.; Lee, K.B.; et al. Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO2 capture. Green Chem. 2022, 24, 1494–1504. [Google Scholar] [CrossRef]
- Badia, J.; Strömberg, E.; Karlsson, S.; Ribes-Greus, A. Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polym. Degrad. Stab. 2012, 97, 670–678. [Google Scholar] [CrossRef]
- Chariyachotilert, C.; Joshi, S.; Selke, S.; Auras, R. Assessment of the properties of poly (L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly (L-lactic acid). J. Plast. Film Sheeting 2012, 28, 314–335. [Google Scholar] [CrossRef]
- Brüster, B.; Addiego, F.; Hassouna, F.; Ruch, D.; Raquez, J.-M.; Dubois, P. Thermo-mechanical degradation of plasticized poly (lactide) after multiple reprocessing to simulate recycling: Multi-scale analysis and underlying mechanisms. Polym. Degrad. Stab. 2016, 131, 132–144. [Google Scholar] [CrossRef]
- Beltrán, F.; Lorenzo, V.; Acosta, J.; de la Orden, M.; Urreaga, J.M. Effect of simulated mechanical recycling processes on the structure and properties of poly (lactic acid). J. Environ. Manag. 2018, 216, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Rao, C.; Gu, F.; Sharmin, N.; Fu, J. Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018, 197, 1046–1055. [Google Scholar] [CrossRef]
- Baechler, C.; DeVuono, M.; Pearce, J.M. Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyp. J. 2013, 19, 118–125. [Google Scholar] [CrossRef]
- Di Maria, A.; Eyckmans, J.; Van Acker, K. Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Manag. 2018, 75, 3–21. [Google Scholar] [CrossRef]
- Zhong, S.; Pearce, J.M. Tightening the loop on the circular economy: Coupled distributed recycling and manufacturing with recyclebot and RepRap 3D printing. Resour. Conserv. Recycl. 2018, 128, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Rizvi, G.; Bellehumeur, C.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Derraik, J.G.; Anderson, W.A.; Connelly, E.A.; Anderson, Y.C. Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable PPE protocol using a double-hit process. MedRxiv 2020, 17, 6117. [Google Scholar]
- Nema, S.; Ganeshprasad, K. Plasma pyrolysis of medical waste. Curr. Sci. 2002, 83, 271–278. [Google Scholar]
- Jinadatha, C.; Simmons, S.; Dale, C.; Ganachari-Mallappa, N.; Villamaria, F.C.; Goulding, N.; Tanner, B.; Stachowiak, J.; Stibich, M. Disinfecting personal protective equipment with pulsed xenon ultraviolet as a risk mitigation strategy for health care workers. Am. J. Infect. Control 2015, 43, 412–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uloma, A.A.; Nkem Benjamin, I.; Kiss, I. Knowledge, Attitude and Practice of Healthcare Workers Towards Medical Waste Management: A Comparative Study of Two Geographical Areas. J. Waste Manag. Dispos. 2022, 5, 101. [Google Scholar]
- Mahanwar, P.A.; Bhatnagar, M.P. Medical Plastics Waste. 2020. Available online: https://www.scirp.org/(S(351jmbntv-nsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2812826 (accessed on 26 April 2020).
- Puro, V.; Pittalis, S.; Chinello, P.; Nicastri, E.; Petrosillo, N.; Antonini, M.; Ippolito, G. Disinfection of personal protective equipment for management of Ebola patients. Am. J. Infect. Control 2015, 43, 1375–1376. [Google Scholar] [CrossRef]
- Coronaviridae Study Group of the International. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Ogunseitan, O.A. The Materials Genome and COVID-19 Pandemic. Jom 2020, 72, 1–3. [Google Scholar]
- Tan, G.S.E.; Linn, K.Z.; Soon, M.M.L.; Vasoo, S.; Chan, M.; Poh, B.F.; Ng, O.-T.; Ang, B.S.-P.; Leo, Y.-S.; Marimuthu, K. Effect of extended use N95 respirators and eye protection on personal protective equipment (PPE) utilization during SARS-CoV-2 outbreak in Singapore. Antimicrob. Resist. Infect. Control 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Vijayakumar, V. Personal Protection Prior to Preoperative Assessment—Little more an anaesthesiologist can do to prevent SARS-CoV-2 transmission and COVID-19 infection. Ain-Shams J. Anesthesiol. 2020, 12, 1–2. [Google Scholar] [CrossRef]
- Mahmood, S.U.; Crimbly, F.; Khan, S.; Choudry, E.; Mehwish, S. Strategies for Rational Use of Personal Protective Equipment (PPE) Among Healthcare Providers During the COVID-19 Crisis. Cureus 2020, 12, e8248. [Google Scholar] [CrossRef]
- Mallapur, C. Sanitation Workers at Risk from Discarded Medical Waste Related to COVID-19, IndiaSpend. URL. Available online: https://www.indiaspend.com/sanitation-workersat-risk-from-discarded-medical-waste-related-tocovid-19/ (accessed on 26 April 2020).
- Wu, S.; Montalvo, L. Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. J. Clean. Prod. 2021, 280, 124355. [Google Scholar] [CrossRef]
- Prasadh, S.; Raguraman, S.; Wong, R.; Gupta, M. Metallic Foams in Bone Tissue Engineering. In Nanoscale Engineering of Biomaterials: Properties and Applications; Springer: Singapore, 2022; pp. 181–205. [Google Scholar]
- Prasadh, S.; Parande, G.; Gupta, M.; Wong, R. Compositional Tailoring of Mg–2Zn–1Ca Alloy Using Manganese to Enhance Compression Response and In-Vitro Degradation. Materials 2022, 15, 810. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.; Choudhary, S.; Kataria, P. Awareness of Biomedical Waste Management among Nursing Students: A Hospital Based Study in Haryana. Indian J. Prev. Soc. Med. 2020, 51, 8. [Google Scholar]
- Kujur, M.S.; Manakari, V.; Parande, G.; Prasadh, S.; Wong, R.; Mallick, A.; Gupta, M. Effect of samarium oxide nanoparticles on degradation and invitro biocompatibility of magnesium. Mater. Today Commun. 2021, 26, 102171. [Google Scholar] [CrossRef]
- Prasadh, S.; Suresh, S.; Hong, K.L.; Bhargav, A.; Rosa, V.; Wong, R.C. Biomechanics of alloplastic mandible reconstruction using biomaterials: The effect of implant design on stress concentration influences choice of material. J. Mech. Behav. Biomed. Mater. 2020, 103, 103548. [Google Scholar] [CrossRef]
- Prasadh, S.; Krishnan, A.V.; Lim, C.Y.; Gupta, M.; Wong, R. Titanium versus magnesium plates for unilateral mandibular angle fracture fixation: Biomechanical evaluation using 3-dimensional finite element analysis. J. Mater. Res. Technol. 2022, 18, 2064–2076. [Google Scholar] [CrossRef]
- Price, A.D.; Cui, Y.; Liao, L.; Xiao, W.; Yu, X.; Wang, H.; Zhao, M.; Wang, Q.; Chu, S.; Chu, L.F. Is the fit of N95 facial masks effected by disinfection? A study of heat and UV disinfection methods using the OSHA protocol fit test. medRxiv 2020. [Google Scholar] [CrossRef]
- Prasadh, S.; Gupta, M.; Wong, R. In vitro cytotoxicity and osteogenic potential of quaternary Mg-2Zn-1Ca/X-Mn alloys for craniofacial reconstruction. Sci. Rep. 2022, 12, 8259. [Google Scholar] [CrossRef]
Rank | Country | Population | Total Estimated Plastic Waste (Tonnes) |
---|---|---|---|
1 | China | 1,439,323,776 | 107,949,283.20 |
2 | India | 1,380,004,385 | 103,500,328.90 |
3 | United States | 331,002,651 | 24,825,198.80 |
4 | Brazil | 212,559,417 | 15,941,956.30 |
5 | Indonesia | 273,523,615 | 20,514,271.10 |
6 | Japan | 126,476,461 | 9,485,734.58 |
7 | Russia | 145,934,462 | 10,945,084.70 |
8 | Mexico | 128,932,753 | 9,669,956.48 |
9 | Nigeria | 206,139,589 | 15,460,469.20 |
10 | Pakistan | 220,892,340 | 16,566,925.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvaraj, S.; Prasadh, S.; Fuloria, S.; Subramaniyan, V.; Sekar, M.; Ahmed, A.M.; Bouallegue, B.; Hari Kumar, D.; Sharma, V.K.; Maziz, M.N.H.; et al. COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster. Sustainability 2022, 14, 6466. https://doi.org/10.3390/su14116466
Selvaraj S, Prasadh S, Fuloria S, Subramaniyan V, Sekar M, Ahmed AM, Bouallegue B, Hari Kumar D, Sharma VK, Maziz MNH, et al. COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster. Sustainability. 2022; 14(11):6466. https://doi.org/10.3390/su14116466
Chicago/Turabian StyleSelvaraj, Siddharthan, Somasundaram Prasadh, Shivkanya Fuloria, Vetriselvan Subramaniyan, Mahendran Sekar, Abdelmoty M. Ahmed, Belgacem Bouallegue, Darnal Hari Kumar, Vipin Kumar Sharma, Mohammad Nazmul Hasan Maziz, and et al. 2022. "COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster" Sustainability 14, no. 11: 6466. https://doi.org/10.3390/su14116466
APA StyleSelvaraj, S., Prasadh, S., Fuloria, S., Subramaniyan, V., Sekar, M., Ahmed, A. M., Bouallegue, B., Hari Kumar, D., Sharma, V. K., Maziz, M. N. H., Sathasivam, K. V., Meenakshi, D. U., & Fuloria, N. K. (2022). COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster. Sustainability, 14(11), 6466. https://doi.org/10.3390/su14116466