Risk Assessment of Soil Erosion Using a GIS-Based SEMMA in Post-Fire and Managed Watershed
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.1.1. Area Description
2.1.2. Rainfall Characteristics
2.1.3. Damage after Wildfire and Heavy Rain
2.1.4. Selection of the Study Watershed
2.2. Data Analysis
2.2.1. Soil Erosion Model
2.2.2. Main Factors
- (1)
- Rainfall erosivity factor (RI)
- (2)
- Vegetation factor (Ic)
- (3)
- Soil factor (So)
- (4)
- Topography factor (To)
3. Results and Discussion
3.1. Soil Erosion Estimation using SEMMA
3.1.1. The Risk Map of Soil Erosion
3.1.2. Sediment Yield after Wildfire
3.1.3. Sediment Yield from Logging Watershed
3.1.4. Applicability of SEMMA
3.2. Management Strategies
3.2.1. Treatment Methods
3.2.2. Logging
3.2.3. Best Management Practices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.Y.; Lee, H.P. Analysis of forest fire occurrence in Korea. Fire Sci. Eng. 2006, 20, 54–63. [Google Scholar]
- Sung, M.K.; Lim, G.H.; Choi, E.H.; Lee, Y.Y.; Won, M.S.; Koo, K.S. Climate change over Korea and its relation to the forest fire occurrence. Atmos. Korean Meteorol. Soc. 2010, 20, 27–35. [Google Scholar]
- Pelletier, J.D.; Murray, A.B.; Pierce, J.L.; Bierman, P.; Breshears, D.D.; Crosby, B.T.; Ellis, M.A.; Foufoula-Georgiou, E.; Heimsath, A.M.; Houser, C.; et al. Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs. Earth’s Future 2015, 3, 220–251. [Google Scholar] [CrossRef] [Green Version]
- Jeon, B.R.; Chae, H.M. A study of analysis on relationship between Korea forest fire occurrence and weather factor. J. Korean Soc. Hazard Mitig. 2017, 17, 197–206. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Open Weather Data Portal. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 19 June 2019).
- FAO. Global Forest Fire Assessment 1990–2000. In Forest Resources Assessment Programme; Working Paper No. 55; FAO: Rome, Italy, 2001; Available online: http://www.fao.org/forestry/fo/fra/docs/Wp55eng.pdf (accessed on 14 April 2009).
- Pausas, J.G.; Bradstock, R.A.; Keith, D.A.; Keeley, J.E. GTCE (Global Change of Terrestrial Ecosystems) Fire Network. Plant Functional Traits in Relation to Fire in Crown-Fire Ecosystems. Ecology 2004, 85, 1085–1100. [Google Scholar] [CrossRef] [Green Version]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Nyman, P.; Sheridan, G.J. Erosion in Burned Catchments of Australia: Regional Synthesis and Guidelines for Evaluating Risk. In Report for AFAC and the Bushfire CRC, Forest and Ecosystem Science; The University of Melbourne: Melbourne, VIC, Australia, 2014. [Google Scholar]
- Sankey, J.B.; Kreitler, J.; Hawbaker, T.J.; McVay, J.L.; Miller, M.E.; Mueller, E.R.; Vaillant, N.M.; Lowe, S.E.; Sankey, T.T. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophys. Res. Lett. 2017, 44, 8884–8892. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Forest Fires: Sparking Firesmart Policies in the EU. Directorate-General for Research and Innovation; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. CATENA 2020, 187, 104320. [Google Scholar] [CrossRef]
- Heidari, H.H.; Arabi, M.; Warziniack, T. Effects of Climate Change on Natural-Caused Fire Activity in Western U.S. National Forests. Atmosphere 2021, 12, 981. [Google Scholar] [CrossRef]
- Kang, M.W.; Kim, D.J.; Lim, K.; Lee, S.S. Rainfall erosivity factor of Korean soils estimated by using USLE under climate change. Korean J. Soil Sci. Fert. 2021, 54, 265–275. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Chatzichristaki, C.; Stefanidis, P. Assessing soil loss by water erosion in a typical Mediterranean ecosystem of northern Greece under current and future rainfall erosivity. Water 2021, 13, 2002. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of soil loss by water erosion in Europe by 2050. Environ. Sci. Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- Coscarelli, R.; Aguilar, E.; Petrucci, O.; Vicente-Serrano, S.M.; Zimbo, F. The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate 2021, 9, 156. [Google Scholar] [CrossRef]
- Emmerich, W.E.; Cox, J.R. Changes in Surface Runoff and Sediment Production after Repeated Rangeland Burns. Soil Sci. Soc. Am. J. 1994, 58, 199–203. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation; Longman Group Limited: London, UK, 1995. [Google Scholar]
- Johansen, M.P.; Hakonson, T.E.; Breshears, D.D. Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrol. Process. 2001, 15, 2953–2965. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Coelho, C.O.A.; Ferreira, A.J.D.; Walsh, R.P.D. Ground-level changes after wildfire and ploughing in eucalyptus and pine forests, Portugal: Implications for soil microtopographical development and soil longevity. Land Degrad. Dev. 2002, 13, 111–127. [Google Scholar] [CrossRef]
- Smith, H.; Dragovich, D. Post-fire hillslope erosion response in a sub-alpine environment, south-eastern Australia. CATENA 2008, 73, 274–285. [Google Scholar] [CrossRef]
- Nyman, P.; Sheridan, G.; Lane, P.N.J. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, south-east Australia. Hydrol. Process. 2010, 24, 2871–2887. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Wagenbrenner, J.W.; Pierson, F.B.; Spaeth, K.E.; Ashmun, L.E.; Moffet, C.A. Infiltration and interrill erosion rates after a wildfire in western Montana, USA. CATENA 2016, 142, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Scott, D. The hydrological effects of fire in South African mountain catchments. J. Hydrol. 1993, 150, 409–432. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, P.R.; Beyers, J.L.; Neary, D.G. Evaluating the Effectiveness of Postfire Rehabilitation Treatments; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2000. [Google Scholar] [CrossRef] [Green Version]
- Mayor, A.G.; Bautista, S.; Llovert, J.; Bellot, J. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. CATENA 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Bren, L. Wildfire and salvage harvesting effects on runoff generation and sediment exports from eucalypt and radiata pine forest catchments, south-eastern Australia. For. Ecol. Manag. 2011, 261, 570–581. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Lee, K.S. Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed. J. Hydrol. 2013, 499, 154–166. [Google Scholar] [CrossRef]
- Soto, B.; Díaz-Fierros, F. Runoff and soil erosion from areas of burnt scrub: Comparison of experimental results with those predicted by the WEPP model. CATENA 1998, 31, 257–270. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Moffet, C.A.; Spaeth, K.E.; Hardegree, S.P.; Clark, P.E.; Williams, C.J. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape. Hydrol. Process. 2008, 22, 2916–2929. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Spaeth, K.E. Spatial and temporal effects of wildfire on the hydrology of a steep rangeland watershed. Hydrol. Process. 2001, 15, 2905–2916. [Google Scholar] [CrossRef]
- Moffet, C.A.; Pierson, F.B.; Robichaud, P.R.; Spaeth, K.E.; Hardegree, S.P. Modeling soil erosion on steep sagebrush rangeland before and after prescribed fire. CATENA 2007, 71, 218–228. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Cho, J.W.; Lee, K.S. Effect of vegetation recovery for surface runoff and soil erosion in burned mountains, Yangyang. KSCE J. Civ. Environ. Eng. Res. 2008, 28, 393–403. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains. In Agriculture Hand Book 282; US Department of Agriculture: Washington, DC, USA, 1965. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses–A Guide to Conservation Planning. In Agriculture Handbook 537; US Department of Agriculture-Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). In US Department of Agriculture Handbook 703; US Department of Agriculture-Agricultural Search Service: Washington, DC, USA, 1997. [Google Scholar]
- De Jong, S.M. Applications of Reflective Remote Sensing for Land Degradation Studies in a Mediterranean Environment. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 1994. [Google Scholar]
- Drake, N.A.; Zhang, X.; Berkhout, E.; Bonifacio, R.; Grimes, D.; Wainwright, J.; Mulligan, M. Modeling soil erosion at global and regional scales using remote sensing and GIS techniques. In Spatial Analysis for Remote Sensing and GIS; Atkinson, P., Ed.; CRC Press: Boca Raton, FL, USA, 1997; pp. 241–261. [Google Scholar]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk in Italy; EUR 19022 EN; Office for Official Publications of the European Communities: Luxembourg, 1999. [Google Scholar]
- De Asis, A.M.; Omasa, K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. ISPRS J. Photogramm. Remote Sens. 2007, 62, 309–324. [Google Scholar] [CrossRef]
- Lim, K.J.; Sagong, M.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.S. GIS-based sediment assessment tool. CATENA 2005, 64, 61–80. [Google Scholar] [CrossRef]
- Ban, J.K.; Yu, I.; Jeong, S. Estimation of Soil Erosion Using RUSLE Model and GIS Techniques for Conservation Planning from Kulekhani Reservoir Catchment, Nepal. J. Korean Soc. Hazard Mitig. 2016, 16, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- El Jazouli, A.; Barakat, A.; Ghafiri, A.; El Moutaki, S.; Ettaqy, A.; Khellouk, R. Soil erosion modeled with USLE, GIS, and remote sensing: A case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 2017, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, D.C.; Nearing, M.A. (Eds.) USDA-Water Erosion Prediction Project (WEPP) Version 95.7, Hillslope Profile and Watershed Model Documentation. In National Soil Erosion Research Laboratory Report 10; US Department of Agriculture-Agricultural Search Service: West Lafayette, IN, USA, 1995. [Google Scholar]
- Renschler, C.S. Designing geo-spatial interfaces to scale process models: The GeoWEPP approach. Hydrol. Process. 2003, 17, 1005–1017. [Google Scholar] [CrossRef]
- Lee, T. Analyzing the effectiveness of a best management practice on sediment yields using a spatially distributed model. J. Korean Geogr. Soc. 2017, 52, 15–24. [Google Scholar]
- Choi, J.; Shin, M.H.; Cheon, S.U.; Shin, D.; Lee, S.J.; Moon, S.J.; Ryu, J.C.; Lim, K.J. Evaluation of runoff prediction from a coniferous forest watersheds and runoff estimation under various cover degree scenarios using GeoWEPP watershed model. J. Korean Soc. Water Qual. 2011, 27, 425–432. [Google Scholar]
- Kim, M.S.; Kim, J.K.; Yang, D.Y. Application and Comparison of GeoWEPP model and USLE model to Natural Small Catchment-A Case Study in Danwol-dong, Icheon-si. Econ. Environ. Geol. 2007, 40, 103–113. [Google Scholar]
- Park, S.D.; Shin, S.S. Evaluation for Application of Soil Erosion Models in Burnt Hillslopes-RUSLE, WEPP, and SEMMA. KSCE J. Civ. Environ. Eng. Res. 2011, 31, 221–232. [Google Scholar]
- Park, S.D.; Lee, K.S.; Shin, S.S. Statistical Soil Erosion Model for Burnt Mountain Areas in Korea—RUSLE Approach. J. Hydrol. Eng. 2012, 17, 292–304. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Lee, J.S.; Lee, K.S. SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale. J. Korea Water Resour. Assoc. 2013, 46, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Cuomo, V.; Lasaponara, R.; Tramutoli, V. Evaluation of a new satellite-based method for forest fire detection. Int. J. Remote Sens. 2001, 22, 1799–1826. [Google Scholar] [CrossRef]
- Chéret, V.; Denux, J.P. Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data. J. Geophys. Res. Earth Surf. 2007, 112, G02006. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Vogelmann, J.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Leon, J.R.R.; Van Leeuwen, W.J.; Casady, G.M. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments. Remote Sens. 2012, 4, 598–621. [Google Scholar] [CrossRef] [Green Version]
- Dindaroglu, T.; Babur, E.; Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Saf. J. 2021, 122, 103318. [Google Scholar] [CrossRef]
- Sánchez, Y.S.; Graña, A.M.; Francés, F.S. Remote Sensing Calculation of the Influence of Wildfire on Erosion in High Mountain Areas. Agronomy 2021, 11, 1459. [Google Scholar] [CrossRef]
- Argentiero, I.; Ricci, G.F.; Elia, M.; D’Este, M.; Giannico, V.; Ronco, F.V.; Gentile, F.; Sanesi, G. Combining Methods to Estimate Post-Fire Soil Erosion Using Remote Sensing Data. Forests 2021, 12, 1105. [Google Scholar] [CrossRef]
- Kim, J.C.; Koh, H.J.; Lee, S.R.; Lee, C.B.; Choi, S.J.; Park, G.H. Explanatory Note of the Gangneung-Sokcho Sheet; Korea Institute of Geoscience and Mineral Resources: Daejeon, Korean, 2001. [Google Scholar]
- U.S. Department of Agriculture. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Agriculture Handbook 436; U.S. Department of Agriculture: Washington, DC, USA, 1975. [Google Scholar]
- National Institute of Agricultural Sciences, RDA. Korean Soil Information System. 2016. Available online: http://soil.rda.go.kr/geoweb/soilmain.do (accessed on 13 April 2022).
- Kim, Y.; Kim, C.G.; Lee, K.S.; Choung, Y. Effects of Post-Fire Vegetation Recovery on Soil Erosion in Vulnerable Montane Regions in a Monsoon Climate: A Decade of Monitoring. J. Plant Biol. 2021, 64, 123–133. [Google Scholar] [CrossRef]
- Ministry of Environment. Development of Program for Rainfall Frequency Analysis. In Report of Republic Korea; Ministry of Environment: Sejong, Korea, 2020. [Google Scholar]
- Blanchard, D.C. Raindrop Size-Distribution in Hawaiian Rains. J. Meteorol. 1953, 10, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Zanchi, C.; Torri, D. Evaluation of rainfall energy in central Italy. In Assessment of Erosion; De Boodt, M., Gabriels, D., Eds.; Wiley: Toronto, TO, Canada, 1980; pp. 133–142. [Google Scholar]
- Kinnell, P. Rainfall Intensity-Kinetic Energy Relationships for Soil Loss Prediction1. Soil Sci. Soc. Am. J. 1981, 45, 153–155. [Google Scholar] [CrossRef]
- Rosewell, C.J. Rainfall Kinetic Energy in Eastern Australia. J. Clim. Appl. Meteorol. 1986, 25, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.C.; Foster, G.R. Storm Erosivity Using Idealized Intensity Distributions. Trans. ASAE 1987, 30, 379–386. [Google Scholar] [CrossRef]
- Brandt, C.J. Simulation of the size distribution and erosivity of raindrops and throughfall drops. Earth Surf. Process. Landf. 1990, 15, 687–698. [Google Scholar] [CrossRef]
- McIsaac, G.F. Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy. J. Soil Water Conserv. 1990, 45, 663–666. [Google Scholar]
- Smith, J.A.; De Veaux, R.D. The temporal and spatial variability of rainfall power. Environmetrics 1992, 3, 29–53. [Google Scholar] [CrossRef]
- Uijlenhoet, R.; Stricker, J. A consistent rainfall parameterization based on the exponential raindrop size distribution. J. Hydrol. 1999, 218, 101–127. [Google Scholar] [CrossRef]
- Fornis, R.L.; Vermeulen, H.R.; Nieuwenhuis, J.D. Kinetic energy-rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies. J. Hydrol. 2005, 300, 20–32. [Google Scholar] [CrossRef]
- Lee, J.S.; Won, J.Y. Analysis of the Characteristic of Monthly Rainfall Erosivity in Korea with Derivation of Rainfall Energy Equation. J. Korean Soc. Hazard Mitig. 2013, 13, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J. Rainfall intensity-kinetic energy relationships. J. Hydrol. 2002, 261, 1–23. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Choi, B.K. Universal Power Law for Relationship between Rainfall Kinetic Energy and Rainfall Intensity. Adv. Meteorol. 2016, 2016, 2494681. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Kinnell, P. Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor. Soil Res. 1993, 31, 319–332. [Google Scholar] [CrossRef]
- Wei, H.; Nearing, M.; Stone, J.; Guertin, D.; Spaeth, K.; Pierson, F.; Nichols, M.; Moffet, C. A New Splash and Sheet Erosion Equation for Rangelands. Soil Sci. Soc. Am. J. 2009, 73, 1386–1392. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D. Effective power for interrill erosion by rainfall-induced sheet flow. J. Korea Water Resour. Assoc. 2018, 51, 665–676. [Google Scholar]
- Shin, S.S.; Park, S.D.; Pierson, F.B.; Williams, C.J. Evaluation of physical erosivity factor for interrill erosion on steep vegetated hillslopes. J. Hydrol. 2019, 571, 559–572. [Google Scholar] [CrossRef]
- Dissmeyer, G.E.; Foster, G.R. A Guide for Prediction Sheet and Rill Erosion on Forest Land. Forest Service Technical Publication RA-TP6; United States Department of Agriculture: Washington, DC, USA, 1984. [Google Scholar]
- Sulistyo, B.; Gunawan, T.; Harjo, H.; Danoedoro, P.; Listyaningrum, N. Absolute Accuracy of the Erosion Model of DEM-NDVI and Its Modification. Int. J. Geoinform. 2017, 13, 23–34. [Google Scholar]
- Ryu, J.H.; Han, K.S.; Hong, S.; Park, N.W.; Lee, Y.W.; Cho, J. Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea. Remote Sens. 2018, 10, 918. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; p. 1008. [Google Scholar]
- Yariv, S. Comments on the mechanism of soil detachment by rainfall. Geoderma 1976, 15, 393–399. [Google Scholar] [CrossRef]
- Poesen, J. Rainwash experiments on the erodibility of loose sediments. Earth Surf. Process. Landf. 1981, 6, 285–307. [Google Scholar] [CrossRef]
- Savat, J. Common an uncommon selectivity in the process of fluid transportation: Field observations and laboratory experiments on bare surfaces. CATENA Suppl. 1982, 1, 139–160. [Google Scholar]
- Everaert, W. Empirical relations for the sediment transport capacity of interrill flow. Earth Surf. Process. Landf. 1991, 16, 513–532. [Google Scholar] [CrossRef]
- Luce, C.H. Forests and wetlands. In Environmental Hydrology; Ward, A.D., Elliot, W.J., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 253–283. [Google Scholar]
- Voroney, R.P.; Van Veen, J.A.; Paul, E.A. Organic C Dynamics in Grassland Soils. 2. Model Validation and Simulation of the Long-Term Effects of Cultivation and Rainfall Erosion. Can. J. Soil Sci. 1981, 61, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Ekwue, E.; Ohu, J. A model equation to describe soil detachment by rainfall. Soil Tillage Res. 1990, 16, 299–306. [Google Scholar] [CrossRef]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Weesies, G.A. Slope length and steepness factor. In Predicting Soil Erosion by Water-A Guide to Conservation Planning with the Revised Universal Soil Loss Equation(RUSLE); Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., Eds.; Coordinators Chapter 4, USDA-ARS Special Publication; USDA: Washington, DC, USA, 1993. [Google Scholar]
- McIssac, G.F.; Mitchell, J.F.; Hirschi, M.C. Slope steepness effects on soil loss form disturbed lands. Trans. Am. Soc. Agric. Eng. 1987, 30, 1005–1013. [Google Scholar]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Length Factor for the Universal Soil Loss Equation. Trans. ASAE 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Foster, G.R.; Meyer, L.D.; Onstad, C.A. A Runoff Erosivity Factor and Variable Slope Length Exponents for Soil Loss Estimates. Trans. ASAE 1977, 20, 0683–0687. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J. Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Quinn, N.W.; Morgan, R.P.C.; Smith, A.J. Simulation of soil erosion induced by human trampling. J. Environ. Manag. 1980, 10, 155–165. [Google Scholar]
- Poesen, J. The influence of slope angle on infiltration rate and Hortonian overland flow volume. Z. Für Geomeorphologie Supplementband. 1984, 49, 117–131. [Google Scholar]
- Gilley, J.E.; Woolhiser, D.A.; McWhorter, D.B. Interrill Soil Erosion, Part II: Testing and Use of Model Equations. Trans. ASAE 1985, 28, 154–159. [Google Scholar] [CrossRef]
- Odemerho, F.O. Variation in Erosion-Slope Relationship on Cut-Slopes along a Tropical Highway. Singap. J. Trop. Geogr. 1986, 7, 98–107. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Van Remortel, R.D.; Hamilton, M.E.; Hickey, R.J. Estimating the LS Factor for RUSLE through Iterative Slope Length Processing of Digital Elevation Data within Arclnfo Grid. Cartography 2001, 30, 27–35. [Google Scholar] [CrossRef]
- Gupta, H.S. Terrain Evaluation for Eco-Restoration using Remote Sensing and GIS. 2001, pp. 424–434. Available online: http://agile.lsegi.unl.pt/conference/Brno2001/RemoteSensing.pdf (accessed on 13 April 2022).
- Musgrave, G.W. The quantitative evaluation of factors in water erosion-a first approximation. J. Soil Water Conserv. 1947, 2, 133–138. [Google Scholar]
- Diaz-Fierros, V.F.; Rueda, E.B.; Moreira, R.P. Evaluation of the U.S.L.E. for the prediction of erosion in burnt forest areas in Galicia (N.W. Spain). CATENA 1987, 14, 189–199. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2006, 105, 71–100. [Google Scholar] [CrossRef]
- Ferreira, A.; Coelho, C.; Shakesby, R.; Walsh, R. Sediment and solute yield in forest ecosystems affected by fire and rip-ploughing techniques, central portugal: A plot and catchment analysis approach. Phys. Chem. Earth 1997, 22, 309–314. [Google Scholar] [CrossRef]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Chorley, R.J. Throughflow, Overland Flow and Erosion. Int. Assoc. Sci. Hydrol. Bull. 1967, 12, 5–21. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. An Experimental Investigation of Runoff Production in Permeable Soils. Water Resour. Res. 1970, 6, 478–490. [Google Scholar] [CrossRef]
- Hack, J.T.; Goodlett, J.C. Geomorphology and Forest Ecology of a Mountain Region in the Central Appalachians; US Geological Survey Professor Paper; United States Government Printing Office: Washington, DC, USA, 1960. [Google Scholar] [CrossRef]
- Kirkby, M.J. Thresholds and instability in stream head hollows: A model of magnitude and frequency for wash. In Process Models and Theoretical Geomorphology; Kirkby, M.J., Ed.; John Wiley & Sons: Chichester, UK, 1994; pp. 295–314. [Google Scholar]
- Nearing, M.A.; Wei, H.; Stone, J.J.; Pierson, F.B.; Spaeth, K.E.; Weltz, M.A.; Flanagan, D.; Hernandez, M. A Rangeland Hydrology and Erosion Model. Trans. ASABE 2011, 54, 901–908. [Google Scholar] [CrossRef]
- Dominici, R.; Larosa, S.; Viscomi, A.; Mao, L.; De Rosa, R.; Cianflone, G. Yield erosion sediment (YES): A PyQGIS plug-in for the sediments production calculation based on the erosion potential method. Geosciences 2020, 10, 324. [Google Scholar] [CrossRef]
- Stefanidis, S.; Chatzichristaki, C.; Stefanidis, P. An ArcGIS toolbox for estimation and mapping soil erosion. Environ. Prot. Ecol. 2021, 22, 689–696. [Google Scholar]
- Korea Forest Service. Revised Handbook for Erosion Control Engineering; Korea Forest Service: Daejeon, Korea, 2014. [Google Scholar]
- Fifield, J.S. Field Manual for Effective Sediment and Erosion Control Methods; ForesterPress: Santa Barbara, CA, USA, 2001. [Google Scholar]
- Robichaud, P.R.; Brown, R.E. Silt Fences: An Economical Technique for Measuring Hillslope Soil Erosion; United States Department of Agriculture: Washington, DC, USA, 2002; Volume 94. [Google Scholar] [CrossRef]
- Robichaud, P.; MacDonald, L.; Freeouf, J.; Neary, D.; Martin, D.; Ashmun, D. Postfire Rehabilitation of the Hayman Fire. In USDA Forest Service General Technical Reports RMRS-GTR-114; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2003. [Google Scholar]
- Kim, C.G.; Shin, K.; Joo, K.Y.; Lee, K.S.; Shin, S.S.; Choung, Y. Effects of soil conservation measures in a partially vegetated area after forest fires. Sci. Total Environ. 2008, 399, 158–164. [Google Scholar] [CrossRef]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Van Nostrand Reinhold Company Inc.: New York, NY, USA, 1989; p. 271. [Google Scholar]
- Korea Forest Service (KFS); Korea Forest Research Institute. Manual for Restoration of Areas Damaged by Wildfires; KFS: Seoul, Korea, 2016; 11p. [Google Scholar]
- Vega, J.A.; Díaz-Fierros, F. Wildfire effects on soil erosion. Ecol. Mediterr. 1987, 13, 119–125. [Google Scholar] [CrossRef]
- Scott, D.F.; Van Wyk, D.B. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. J. Hydrol. 1990, 121, 239–256. [Google Scholar] [CrossRef]
- Cerdà, A.; Flanagan, D.C.; Le Bissonnais, Y.; Boardman, J. Soil erosion and agriculture. Soil Tillage Res. 2009, 106, 107–108. [Google Scholar] [CrossRef]
- Seutloali, K.E.; Beckedahl, H.R. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth 2015, 6, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Arkansas Forestry Commission. Arkansas Forestry Best Management Practices for Water Quality Protection. Available online: http://forestry.arkansas.go (accessed on 13 October 2014).
- U.S. Department of Agriculture (USDA) Forest Service. National Best Management Practices for Water Quality Management on National Forest System Lands. In FS990a. National Core BMP Technical Guide; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2012; Volume 1, p. 164. [Google Scholar]
Duration | 30-year Frequency in Gangneung | 50-year Frequency in Gangneung | Rainfall by KMA in Gangneung | Rainfall by KMA in Okgye |
---|---|---|---|---|
24 h Max | 382.3 | 419.3 | 369.0 | 375.0 |
1 h Max | 65.3 | 71.0 | 77.5 | 64.5 |
30 min Max | 42.2 | 45.6 | 45.5 | 36.0 |
Rainfall Depth (mm) | Vegetation Index | Multiple Regression Model |
---|---|---|
R > 380 | Ic ≤ 0.7 | |
Ic > 0.7 |
Probability Frequency (yr) | R (mm) | I (mm/h) | T (h) | I30 (mm/h) | Iave (mm/h) | RE (J/m2) | RI (J/m/h) |
---|---|---|---|---|---|---|---|
30 | 382.3 | 65.3 | 24 | 81.6 | 15.9 | 7937 | 647.9 |
50 | 419.3 | 71.0 | 24 | 88.7 | 17.5 | 8903 | 789.6 |
Probability Frequency (year) of Rainfall | Sediment Yield (t/ha) after Wildfire | Sediment Yield (t/ha) after Logging | Rate of Increase for Sediment Yield | |
---|---|---|---|---|
30 | Max. | 202.5 | 207.5 | 1.02 |
Ave. | 40.3 | 142.4 | 3.53 | |
50 | Max. | 261.3 | 268.7 | 1.03 |
Ave. | 52.4 | 183.7 | 3.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.S.; Park, S.D.; Kim, G. Risk Assessment of Soil Erosion Using a GIS-Based SEMMA in Post-Fire and Managed Watershed. Sustainability 2022, 14, 7339. https://doi.org/10.3390/su14127339
Shin SS, Park SD, Kim G. Risk Assessment of Soil Erosion Using a GIS-Based SEMMA in Post-Fire and Managed Watershed. Sustainability. 2022; 14(12):7339. https://doi.org/10.3390/su14127339
Chicago/Turabian StyleShin, Seung Sook, Sang Deog Park, and Gihong Kim. 2022. "Risk Assessment of Soil Erosion Using a GIS-Based SEMMA in Post-Fire and Managed Watershed" Sustainability 14, no. 12: 7339. https://doi.org/10.3390/su14127339
APA StyleShin, S. S., Park, S. D., & Kim, G. (2022). Risk Assessment of Soil Erosion Using a GIS-Based SEMMA in Post-Fire and Managed Watershed. Sustainability, 14(12), 7339. https://doi.org/10.3390/su14127339