Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Proportions of LSES
2.3. Preparation of Specimens
2.4. Test Methods
- s is the dynamic shear stress ratio;
- τd is the maximum dynamic shear stress;
- σc is confining pressure for consolidation;
- σd is deviatoric stress.
3. Results and Discussion
3.1. Identification and Presentaion of the Dynamic Shear Strength of LSES
3.2. Effect of EPS Bead Content on Dynamic Shear Strength
- σd/2 is the dynamic shear strength (kPa);
- Nf is the failure number of loading cycles;
- a is the intercept of the line, which represents the dynamic shear strength when Nf is 1;
- b is curve’s slope, which represents the decrease in dynamic shear strength with Nf in logarithmic.
3.3. Effect of Cement Content on Dynamic Shear Strength of LSES
3.4. Effect of Confining Pressure on Dynamic Shear Strength of LSES
3.5. Dynamic Mohr Circle and Dynamic Strength Parameters of LSES
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Li, M.; Wen, K.; Tong, R. Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading. Geomech. Eng. 2019, 6, 507–513. [Google Scholar]
- Vaverková, M.D.; Paleologos, E.K.; Dominijanni, A.; Koda, E.; Tang, C.; Małgorzata, W.; Li, Q.; Guarena, N.; Mohamed, A.O.; Vieira, C.S.; et al. Municipal solid waste management under COVID-19: Challenges and recommendations. Environ. Geotech. 2021, 8, 217–232. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Qin, Z.J. Sustainability of Vibration Mitigation Methods Using Meta-Materials/Structures along Railway Corridors Exposed to Adverse Weather Conditions. Sustainability 2020, 12, 24. [Google Scholar] [CrossRef]
- Zou, W.; Wan, L.; Han, Z.; Wang, X. Effect of stress history on compressive and rheological behaviors of EPS geofoam. Constr. Build. Mater. 2019, 228, 201907318. [Google Scholar] [CrossRef]
- Li, M.; Wen, K.; Li, L.; Tian, A. Mechanical properties of expanded polystyrene beads stabilized lightweight soil. Geomech. Eng. 2017, 13, 459–474. [Google Scholar]
- Liu, H. Technological innovation methods and practices in geotechnical engineering. Chin. J. Geotech. Eng. 2013, 35, 34–58. [Google Scholar]
- Duan, X.; Hou, T.; Jiang, X. Study on stability of exit slope of Chenjiapo tunnel under extreme rainstorm conditions. Nat. Hazards 2021, 107, 1387–1411. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ke, L.; Yi, J. Distributions of lateral earth pressure behind rock-socketed circular diaphragm walls considering radial deflection. Comput. Geotech. 2022, 143, 104604. [Google Scholar] [CrossRef]
- Yang, X.; Chandra, D.; Hanlong, L. Testing and Modeling on Particle Breakage for Granular Soils. Int. J. Geomech. 2021, 21, 0002186. [Google Scholar]
- Abdollahi, M.; Tafreshi, S.N.M.; Leshchinsky, B. Experimental-numerical assessment of geogrid-EPS systems for protecting buried utilities. Geosynth. Int. 2019, 26, 333–353. [Google Scholar] [CrossRef]
- Abdollahi, M.; Tafreshi, S.N.M.; Leshchinsky, B. Protection of Buried Utilities against Repeated Loading: Application of Geogrid-EPS Geofoam System. Int. J. Geomech. 2021, 21, 04021158. [Google Scholar] [CrossRef]
- Arvin, M.R.; Ghafary, G.R.; Hataf, N.; Ghafary, A.R. Shear behavior of EPS geofoam reinforced with polypropylene fiber. Geomech. Eng. 2021, 25, 347–355. [Google Scholar]
- Yang, Z.; Zhang, Q.; Yang, Z.; Shi, W.; Lv, J.; Lu, Z.; Ling, X. Advances in properties of rubber reinforced soil. Adv. Civ. Eng. 2020, 2020, 6629757. [Google Scholar] [CrossRef]
- Cai, X.; Gao, H.; Zhao, H.; Chen, G.; Chen, R. Dynamic characteristics of EPS beads composite lightweight soil under railway loading. J. Disaster Prev. Mitig. Eng. 2015, 35, 651–658. [Google Scholar]
- Gao, H.; Chen, R.; Tong, F.; Chen, G.; Cai, X. Dynamic modulus and damping ratio of EPS bead composite soil under complex stress conditions. J. Disaster Prev. Mitig. Eng. 2015, 35, 166–172; discussion 198. [Google Scholar]
- Tasalloti, A.; Chiaro, G.; Murali, A.; Banasiak, L. Physical and mechanical properties of granulated rubber mixed with granular soils-a literature review. Sustainability 2021, 13, 4309. [Google Scholar] [CrossRef]
- Yang, X.; Yifan, T.; Guoliang, M.; John, S.M.; Jian, C. Thermal Conductivity of Biocemented Graded Sands. J. Geotech. Geoenvironm. Eng. 2021, 147, 04021106. [Google Scholar]
- Hou, T.; Pei, Z.; Luo, Y.; Cui, Y. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles. Chin. J. Geotech. Eng. 2021, 43, 1602–1611. [Google Scholar]
- Zhou, Y.; Li, M.; He, Q.; Wen, K. Deformation and damping characteristics of lightweight clay-EPS soil under cyclic loading. Adv. Civ. Eng. 2018, 2018, 8093719. [Google Scholar] [CrossRef]
- Wang, C.; Gao, H.; Wang, Z.; Chen, G. Model test of abutment on soft soil retaining eps composite soil. J. Nanjing Tech. Univ. Nat. Sci. Ed. 2017, 39, 118–123. [Google Scholar]
- Xie, D. Soil Dynamics; Xi’an Jiaotong University Press: Xi’an, China, 2018. [Google Scholar]
- Das, B.M.; Luo, Z. Principles of Soil Dynamics, 3rd ed.; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Gao, H.; Bu, C.; Wang, Z.; Shen, Y.; Chen, G. Dynamic Characteristics of Expanded Polystyrene Composite Soil under Traffic Loadings Considering Initial Consolidation State. Soil Dyn. Earthq. Eng. 2017, 102, 86–98. [Google Scholar] [CrossRef]
- Rocco, N.; Luna, R. Mixtures of clay/EPS particulates and undrained shear strength. In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 2059–2068. [Google Scholar]
- Bao, X.; Jin, Z.; Cui, H.; Chen, X.; Xie, X. Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil Dyn. Earthq. Eng. 2019, 120, 273–291. [Google Scholar] [CrossRef]
- Silveira, M.; Calheiros, A.; Casagrande, M. Applicability of the Expanded Polystyrene as a Soil Improvement Tool. J. Mater. Civ. Eng. 2018, 30, 06018006. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Density | 1.3 g/cm3 |
Specific density | 3.0 g/cm3 |
Fineness (residue on 0.08 mm sieve) | 2.50% |
Normal consistency | 25.2% |
Initial setting time | 2:35 |
Final setting time | 3:50 |
3d fracture resistance | 3.8 MPa |
28d fracture resistance | 8.0 MPa |
3d compression strength | 16.0 MPa |
28d compression strength | 42.0 MPa |
Marker | Material Proportions | Mass of Materials | |||
---|---|---|---|---|---|
Cc (%) | Ceps (%) | meps (g) | ms (g) | mc (g) | |
Sand | 0 | 0 | 0 | 700.0 | 0 |
3–10 | 3 | 10 | 1.134 | 630.0 | 18.9 |
3–20 | 3 | 20 | 2.268 | 560.0 | 16.8 |
3–30 | 3 | 30 | 3.402 | 490.1 | 14.7 |
3–40 | 3 | 40 | 4.536 | 420.1 | 12.6 |
6–40 | 6 | 40 | 4.536 | 420.1 | 25.2 |
9–40 | 9 | 40 | 4.536 | 420.1 | 37.8 |
12–40 | 12 | 40 | 4.536 | 420.1 | 50.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wen, K.; Tong, R.; Li, M. Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil. Sustainability 2022, 14, 7397. https://doi.org/10.3390/su14127397
Zhu L, Wen K, Tong R, Li M. Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil. Sustainability. 2022; 14(12):7397. https://doi.org/10.3390/su14127397
Chicago/Turabian StyleZhu, Liping, Kejun Wen, Ruiming Tong, and Mingdong Li. 2022. "Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil" Sustainability 14, no. 12: 7397. https://doi.org/10.3390/su14127397
APA StyleZhu, L., Wen, K., Tong, R., & Li, M. (2022). Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil. Sustainability, 14(12), 7397. https://doi.org/10.3390/su14127397