Potential Flood Risk in the City of Guasave, Sinaloa, the Effects of Population Growth, and Modifications to the Topographic Relief
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Growth of the Urban Layout
2.3. Topographic Relief
3. Results
3.1. Population Growth in the City of Guasave
3.2. Territorial Growth of the City of Guasave
3.3. Topographic Relief
3.4. Flood Risks
3.5. Possible Causes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Getu, K.; Bhat, H.G. Analysis of spatio-temporal dynamics of urban sprawl and growth pattern using geospatial technologies and landscape metrics in Bahir Dar, Northwest Ethiopia. Land Use Policy 2021, 109, 105676. [Google Scholar] [CrossRef]
- Henríquez, C.; Azócar, G.; Romero, H. Monitoring and modeling the urban growth of two mid-sized Chilean cities. Habitat Int. 2006, 30, 945–964. [Google Scholar] [CrossRef]
- Pinos, J.; Quesada-Román, A. Flood Risk-Related Research Trends in Latin America and Caribbean. Water 2021, 14, 10. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Villalobos-Portilla, E.; Campos-Durán, D. Hydrometeorological disasters in urban areas of Costa Rica, Central America. Environ. Hazards 2020, 20, 264–278. [Google Scholar] [CrossRef]
- Roy, B.; Kasemi, N. Monitoring urban growth dynamics using remote sensing and GIS techniques of Raiganj Urban Agglomeration, India. Egypt. J. Remote Sens. Space Sci. 2021, 24, 221–230. [Google Scholar] [CrossRef]
- Xian, G.; Shi, H.; Zhou, Q.; Auch, R.; Gallo, K.; Wu, Z.; Kolian, M. Monitoring and characterizing multi-decadal variations of urban thermal condition using time-series thermal remote sensing and dynamic land cover data. Remote Sens. Environ. 2021, 269, 112803. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.; Kundu, A. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Clim. 2021, 37, 100799. [Google Scholar] [CrossRef]
- Flores, A.P.; Giordano, L.; Ruggerio, C.A. A basin-level analysis of flood risk in urban and periurban areas: A case study in the metropolitan region of Buenos Aires, Argentina. Heliyon 2020, 6, e04517. [Google Scholar] [CrossRef]
- Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Dumedah, G.; Andam-Akorful, S.A.; Ampofo, S.T.; Abugri, I. Characterizing urban morphology types for surface runoff estimation in the Oforikrom Municipality of Ghana. J. Hydrol. Reg. Stud. 2021, 34, 100796. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Huang, G.; Chhipi-Shrestha, G.; Nahiduzzaman, K.M.; Hewage, K.; Sadiq, R. Enhancing urban flood resilience: A holistic framework incorporating historic worst flood to Yangtze River Delta, China. Int. J. Disaster Risk Reduct. 2021, 61, 102355. [Google Scholar] [CrossRef]
- Lee, H.; Song, K.; Kim, G.; Chon, J. Flood-adaptive green infrastructure planning for urban resilience. Landsc. Ecol. Eng. 2021, 17, 427–437. [Google Scholar] [CrossRef]
- Poku-Boansi, M.; Amoako, C.; Owusu-Ansah, J.K.; Cobbinah, P.B. What the state does but fails: Exploring smart options for urban flood risk management in informal Accra, Ghana. City Environ. Interact. 2020, 5, 100038. [Google Scholar] [CrossRef]
- Avashia, V.; Garg, A. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy 2020, 95, 104571. [Google Scholar] [CrossRef]
- Mohtar, W.H.M.W.; Abdullah, J.; Maulud, K.N.A.; Muhammad, N.S. Urban flash flood index based on historical rainfall events. Sustain. Cities Soc. 2020, 56, 102088. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Yu, P.; Zhang, Y. The analysis of urban flood risk propagation based on the modified susceptible infected recovered model. J. Hydrol. 2021, 603, 127121. [Google Scholar] [CrossRef]
- Ishiwatari, M.; Sasaki, D. Investing in flood protection in Asia: An empirical study focusing on the relationship between investment and damage. Prog. Disaster Sci. 2021, 12, 100197. [Google Scholar] [CrossRef]
- Liu, X.; Wei, M.; Li, Z.; Zeng, J. Multi-scenario simulation of urban growth boundaries with an ESP-FLUS model: A case study of the Min Delta region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Xiao, F. Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China. Land Use Policy 2021, 112, 105850. [Google Scholar] [CrossRef]
- Luo, K.; Zhang, X. Increasing urban flood risk in China over recent 40 years induced by LUCC. Landsc. Urban Plan. 2022, 219, 104317. [Google Scholar] [CrossRef]
- Al Rifat, S.A.; Liu, W. Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area. Land Use Policy 2022, 114, 105994. [Google Scholar] [CrossRef]
- Lei, X.; Chen, W.; Panahi, M.; Falah, F.; Rahmati, O.; Uuemaa, E.; Kalantari, Z.; Ferreira, C.S.S.; Rezaie, F.; Tiefenbacher, J.P.; et al. Urban flood modeling using deep-learning approaches in Seoul, South Korea. J. Hydrol. 2021, 601, 126684. [Google Scholar] [CrossRef]
- Taiema, F.S.; Ramadan, M.S. Monitoring urban growth directions using geomatics techniques, a case study Zagazig city-Egypt. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1083–1092. [Google Scholar] [CrossRef]
- Salvati, P.; Ardizzone, F.; Cardinali, M.; Fiorucci, F.; Fugnoli, F.; Guzzetti, F.; Marchesini, I.; Rinaldi, G.; Rossi, M.; Santangelo, M.; et al. Acquiring vulnerability indicators to geo-hydrological hazards: An example of mobile phone-based data collection. Int. J. Disaster Risk Reduct. 2021, 55, 102087. [Google Scholar] [CrossRef]
- Rana, S.; Sarkar, S. Prediction of urban expansion by using land cover change detection approach. Heliyon 2021, 7, e08437. [Google Scholar] [CrossRef]
- Shrestha, A.; Mascaro, G.; Garcia, M. Effects of stormwater infrastructure data completeness and model resolution on urban flood modeling. J. Hydrol. 2022, 607, 127498. [Google Scholar] [CrossRef]
- da Silva, L.B.L.; Alencar, M.H.; de Almeida, A.T. A novel spatiotemporal multi-attribute method for assessing flood risks in urban spaces under climate change and demographic scenarios. Sustain. Cities Soc. 2022, 76, 103501. [Google Scholar] [CrossRef]
- Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [Google Scholar] [CrossRef]
- Kim, Y.; Newman, G. Advancing scenario planning through integrating urban growth prediction with future flood risk models. Comput. Environ. Urban Syst. 2020, 82, 101498. [Google Scholar] [CrossRef]
- Papilloud, T.; Röthlisberger, V.; Loreti, S.; Keiler, M. Flood exposure analysis of road infrastructure—Comparison of different methods at national level. Int. J. Disaster Risk Reduct. 2020, 47, 101548. [Google Scholar] [CrossRef]
- Flores, C.C.; Vikolainen, V.; Crompvoets, J. Governance assessment of a blue-green infrastructure project in a small size city in Belgium. The potential of Herentals for a leapfrog to water sensitive. Cities 2021, 117, 103331. [Google Scholar] [CrossRef]
- Jain, S.K. Providing water security in India by conserving and utilizing flood flows. Water Secur. 2021, 14, 100105. [Google Scholar] [CrossRef]
- Rubio, R.H. Guasave, Historia de un Pueblo Primera; Universidad Autonoma de sinaloa: Culiacán Rosales, Mexico, 2015. [Google Scholar]
- Palafox-Ávila, G.; Barrientos, J.H.; Ladrón-de-Guevara Torres, M.A.; Guevara, H.J.P.; Guevara, L.I.P.; de Campos, J.J.G. Riesgos potenciales de inundaciones en la ciudad de Guasave, Sinaloa. In Sinaloa Ante El Cambio Climático Global; Primera, L.M., Campaña, R.E.F., Angulo, C.M., Quiñonez, K., Eds.; Universidad Autónoma de Sinaloa: Culiacán Rosales, Mexico, 2014; pp. 145–165. [Google Scholar]
- Goytre, J.M. Las Avenidas: Un proceso geológico natural. In Cursos de Ingenieria Geoambiental; Instituto Geológico y Minero de España: Madrid, España, 1990; pp. 1–20. [Google Scholar]
- Ávila, G.P. Riesgo Potencial a Inundaciones en la Ciudad De Guasave; Instituto Politécnico Nacional: Sinaloa, Mexico, 2006. [Google Scholar]
- INEGI. Guasave Sinaloa, Cuaderno Estadistico Municipal, 1st ed.; Instituto Nacional de Estadística, Geografía e Informática: Aguascalientes, Mexico, 2000; 192p. [Google Scholar]
- INEGI. Anuario estadístico y geográfico de Sinaloa 2017; Instituto Nacional de Estadística, Geografía e Informática: Aguascalientes, Mexico, 2017; 475p. [Google Scholar]
- INEGI. Ortofoto Digital: G12D28E. 1994. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463460923 (accessed on 15 January 2022).
- Liang, J.; Xie, Y.; Sha, Z.; Zhou, A. Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine (GEE). Comput. Environ. Urban Syst. 2020, 84, 101542. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Olivart, I.; Llop, J.O.; Moreno-Salinas, D.; Sánchez, J. Full Real-Time Positioning and Attitude System Based on GNSS-RTK Technology. Sustainability 2020, 12, 9796. [Google Scholar] [CrossRef]
- Prochniewicz, D.; Szpunar, R.; Walo, J. A new study of describing the reliability of GNSS Network RTK positioning with the use of quality indicators. Meas. Sci. Technol. 2017, 28, 15012. [Google Scholar] [CrossRef]
- Hamza, V.; Stopar, B.; Ambrožič, T.; Turk, G.; Sterle, O. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. Sensors 2020, 20, 4375. [Google Scholar] [CrossRef]
- Hamza, V.; Stopar, B.; Sterle, O. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas. Sensors 2021, 21, 2029. [Google Scholar] [CrossRef]
- Hodgson, M.E. On the accuracy of low-cost dual-frequency GNSS network receivers and reference data. GISci. Remote Sens. 2020, 57, 907–923. [Google Scholar] [CrossRef]
- Karamouz, M.; Ahmadi, A.; Akhbari, M. Groundwater Risk and Disaster Management. In Ground Water Hydrology. Engineering, Planning, and Management; CRC Press: Boca Raton, FL, USA, 2011; p. 11. [Google Scholar]
- Kiss, T.; Nagy, J.; Fehérvári, I.; Amissah, G.J.; Fiala, K.; Sipos, G. Increased flood height driven by local factors on a regulated river with a confined floodplain, Lower Tisza, Hungary. Geomorphology 2021, 389, 107858. [Google Scholar] [CrossRef]
- Osei, M.A.; Amekudzi, L.K.; Omari-Sasu, A.Y.; Yamba, E.I.; Quansah, E.; Aryee, J.N.; Preko, K. Estimation of the return periods of maxima rainfall and floods at the Pra River Catchment, Ghana, West Africa using the Gumbel extreme value theory. Heliyon 2021, 7, e06980. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.N.; Burton, N.C. Contemporary flood risk perceptions in England: Implications for flood risk management foresight. Clim. Risk Manag. 2021, 32, 100317. [Google Scholar] [CrossRef]
- Thapa, S.; Shrestha, A.; Lamichhane, S.; Adhikari, R.; Gautam, D. Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: The case of Khando River in eastern Nepal. J. Hydrol. Reg. Stud. 2020, 30, 100704. [Google Scholar] [CrossRef]
Area | 2004 | 2007 | 2009 | 2012 | 2015 | 2021 |
---|---|---|---|---|---|---|
I | 4972 | 5484 | 5849 | 6628 | 7184 | 8537 |
0 | 10.30% | 17.64% | 33.31% | 44.49% | 71.70% | |
II | 3040 | 3156 | 3191 | 3931 | 3118 | 4602 |
0 | 3.82% | 4.97% | 29.31% | 2.57% | 51.38% | |
III | 4767 | 6082 | 7120 | 9693 | 11,901 | 15,979 |
0 | 27.59% | 49.36% | 103.34% | 149.65% | 235.20% | |
IV | 12,343 | 12,490 | 12,495 | 12,823 | 11,571 | 14,013 |
0 | 1.19% | 1.23% | 3.89% | −6.25% | 13.53% | |
V | 9227 | 9129 | 9005 | 8492 | 7999 | 9259 |
0 | −1.06% | −2.41% | −7.97% | −13.31% | 0.35% | |
VI | 1186 | 1299 | 1395 | 1540 | 1510 | 2143 |
0 | 9.53% | 17.62% | 29.85% | 27.32% | 80.69% | |
VII | 6546 | 6845 | 7050 | 7456 | 7944 | 9354 |
0 | 4.57% | 7.70% | 13.90% | 21.36% | 42.90% | |
City | 42,081 | 44,485 | 46,105 | 50,563 | 51,227 | 63,887 |
0 | 5.71% | 9.56% | 20.16% | 21.73% | 51.82% | |
Municipality | 176,426 | 183,478 | 190,048 | 199,663 | 199,650 | 234,350 |
0 | 4.00% | 7.72% | 13.17% | 13.16% | 32.83% |
Date | Scale m.a.s.l. | Outflow m3/s | Hydro Climatological Phenomenon |
---|---|---|---|
2 October 1976 | 15.89 | 1520.00 | Extraordinary Rainfall |
3 September 1978 | 15.66 | 1259.00 | Extraordinary Rainfall |
4 September 1979 | 16.66 | 1825.00 | Extraordinary rainfall |
5 August 1980 | 15.25 | 1265.00 | Extraordinary rainfall |
10 October 1981 | 17.35 | 2228.30 | Hurricane Norma |
2 October 1982 | 18.05 | 2826.00 | Hurricane Paul |
9 August 1984 | 15.82 | 1367.20 | Extraordinary Rainfall |
10 August 1985 | 14.01 | 577.00 | Extraordinary rainfall |
3 October 1986 | 15.78 | 748.20 | Hurricane Payne |
12 July 1990 | 15.72 | 771.00 | Extraordinary Rainfall |
12 December 1990 | 15.60 | 723.00 | Extraordinary Rainfall |
26 September 1991 | 14.15 | 315.00 | Extraordinary Rainfall |
25 December 1991 | 14.36 | 350.00 | Extraordinary Rainfall |
27 January 1992 | 15.07 | 472.00 | Extraordinary Rainfall |
14 September 1993 | 14.90 | 444.00 | Extraordinary Rainfall |
14 November 1994 | 16.24 | 969.00 | Extraordinary Rainfall |
16 September 1995 | 15.24 | 510.00 | Hurricane Ishmael |
15 September 1996 | 15.51 | 599.20 | Hurricane Fausto |
4 September 1998 | 17.60 | 1798.00 | Hurricane Isis |
21 September 2015 | 14.94 | 426.000 | Extraordinary Rainfall |
22 September 2018 | 14.93 | 412.440 | Extraordinary Rainfall |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinado Guevara, H.J.; Espinoza Ortiz, M.; Peinado Guevara, V.M.; Herrera Barrientos, J.; Peinado Guevara, J.A.; Delgado Rodríguez, O.; Pellegrini Cervantes, M.d.J.; Sánchez Morales, M. Potential Flood Risk in the City of Guasave, Sinaloa, the Effects of Population Growth, and Modifications to the Topographic Relief. Sustainability 2022, 14, 6560. https://doi.org/10.3390/su14116560
Peinado Guevara HJ, Espinoza Ortiz M, Peinado Guevara VM, Herrera Barrientos J, Peinado Guevara JA, Delgado Rodríguez O, Pellegrini Cervantes MdJ, Sánchez Morales M. Potential Flood Risk in the City of Guasave, Sinaloa, the Effects of Population Growth, and Modifications to the Topographic Relief. Sustainability. 2022; 14(11):6560. https://doi.org/10.3390/su14116560
Chicago/Turabian StylePeinado Guevara, Héctor José, Mauro Espinoza Ortiz, Víctor Manuel Peinado Guevara, Jaime Herrera Barrientos, Jesús Alberto Peinado Guevara, Omar Delgado Rodríguez, Manuel de Jesús Pellegrini Cervantes, and Moisés Sánchez Morales. 2022. "Potential Flood Risk in the City of Guasave, Sinaloa, the Effects of Population Growth, and Modifications to the Topographic Relief" Sustainability 14, no. 11: 6560. https://doi.org/10.3390/su14116560
APA StylePeinado Guevara, H. J., Espinoza Ortiz, M., Peinado Guevara, V. M., Herrera Barrientos, J., Peinado Guevara, J. A., Delgado Rodríguez, O., Pellegrini Cervantes, M. d. J., & Sánchez Morales, M. (2022). Potential Flood Risk in the City of Guasave, Sinaloa, the Effects of Population Growth, and Modifications to the Topographic Relief. Sustainability, 14(11), 6560. https://doi.org/10.3390/su14116560