Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction
Abstract
:1. Introduction
2. Methodology
2.1. NIFI Model
2.2. Analytical Solution of NIFI Model
3. Simulation
3.1. Numerical Simulation for 1D Single Traffic Flow
3.2. Numerical Simulation of the Mixed Traffic Flow
3.2.1. Effect of Mixing Ratio on Mixed Traffic Flow
3.2.2. Effect of Vehicle Length on Mixed Traffic Flow
3.2.3. Effect of the Maximum Velocity on Mixed Traffic Flow
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, D.; Santen, L.; Schadschneider, A. Statistical physics of vehicular traffic and some related systems. Phys. Rep. 2000, 329, 199–329. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, S. Theory and Applications of Cellular Automata; World Scientific: Singapore, 1986. [Google Scholar]
- Nagel, K.; Schreckenberg, M. A cellular automaton model for freeway traffic. J. Phys. I 1992, 2, 2221–2229. [Google Scholar] [CrossRef]
- Biham, O.; Middleton, A.A.; Levine, D. Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 1992, 46, 6124–6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukui, M.; Ishibashi, Y. Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Velocity. J. Phys. Soc. Jpn. 1996, 65, 1868–1876. [Google Scholar] [CrossRef]
- Kerner, S.B. Physics of automated driving in framework of three-phase traffic theory. Phys. Rev. E 2018, 97, 042303. [Google Scholar] [CrossRef]
- Madani, A.; Moussa, N. Simulation of fuel consumption and engine pollutant in cellular automaton. J. Theor. Appl. Inf. Technol. 2012, 35, 250–257. [Google Scholar]
- Lakouari, N.; Oubram, O.; Bassam, A.; Hernandez, S.E.P.; Marzoug, R.; Ez-Zahraouy, H. Modeling and simulation of CO2 emissions in roundabout intersection. J. Comput. Sci. 2020, 40, 101072. [Google Scholar] [CrossRef]
- Wang, X.; Xue, Y.; Cen, B.L.; Zhang, P. Study on pollutant emissions of mixed traffic flow in cellular automaton. Phys. A 2020, 537, 122686. [Google Scholar] [CrossRef]
- Qiao, Y.F.; Xue, Y.; Wang, X.; Cen, B.L.; Wang, Y.; Pan, W.; Zhang, Y.X. Investigation of PM emissions in cellular automata model with slow-to-start effect. Phys. A 2021, 574, 125996. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, L. Survey Paper on Traffic Flow Control using Cellular Automata. Int. J. IT Eng. Appl. Sci. 2013, 2, 1–7. [Google Scholar]
- Das, D.; Misra, R. Improvised dynamic network connectivity model for Vehicular Ad-Hoc Networks (VANETs). J. Netw. Comput. Appl. 2018, 122, 107–114. [Google Scholar] [CrossRef]
- Barlovic, R.; Santen, L.; Schadschneider, A.; Schreckenberg, M. Metastable States in Cellular Automata for Traffic Flow. Eur. Phys. J. B 1998, 5, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.H.; Wang, L.; Hui, P.M.; Hu, B. Analytical Results For The Steady State Of Traffic Flow Models With Stochastic Delay. Phys. Rev. E 1998, 58, 2876–2890. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, B.H.; Hui, P.M. Strict derivation of mean-field equation for one-dimensional traffic flow model. Acta Phys. Sin. Overseas Ed. 1997, 6, 829–836. [Google Scholar]
- Wang, B.H.; Wang, L.; Hui, P.M. One-dimensional Fukui-Ishibashi traffic flow model. J. Phys. Soc. Jpn. 1997, 66, 3683–3684. [Google Scholar] [CrossRef]
- Wang, B.H.; Wang, L.; Hui, P.M.; Hu, B. The asymptotic steady states of deterministic one-dimensional traffic flow models. Phys. B Condens. Matter 2000, 279, 237–240. [Google Scholar] [CrossRef]
- Fu, C.J.; Wang, B.H.; Yin, C.Y.; Zhou, T.; Hu, B.; Gao, K.; Hui, P.M.; Hu, C.K. Analytical studies on a modified Nagel–Schreckenberg model with the Fukui–Ishibashi acceleration rule. Chaos Solitons Fractals 2007, 31, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Ma, S. Analytical results of the Nagel-Schreckenberg model with stochastic open boundary conditions. Phys. Rev. E 2009, 80, 041105. [Google Scholar] [CrossRef]
- Jia, N.; Ma, S. Analytical investigation of the open boundary conditions in the Nagel-Schreckenberg model. Phys. Rev. E 2009, 79, 031115. [Google Scholar] [CrossRef]
- Ding, Z.J.; Jiang, R.; Wang, B.H. Traffic flow in the Biham-Middleton-Levine model with random update rule. Phys. Rev. E 2011, 83, 047101. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, T.; Lou, X.; Shen, Z.; Zhu, K.; Jiang, R.; Wang, B.; Chen, B. Mean-field analysis for Asymmetric Exclusion Processes on two parallel lattices with fully parallel dynamics. Phys. A 2018, 516, 317–326. [Google Scholar] [CrossRef]
- Nagatani, T. Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 1999, 60, 6395–6401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.B.; Jiang, R.; Wu, Q.S. Cellular automata model simulating complex spatiotemporal structure of wide jams. Phys. Rev. E 2003, 68, 016117. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.X.; Dai, S.Q.; Dong, L.Y.; Xue, Y. Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 2004, 70, 066134. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Wolf, D.E.; Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Phys. A 1997, 235, 417–439. [Google Scholar] [CrossRef]
- Knospe, W.; Santen, L.; Schadschneider, A.; Schreckenberg, M. Disorder effects in cellular automata for two-lane traffic. Phys. A 1999, 265, 614–633. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xue, Y.; Qiao, Y.; Cen, B. Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction. Sustainability 2022, 14, 7127. https://doi.org/10.3390/su14127127
Zhang Y, Xue Y, Qiao Y, Cen B. Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction. Sustainability. 2022; 14(12):7127. https://doi.org/10.3390/su14127127
Chicago/Turabian StyleZhang, Yanxin, Yu Xue, Yanfeng Qiao, and Bingling Cen. 2022. "Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction" Sustainability 14, no. 12: 7127. https://doi.org/10.3390/su14127127
APA StyleZhang, Y., Xue, Y., Qiao, Y., & Cen, B. (2022). Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction. Sustainability, 14(12), 7127. https://doi.org/10.3390/su14127127