Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Extension of the STIRPAT Model
3.2. Construction of City Development Element Based on Nighttime Lighting Data
3.3. An Improved STIRPAT Carbon Emission Inversion Model (ISTIRPAT)
4. Results and Discussion
4.1. Model Verification and Comparative Analysis
4.1.1. Verification of ISTIRPAT Model
4.1.2. Comparative Analysis of the Original STIRPAT Model and ISTIRPAT Model
4.2. Analysis of Influencing Factors of Carbon Emissions in Hubei Province
4.3. Spatial and Temporal Pattern of Carbon Emissions in Hubei Province
5. Conclusions
- (1)
- The improved STIRPAT carbon emission inversion model has a carbon emission inversion accuracy of 0.96 at the municipal level, accurately reflecting the carbon emissions of 17 cities and prefectures in Hubei Province from 2012 to 2018. This verifies that the carbon emission inversion model proposed in this paper has high inversion accuracy and a high degree of model fitting.
- (2)
- Since 2012, the carbon emissions in Hubei Province have increased steadily, forming a circular pattern radiating from Wuhan, Xiangyang, Yichang, and Jingzhou as the main carbon-emitting cities, with low carbon emissions in the central region of Hubei Province and high carbon emissions in the marginal cities. The formation of this pattern was related to the distribution of the residential population and regional industrial structure in Hubei Province.
- (3)
- From 2012 to 2018, carbon emissions increased in cities and prefectures in Hubei Province, and the annual growth rate in the province was highest in Wuhan. Despite the increase in overall carbon emissions, the carbon emissions per unit of GDP for 17 cities in Hubei Province show a downward trend. This trend reflects the positive effects of the adjustment of industrial structure and technological upgrades in the whole province. As a result, many carbon emission enterprises are gradually improving their energy efficiency, resulting in improved economic gains while reducing environmental pollution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, N.; Ma, Z.; Kang, J. Changes in carbon intensity in China’s industrial sector: Decomposition and attribution analysis. Energy Policy 2015, 87, 28–38. [Google Scholar] [CrossRef]
- Akram, Z.; Engo, J.; Akram, U.; Zafar, M.W. Identification and analysis of driving factors of CO2 emissions from economic growth in Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 19481–19489. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, H.; Wang, Y.; Zameer, H.; Solangi, Y.A. Decomposing factors affecting CO2 emissions in Pakistan: Insights from LMDI decomposition approach. Environ. Sci. Pollut. Res. Int. 2019, 27, 3113–3123. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Ma, T.; Li, Z.; Tang, J. Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020. Sustainability 2016, 8, 1018. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, Y.; Song, M.; Dong, Y. The residential coal consumption: Disparity in urban–rural China. Resour. Conserv. Recycl. 2018, 130, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Shao, H. Analysis of influencing factors of the carbon dioxide emissions in China’s commercial department based on the STIRPAT model and ridge regression. Environ. Sci. Pollut. Res. 2019, 26, 27138–27147. [Google Scholar] [CrossRef]
- Lohwasser, J.; Schaffer, A.; Brieden, A. The role of demographic and economic drivers on the environment in traditional and standardized STIRPAT analysis. Ecol. Econ. 2020, 178, 106811. [Google Scholar] [CrossRef]
- Zhang, P.; He, J.; Hong, X.; Zhang, W.; Qin, C.; Pang, B.; Li, Y.; Liu, Y. Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China. Sustainability 2017, 9, 2342. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Noorpoor, A.R.; Kudahi, S.N. CO2 emissions from Iran’s power sector and analysis of the influencing factors using the stochastic impacts by regression on population, affluence and technology (STIRPAT) model. Carbon Manag. 2015, 6, 101–116. [Google Scholar] [CrossRef]
- Yuan, R.; Zhao, T.; Xu, X.S.; Kang, J.D. Regional Characteristics of Impact Factors for Energy-Related CO2 Emissions in China, 1997–2010: Evidence from Tests for Threshold Effects Based on the STIRPAT Model. Environ. Modeling Assess. 2015, 20, 129–144. [Google Scholar] [CrossRef]
- Zuo, Z.; Guo, H.; Cheng, J. An LSTM-STRIPAT model analysis of China’s 2030 CO2 emissions peak. Carbon Manag. 2020, 11, 577–592. [Google Scholar] [CrossRef]
- Xu, G.Y.; Wang, W.M. China’s energy consumption in construction and building sectors: An outlook to 2100. Energy 2020, 195, 117045. [Google Scholar] [CrossRef]
- Font Vivanco, D.; Kemp, R.; van der Voet, E.; Heijungs, R. Using LCA-based Decomposition Analysis to Study the Multidimensional Contribution of Technological Innovation to Environmental Pressures. J. Ind. Ecol. 2014, 18, 380–392. [Google Scholar] [CrossRef] [Green Version]
- Tursun, H.; Li, Z.; Liu, R.; Li, Y.; Wang, X. Contribution weight of engineering technology on pollutant emission reduction based on IPAT and LMDI methods. Clean Technol. Environ. Policy 2015, 17, 225–235. [Google Scholar] [CrossRef]
- Song, M.; Wang, S.; Yu, H.; Yang, L.; Wu, J. To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model. Renew. Sustain. Energy Rev. 2011, 15, 5129–5134. [Google Scholar] [CrossRef]
- Zaman, K.; Moemen, M.A. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sustain. Energy Rev. 2017, 74, 1119–1130. [Google Scholar] [CrossRef]
- Wu, C.B.; Huang, G.H.; Xin, B.G.; Chen, J.K. Scenario analysis of carbon emissions’ anti-driving effect on Qingdao’s energy structure adjustment with an optimization model, Part I: Carbon emissions peak value prediction. J. Clean. Prod. 2018, 172, 466–474. [Google Scholar] [CrossRef]
- Di, W.; Rui, N.; Hai-ying, S. Scenario Analysis of China’s Primary Energy Demand and CO2 Emissions Based on IPAT Model. Energy Procedia 2011, 5, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Mi, Z.; Zhang, Y.; Guan, D.; Shan, Y.; Liu, Z.; Cong, R.; Yuan, X.-C.; Wei, Y.-M. Consumption-based emission accounting for Chinese cities. Appl. Energy 2016, 184, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Shigeto, S.; Yamagata, Y.; Ii, R.; Hidaka, M.; Horio, M. An easily traceable scenario for 80% CO2 emission reduction in Japan through the final consumption-based CO2 emission approach: A case study of Kyoto-city. Appl. Energy 2012, 90, 201–205. [Google Scholar] [CrossRef]
- Caro, D.; Rugani, B.; Pulselli, F.M.; Benetto, E. Implications of a consumer-based perspective for the estimation of GHG emissions. The illustrative case of Luxembourg. Sci. Total Environ. 2015, 508, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef] [Green Version]
- Hillman, T.; Ramaswami, A. Greenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. Cities. Environ. Sci. Technol. 2010, 44, 1902–1910. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.-J.; Yu, Y.; Qi, S.-Z. Assessment of impacts of Hubei Pilot emission trading schemes in China—A CGE-analysis using TermCO2 model. Appl. Energy 2017, 189, 762–769. [Google Scholar] [CrossRef]
- Guan, Y.; Kang, L.; Shao, C.; Wang, P. Measuring county-level heterogeneity of CO2 emissions attributed to energy consumption: A case study in Ningxia Hui Autonomous Region, China. J. Clean. Prod. 2017, 142, 3471–3481. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Jing, Q.; Bai, H.; Luo, W.; Cai, B.; Xu, H. A top-bottom method for city-scale energy-related CO2 emissions estimation: A case study of 41 Chinese cities. J. Clean. Prod. 2018, 202, 444–455. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M. Assessing Satellite-Observed Nighttime Lights for Monitoring Socioeconomic Parameters in the Republic of Kazakhstan. GIScience Remote Sens. 2012, 49, 538–557. [Google Scholar] [CrossRef]
- Castells-Quintana, D.; Dienesch, E.; Krause, M. Air pollution in an urban world: A global view on density, cities and emissions. Ecol. Econ. 2021, 189, 107153. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery. Energies 2010, 3, 1895–1913. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, S.; Wu, Y.; Schlink, U.; Singh, R.P. Spatiotemporal Variations of City-Level Carbon Emissions in China during 2000–2017 Using Nighttime Light Data. Remote Sens. 2020, 12, 2916. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. World energy consumption pattern as revealed by DMSP-OLS nighttime light imagery. GIScience Remote Sens. 2016, 53, 265–282. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Chen, J.; Shi, F. Spatialization of electricity consumption of China using saturation-corrected DMSP-OLS data. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 193–200. [Google Scholar] [CrossRef]
- Political Bureau of the Central Committee of the CPC. Outline of Yangtze River Economic Belt Development Plan; Political Bureau of the Central Committee of the CPC: Beijing, China, 2016. [Google Scholar]
- Li, J.; Luo, R.; Yang, Q.; Yang, H. Inventory of CO2 emissions driven by energy consumption in Hubei Province: A time-series energy input-output analysis. Front. Earth Sci. 2016, 10, 717–730. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Kuznets, S. Economic Growth and Income Equality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Grossman, G.; Krueger, A. Environmental Impacts of the North American Free Trade Agreement. Q. J. Econ. 1995, 110, 3914. [Google Scholar]
- Qiang, Y.; Huang, Q.; Xu, J. Observing community resilience from space: Using nighttime lights to model economic disturbance and recovery pattern in natural disaster. Sustain. Cities Soc. 2020, 57, 102115. [Google Scholar] [CrossRef]
- Chen, J.; Wei, H.; Li, N.; Chen, S.; Qu, W.; Zhang, Y. Exploring the Spatial-Temporal Dynamics of the Yangtze River Delta Urban Agglomeration Based on Night-Time Light Remote Sensing Technology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5369–5383. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.; James Chu, C. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total Environ. 2020, 707, 134473. [Google Scholar] [CrossRef]
- Yang, L.; Xia, H.; Zhang, X.; Yuan, S. What matters for carbon emissions in regional sectors? A China study of extended STIRPAT model. J. Clean. Prod. 2018, 180, 595–602. [Google Scholar] [CrossRef]
- Dong, F.; Long, R.; Chen, H.; Li, X.; Yang, Q. Factors affecting regional per-capita carbon emissions in China based on an LMDI factor decomposition model. PLoS ONE 2013, 8, e80888. [Google Scholar]
- Li, R.; Wang, Q.; Liu, Y.; Jiang, R. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consum. 2021, 27, 1149–1164. [Google Scholar] [CrossRef]
- Liddle, B. Demographic Dynamics and Per Capita Environmental Impact: Using Panel Regressions and Household Decompositions to Examine Population and Transport. Popul. Environ. 2004, 26, 23–39. [Google Scholar] [CrossRef]
- Bustamante-Calabria, M.; Sánchez de Miguel, A.; Martín-Ruiz, S.; Ortiz, J.L.; Vílchez, J.M.; Pelegrina, A.; García, A.; Zamorano, J.; Bennie, J.; Gaston, K.J. Effects of the COVID-19 lockdown on urban light emissions: Ground and satellite comparison. Remote Sens. 2021, 13, 258. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F. Evidence that reduced air and road traffic decreased artificial night-time skyglow during COVID-19 lockdown in Berlin, Germany. Remote Sens. 2020, 12, 3412. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A.; Kyba, C.C.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Jon, B.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Lori, S.; Jordan, B.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Hung, L.W.; Anderson, S.J.; Pipkin, A.; Fristrup, K. Changes in night sky brightness after a countywide LED retrofit. J. Environ. Manag. 2021, 292, 112776. [Google Scholar] [CrossRef]
Levin–Lin–Chu (LLC) | Fisher–ADF | |
---|---|---|
LnCE | 0.000 | 0.3419 |
LnDNQ | 0.000 * | 0.0478 * |
LnGDP | 0.000 * | 0.2960 * |
0.000 * | 0.4379 * | |
LnSeGDP | 0.000 | 0.9566 |
LnPeople | 0.000 * | 0.0262 * |
LnCI | 0.000 | 0.0602 |
LnMDN | 0.000 * | 0.0478 * |
LnSUML | 0.000 * | 0.0478 |
Coefficient | Std. Error | T-Statistic | Prob | |
---|---|---|---|---|
Lne | −15.41744 | 3.750565 | 3.750565 | 0.0001 |
LnDNQ | −2.18689 | 0.783035 | 0.783035 | 0.0057 |
LnGDP | 0.642356 | 0.297547 | 0.297547 | 0.0320 |
−0.031573 | 0.014857 | 0.014857 | 0.0348 | |
LnSeGDP | 0.215767 | 0.089851 | 0.089851 | 0.0172 |
LnPeople | 0.544228 | 0.096255 | 0.096255 | 0.0001 |
LnCI | −0.084016 | 0.03568 | 0.03568 | 0.0195 |
LnMDN | 2.613019 | 0.696867 | 0.696867 | 0.0002 |
LnSUML | 0.201933 | 0.087698 | 0.087698 | 0.0223 |
Names of Cities | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|
Wuhan | 75.0389 | 77.5471 | 78.9226 | 81.3334 | 82.4333 | 84.7197 | 87.1527 |
Huangshi | 15.9004 | 16.3843 | 16.4143 | 16.2563 | 16.5632 | 17.3197 | 17.8310 |
Shiyan | 19.4268 | 19.8797 | 20.4274 | 20.8971 | 21.6169 | 22.6866 | 23.0859 |
Yichang | 30.1725 | 31.4959 | 32.6366 | 33.1453 | 33.7219 | 33.6357 | 33.8096 |
Xiangyang | 37.3170 | 38.8334 | 39.9226 | 40.3882 | 41.2933 | 42.1599 | 42.4789 |
Ezhou | 7.9296 | 8.2292 | 8.3260 | 8.5095 | 8.6989 | 9.0854 | 9.5228 |
Jingmen | 19.6024 | 19.9613 | 20.2448 | 20.4081 | 20.9560 | 21.5850 | 22.2350 |
Xiaogan | 23.8605 | 24.7058 | 25.2081 | 25.7521 | 26.7239 | 27.9861 | 28.7937 |
Jingzhou | 27.5535 | 28.5658 | 29.4673 | 29.9263 | 30.8244 | 31.9443 | 32.7407 |
Huanggang | 26.4084 | 27.0936 | 28.2458 | 28.4311 | 29.2768 | 30.5183 | 31.3569 |
Xianning | 13.7475 | 14.4315 | 14.9280 | 15.2032 | 15.6828 | 16.2592 | 16.7669 |
Suizhou | 12.2445 | 12.6784 | 12.9589 | 13.3449 | 13.8208 | 14.2214 | 14.6367 |
Enshi | 13.0509 | 13.7939 | 14.2352 | 14.6681 | 15.1793 | 15.9643 | 16.4902 |
Xiantao | 7.0488 | 7.5067 | 7.4682 | 7.5378 | 7.6410 | 7.6515 | 7.8367 |
Qianjiang | 5.5641 | 5.9254 | 6.0643 | 6.1805 | 6.2921 | 6.6201 | 6.9085 |
Tianmen | 5.9643 | 6.2330 | 6.3437 | 6.4864 | 6.5634 | 6.7876 | 7.0186 |
Shennongjia | 0.2054 | 0.2187 | 0.2242 | 0.2300 | 0.3252 | 0.2579 | 0.2818 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Huang, J.; Zhou, H.; Sun, J.; Yao, M. Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT. Sustainability 2022, 14, 6813. https://doi.org/10.3390/su14116813
Wang Q, Huang J, Zhou H, Sun J, Yao M. Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT. Sustainability. 2022; 14(11):6813. https://doi.org/10.3390/su14116813
Chicago/Turabian StyleWang, Qi, Jiejun Huang, Han Zhou, Jiaqi Sun, and Mingkun Yao. 2022. "Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT" Sustainability 14, no. 11: 6813. https://doi.org/10.3390/su14116813
APA StyleWang, Q., Huang, J., Zhou, H., Sun, J., & Yao, M. (2022). Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT. Sustainability, 14(11), 6813. https://doi.org/10.3390/su14116813