Post-Extraction Novel Ecosystems Support Plant and Vegetation Diversity in Urban-Industrial Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Research Area
2.2. Data Acquisition
3. Results
3.1. The Plant and Vegetation Diversity of the Post-Extraction Sites
3.2. The Ecological Spectrum of the Rare, Endangered, and Protected Plant Species of the Novel Ecosystem Habitats
- Differences in participation are significant according to G-test for L (G = 21.122, p = 0.006829), T (G = 33.496, p < 0.001), R (G = 21.964, p = 0.004983) and Tr (G = 41.935, p < 0.0001), and non-significant for F (G = 16.406, p = 0.08858).
- The age of heaps: I—up to 10 years, II—up to 30 years, III—up to 60 years, IV—more than 60 years.
- Light index (L): 1—deep shade, 2—moderate shade, 3—half shade, 4—moderate light, 5—full light.
- Thermal index (T): 1—coldest areas in the country, mainly alpine and subnivean zones, 2—moderately cold areas, mainly subalpine and upper mountain zones, 3—moderately cold climatic conditions, lower mountain zone, northern division in lowlands and special microhabitats—raised bogs, 4—moderately warm climatic conditions, most of the lowland and colline region, 5—warmest regions and microhabitats.
- Soil acidity index (R): 1—highly acidic soils (pH < 4), 2—acidic soils (4 ≤ pH < 5), 3—moderately acidic (5 ≤ pH < 6), 4—neutral soils (6 ≤ pH < 7), 5—alkaline (pH > 7).
- Moisture index (F): 1—very dry habitats, 2—dry habitats, 3—fresh habitats, 4—moist habitats, 5—wet habitats, 6—aquatic.
- Trophism index (Tr): 1—extremely poor (extremely oligotrophic) soils (water)—raised bogs, loose sand, dry coniferous forest, 2—poor (oligotrophic) soils (water)—fresh coniferous forest, 3—moderately poor (mesotrophic) soils (water)—mixed forest, acidophilous oak and beech forests, 4—rich (eutrophic) soils (water)—lowland, fertile beech forests, 5—very rich (extremely fertile) soils (water), 6—over-fertilized soils (water).
4. Discussion
4.1. Novel Habitats, Diversity of Plant Species and Vegetation
4.2. Energy and Matter Flow
4.3. The Results of the Study in a Broader Context
5. Conclusions
5.1. The Diversity of Plant Species and Vegetation of Novel Habitats
5.2. The Importance of Novel Ecosystems in Urban Post-Industrial Sites
5.3. Novel Ecosystem Habitats—The Need for Good Environmental Decisions and the Possibilities of Management Projects
5.4. The Potential of Novel Ecosystems
Author Contributions
Funding
Conflicts of Interest
References and Note
- Mohita. Available online: https://www.yourarticlelibrary.com/essay/factors-influencing-growth-of-cities-around-the-world/24287 (accessed on 17 February 2022).
- Dulias, R.; Hibszer, A. Województwo śląskie. Przyroda. Gospodarka. Dziedzictwo Kulturowe; Wydawnictwo Kubajak: Kraków, Poland, 2004; pp. 1–224. [Google Scholar]
- MEA—Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute. Washington, DC. 2005. Available online: https://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed on 15 February 2022).
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Chmura, D.; Molenda, T.; Błońska, A.; Woźniak, G. Sites of leachate inflows on coalmine heaps as refuges of rare mountainous species. Pol. J. Environ. Stud. 2011, 20, 551–557. [Google Scholar]
- Dulias, R. Geografia Fizyczna Wyżyny Śląskiej; Podręczniki i Skrypty Uniwersytetu Śląskiego w Katowicach nr 201; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2018; pp. 1–214. [Google Scholar]
- Kompała-Bąba, A.; Sierka, E.; Dyderski, M.K.; Bierza, W.; Magurno, F.; Besenyei, L.; Błońska, A.; Ryś, K.; Jagodziński, A.M.; Woźniak, G. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecol. Eng. 2020, 143, 105685. [Google Scholar] [CrossRef]
- Woźniak, G. The Potential of Post-Excavation Novel Ecosystems of Enhancing Vegetation and Rare Plant Species Diversity, Influencing the Ecosystem Services Provision. J. Min. Mech. Eng. 2021, 1, 138–145. [Google Scholar]
- Woźniak, G.; Sierka, E.; Wheeler, A. Urban and Industrial Habitats: How Important They Are for Ecosystem Services. In Ecosystem Services and Global Ecology; Hufnagel, L., Ed.; IntechOpen: London, UK, 2018; pp. 169–194. [Google Scholar]
- Błońska, A.; Kompała-Bąba, A.; Sierka, E.; Besenyei, L.; Magurno, F.; Frydecka, K.; Bierza, W.; Woźniak, G. Impact of selected plant species on enzymatic activity of soil substratum on post-mining heaps. J. Ecol. Eng. 2019, 20, 138–144. [Google Scholar] [CrossRef]
- Błońska, A.; Kompała-Bąba, A.; Sierka, E.; Bierza, W.; Magurno, F.; Besenyei, L.; Ryś, K.; Woźniak, G. Diversity of vegetation dominated by selected grass species on coal-mine spoil heaps in terms of reclamation of post-industrial areas. J. Ecol. Eng. 2019, 20, 209–217. [Google Scholar] [CrossRef]
- Kompała-Bąba, A.; Bierza, W.; Sierka, E.; Błońska, A.; Besenyei, L.; Woźniak, G. The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Sci. Rep. 2021, 11, 5155. [Google Scholar] [CrossRef]
- Woźniak, G.; Dyderski, M.K.; Kompała-Bąba, A.; Jagodziński, A.M.; Pasierbiński, A.; Błońska, A.; Bierza, W.; Magurno, F.; Sierka, E. Use of remote sensing to track postindustrial vegetation development. Land Degrad. Dev. 2021, 32, 1426–1439. [Google Scholar] [CrossRef]
- Nowak, T.; Jędrzejczyk-Korycińska, M.; Kapusta, P.; Szarek-Łukaszewska, G. Chapter 8, Characteristics in the vascular plant flora in the Olkusz Ore-bearing Region. In Natural and Historical Values of the Olkusz Ore-Bearing Region; Godzik, B., Ed.; W. Szafer Institute of Botany Polish Academy of Sciences: Kraków, Poland, 2015; pp. 147–166. [Google Scholar]
- Woźniak, G. Primary succession on the sedimentation pools of coal mine. In Synanthropization of Plant Cover in New Polish Research; Faliński, J.B., Adamowski, W., Jackowiak, B., Eds.; Phytocoenosis (N.S.) Supplementum Cartographiae Geobotanicae; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 1998; Volume 10, pp. 189–198. [Google Scholar]
- Woźniak, G.; Kompała, A. Gatunki chronione i rzadkie na nieużytkach poprzemysłowych. In Problemy Środowiska i Jego Ochrony; Nakonieczny, M., Ed.; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2000; Volume 8, pp. 101–109. [Google Scholar]
- Woźniak, G.; Kompała, A. Rola procesów naturalnych w rekultywacji nieużytków poprzemysłowych. Inżynieria Ekol. 2000, 1, 87–93. [Google Scholar]
- Bruggeman, D.J.; Jones, M.L.; Lupi, F.; Scribner, K.T. Landscape Equivalency Analysis: Methodology for Estimating Spatially Explicit Biodiversity Credits. Environ. Manag. 2005, 36, 518–534. [Google Scholar] [CrossRef]
- Kremen, C. Managing ecosystem services: What do we need to know about their ecology? Ecol. Lett. 2005, 8, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, G.; Cohn, E.V.J. Monitoring of spontaneous vegetation dynamics on post coal mining waste sites in Upper Silesia, Poland. In Geotechnical and Environmental Aspects of Waste Disposal Sites; Sarsby, R., Felton, A., Eds.; Taylor and Francis Group: London, UK, 2007; pp. 289–294. [Google Scholar]
- Larondelle, N.; Haase, D. Valuing post-mining landscapes using an ecosystem services approach—An example from Germany. Ecol. Indic. 2012, 18, 567–574. [Google Scholar] [CrossRef]
- Chmura, D.; Nejfeld, P.; Borowska, M.; Woźniak, G.; Nowak, T.; Tokarska-Guzik, B. The importance of land use type in Fallopia (Reynoutria) japonica invasion in the suburban environment. Pol. J. Ecol. 2013, 61, 379–384. [Google Scholar]
- Hobbs, R.J.; Higgs, E.; Harris, J.A. Novel ecosystems: Implications for conservation and restoration. Trends Ecol. Evol. 2009, 24, 599–605. [Google Scholar] [CrossRef]
- Tropek, R.; Kadlec, T.; Hejda, M.; Kocarek, P.; Skuhrovec, J.; Malenovsky, I.; Vodka, S.; Spitzer, L.; Banar, P.; Konvicka, M. Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol. Eng. 2012, 43, 13–18. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.S.; Hall, C.M. (Eds.) Chapter 6, Defining novel ecosystems. In Novel Ecosystems: Intervening in the New Ecological World Order; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 58–60. [Google Scholar]
- Woźniak, G. Zróżnicowanie Roślinności na Zwałach Pogórniczych Górnego Śląska; Instytut Botaniki im. W. Szafera PAN: Kraków, Poland, 2010; pp. 1–320. [Google Scholar]
- Opracowanie ekofizjograficzne do Planu Zagospodarowania Przestrzennego Województwa Śląskiego; Centrum Dziedzictwa Przyrody Górnego Śląska: Katowice, Poland, 2015; pp. 5–113.
- Kondracki, J. Geografia Regionalna Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2011; pp. 1–440. [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Bacler-Żbikowska, B.; Nowak, T. The Role of Post-Industrial Sites in Maintaining Species Diversity of Rare, Endangered and Protected Vascular Plant Species on the Example of the Silesian Upland. In Green Scenarios: Mining Industry Responses to Environmental Challenges of the Anthropocene Epoch; Dyczko, A., Jagodziński, A.M., Woźniak, G., Eds.; CRC Press Taylor & Francis Group: London, UK, 2022; pp. 259–277. [Google Scholar]
- Czylok, A. Wyrobiska po Eksploatacji Piasku na Wyżynie Śląskiej i ich Roślinność. In Zróżnicowanie i Przemiany Środowiska Przyrodniczo-Kulturowego Wyżyny Krakowsko-Częstochowskiej; Partyka, J., Ed.; Wyd. Ojcowski Park Narodowy: Ojców, Poland, 2004; pp. 205–212. [Google Scholar]
- Machowski, R. Zbiorniki w nieckach osiadania i zapadliskach w krajobrazie Wyżyny Śląskiej. Woda w przestrzeni przyrodniczej i kulturowej. Pr. Kom. Kraj. Kult. 2003, 2, 115–123. [Google Scholar]
- Rzętała, M. Funkcjonowanie Zbiorników Wodnych Oraz Przebieg Procesów Limnicznych w Warunkach Zróżnicowanej Antropopresji na Przykładzie Regionu Górnośląskiego; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2008; pp. 1–172. [Google Scholar]
- Rzętała, M.; Jaguś, A. New lake district in Europe: Origin and hydrochemical characteristic. Water Environ. J. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Bąba, W.; Kompała, A. Piaskownie jako centra bioróżnorodności. Sr. I Rozw. 2003, 7, 85–101. [Google Scholar]
- Celiński, F.; Ludera, F.; Rostański, K.; Sendek, A.; Wika, S. Nowe stanowiska rzadkich roślin naczyniowych na Górnym Śląsku i terenach przyległych. Cz. I i II. Zesz. Przyr. OTPN 1975, 14–15, 11–31. [Google Scholar]
- Celiński, F.; Rostański, K.; Sendek, A.; Wika, S.; Cabała, S. Nowe stanowiska rzadkich roślin naczyniowych na Górnym Śląsku i terenach przyległych. Cz. III. Zesz. Przyr. OTPN 1976, 16, 15–31. [Google Scholar]
- Bernacki, L.; Butwiłowska, B.; Bernacka, M. Występowanie Iris sibirica L. i Gladiolus imbricatus L. w zachodniej części Płaskowyżu Rybnickiego (Wyżyna Śląska). Acta Biol. Sil. 1997, 30, 153–160. [Google Scholar]
- Woźniak, G.; Rostański, A. Rola traw w spontanicznej sukcesji roślinnej na osadnikach ziemnych wód kopalnianych na Górnym Śląsku. Łąkarstwo W Polsce 2000, 3, 159–169. [Google Scholar]
- Pasierbiński, A.; Rostański, A. Zróżnicowanie flory naczyniowej zwałowisk pogórniczych zlokalizowanych na terenach leśnych aglomeracji katowickiej. Nat. Sil. Super. Supl. 2001, 5, 19–31. [Google Scholar]
- Rostański, A. Spontaniczne Kształtowanie Się Pokrywy Roślinnej na Zwałowiskach po Górnictwie Węgla Kamiennego na Górnym Śląsku; Prace Naukowe Uniwersytetu Śląskiego w Katowicach Nr 2410; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2006; pp. 1–230. [Google Scholar]
- Chmura, D.; Molenda, T. Nowe stanowisko omiegu górskiego Doronicum austriacum Jacg. na Górnym Śląsku. Chrońmy Przyr. Ojczystą 2007, 63, 20–24. [Google Scholar]
- Cabała, S.; Gębicki, C.; Pierzgalski, K.; Zygmunt, J. Przyroda Częstochowy—Strefy Ochronne I Stanowiska Cenne Przyrodniczo. Częstochowa, Poland. 2009. Available online: http://fe.czestochowa.pl/data/other/przyroda-czestochowy.pdf (accessed on 7 March 2022).
- Kompała-Bąba, A.; Bąba, W. Threatened and protected Species in the Kuźnica Warężyńska Sandpit (Wyżyna Śląska Upland, S Poland). In Rare, Relict and Endangered Plant and Fungi in Poland; Mirek, Z., Nikel, A., Eds.; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2009; pp. 259–268. [Google Scholar]
- Błońska, A. Siedliska antropogeniczne na Wyżynie Śląskiej jako miejsca występowania rzadkich i zagrożonych gatunków torfowiskowych klasy Scheuchzerio-Caricetea nigrae (Nordh. 1937) R. Tx 1937. Woda-Sr.-Obsz. Wiej. 2010, 10, 7–19. [Google Scholar]
- Błońska, A.; Babczyńska-Sendek, B.; Koltuniak, A. Nowe stanowisko Orchis militaris (Orchidaceae) na Garbie Tarnogórskim (Wyżyna Śląska). Fragm. Florist. Geobot. Pol. 2011, 18, 177–180. [Google Scholar]
- Śliwińska-Wyrzychowska, A.; Bogdanowicz, M.; Musielińska, R.; Bąbelewska, A.; Witkowska, E. Krajobrazowe i botaniczne walory nieczynnego kamieniołomu Lipówka w Rudnikach koło Częstochowy. Pr. Kom. Kraj. Kult. 2014, 26, 45–55. [Google Scholar]
- Sieka, P.; Urbisz, A.; Babczyńska-Sendek, B. Godne ochrony stanowisko flory oraz roślinności kserotermicznej na wzgórzu Golcówka w Imielinie (Wyżyna Śląska). Chrońmy Przyr. Ojczystą 2015, 71, 380–387. [Google Scholar]
- Parusel, J.B.; Urbisz, A. (Eds.) Czerwona Lista Roślin Naczyniowych Województwa Śląskiego. In Strategia Ochrony Przyrody Województwa Śląskiego do Roku 2030. Raport o Stanie Przyrody Województwa Śląskiego. Czerwone Listy Wybranych Grup Grzybów i Roślin Województwa Śląskiego; Centrum Dziedzictwa Przyrody Górnego Śląska: Katowice, Poland, 2012; pp. 105–177. [Google Scholar]
- Journal of Laws (2014) item 1409—Regulation of the Minister of the Environment on the Protection of the Species of Plants, 9 October 2014 (legal act). (In Polish).
- Kaźmierczakowa, R.; Bloch-Orłowska, J.; Celka, Z.; Cwener, A.; Dajdok, Z.; Michalska-Hejduk, D.; Pawlikowski, P.; Szczęśniak, E.; Ziarnek, K. Polish Red List of Pteridophytes and Flowering Plants; Institute of Nature Conservation: Polish Academy of Sciences: Kraków, Poland, 2016; pp. 1–44. [Google Scholar]
- Pladias (2014–2020)—Database of the Czech Flora and Vegetation. Available online: https://pladias.cz/en/ (accessed on 26 February 2022).
- Zarzycki, K.; Trzcińska-Tacik, H.; Różański, W.; Szeląg, Z.; Wołek, J.; Korzeniak, U. Ecological Indicator Values of Vascular Plants of Poland; W. Szafer Institute of Botany; Polish Academy of Sciences: Kraków, Poland, 2002; pp. 1–183. [Google Scholar]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012; pp. 1–536. [Google Scholar]
- Woźniak, G. Colonisation Process on Coal Mine Sedimentation Pools (Upper Silesia, Poland). Pol. Bot. Stud. 2006, 22, 561–568. [Google Scholar]
- The Habitats Directive 2019. Available online: https://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm (accessed on 26 February 2022).
- Balvanera, P.; Quijas, S.; Martín-López, B.; Barrios, E.; Dee, L.; Isbell, F.; Durance, I.; White, P.; Blanchard, R.; de Groot, R. Chapter 4, The Links between Biodiversity and Ecosystem Services. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, K., Eds.; Taylor & Francis Group: London, UK; New York, UK, 2016; pp. 45–59. [Google Scholar]
- Rotherham, I.D. Recombinant Ecology—A Hybrid Future? Springer: Cham, Switzerland, 2017; pp. XIX, 85. [Google Scholar]
- de Groot, R.; Jax, K.; Harrison, P. Links Between Biodiversity and Ecosystem Services. In OpenNESS Ecosystem Services Reference Book. EC FP7 Grant Agreement No. 308428; Potschin, M., Jax, K., Eds.; 2016; Available online: http://www.openness-project.eu/library/reference-book (accessed on 26 February 2022).
- Wilsey, B.J.; Polley, H.W. Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation. Ecol. Lett. 2002, 5, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.H. Communities and Ecosystems, 2nd ed.; Macmillan Publishing Co.: New York, NY, USA, 1975; pp. 1–387. [Google Scholar]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, L.A.; Abdalla-Filho, A.L.; Gomes, T.F.; Lins, S.R.M.; Mariano, E.; Soltangheisi, A.; de Camargo, P.B.; Vieira, S.A.; Higuchi, N.; Nardoto, G.B. Partitioning of environmental and taxonomic controls on Brazilian foliar content of carbon and nitrogen and stable isotopes. Front. For. Glob. Change 2021, 4, 81. [Google Scholar] [CrossRef]
- Teixeira, C.P.; Fernandes, C.O. Novel ecosystems: A review of the concept in non-urban and urban contexts. Landsc. Ecol. 2019, 35, 23–39. [Google Scholar] [CrossRef]
- Milewska-Hendel, A.; Chmura, D.; Wyrwał, K.; Kurczyńska, E.U.; Kompała-Bąba, A.; Jagodziński, A.M.; Woźniak, G. Cell wall epitopes in grasses of different novel ecosystem habitats on post-industrial sites. Land Degrad. Dev. 2021, 32, 1680–1694. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.-M.N.; van Noordwijk, M. Biodiversity and ecosystems services in agricultural landscapes—Are we asking the right questions? Agr. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 2003, 53, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Hockings, M.; Stolton, S.; Leverington, F.; Dudley, N.; Courrau, J. Evaluating Effectiveness: A Framework for Assessing Management Effectiveness of Protected Areas, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2006; pp. 1–105. [Google Scholar]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef]
- Wieliczko, B. Wykorzystanie Usług Ekosystemów w Zarządzaniu Zasobami Naturalnymi w Rolnictwie. Studia I Pr. Wydziału Nauk. Ekon. I Zarządzania Uniw. Śląskiego 2016, 46, 135–144. [Google Scholar]
- Besenyei, L. Returning Collieries Back to Nature in England, UK. In Green Scenarios: Mining Industry Responses to Environmental Challenges of the Anthropocene Epoch; Dyczko, A., Jagodziński, A.M., Woźniak, G., Eds.; CRC Press Taylor & Francis Group: London, UK, 2022; pp. 83–99. [Google Scholar]
- Srivastava, D.S.; Vellend, M. Biodiversity-Ecosystem Function Research: Is It Relevant to Conservation? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2000, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Kinzig, A.P.; Ryan, P.; Etienne, M.; Allison, H.; Elmqvist, T.; Walker, B.H. Resilience and regime shifts: Assessing cascading effects. Ecol. Soc. 2006, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. R. 2021, 28, 14211–14232. [Google Scholar] [CrossRef] [PubMed]
- Perrings, C. Pests, pathogens and poverty: Biological Invasions and Agricultural Dependence. In Biodiversity Economics: Principles, Methods and Applications; Kontoleon, A., Pascual, U., Swanson, T., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 131–165. [Google Scholar]
- Concas, S.; Lattanzi, P.; Bacchetta, G.; Barbafieri, M.; Vacca, A. Zn, Pb and Hg Contents of Pistacia lentiscus L. Grown on Heavy Metal-Rich Soils: Implications for Phytostabilization. Water Air Soil Poll. 2015, 226, 340. [Google Scholar] [CrossRef]
- Tamburini, E.; Sergi, S.; Serreli, L.; Bacchetta, G.; Millia, S.; Cappai, G.; Carucci, A. Bioaugmentation-assisted phytostabilisation of abandoned mine sites in South West Sardinia. Bull. Environ. Contam. Toxicol. 2017, 98, 310–316. [Google Scholar] [CrossRef]
- Bacchetta, G.; Boi, M.E.; Cappai, G.; De Giudici, G.; Piredda, M.; Porceddu, M. Metal tolerance capability of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso: A candidate for phytostabilization in abandoned mine sites. Bull. Environ. Contam. Toxicol. 2018, 101, 758–765. [Google Scholar]
- Boi, M.E.; Medas, D.; Aquilanti, G.; Bacchetta, G.; Birarda, G.; Cappai, G.; Carlomagno, I.; Casu, M.A.; Gianoncelli, A.; Meneghini, C.; et al. Mineralogy and Zn Chemical Speciation in a Soil-Plant System from a Metal-Extreme Environment: A Study on Helichrysum microphyllum subsp. tyrrhenicum (Campo Pisano Mine, SW Sardinia, Italy). Minerals 2020, 10, 259. [Google Scholar] [CrossRef] [Green Version]
- Mota, J.F.; Sola, A.J.; Dana, E.D.; Jiménez-Sánchez, M.L. Plant succession in abandoned gypsum quarries. Phytocoenologia 2003, 33, 13–28. [Google Scholar] [CrossRef]
- Mota, J.F.; Sola, A.J.; Jiménez-Sánchez, M.L.; Pérez-García, F.J.; Merlo, M.E. Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers. Conserv. 2004, 13, 1797–1808. [Google Scholar] [CrossRef]
- Musarella, C.M.; Mendoza-Fernández, A.J.; Mota, J.F.; Alessandrini, A.; Bacchetta, G.; Brullo, S.; Caldarella, O.; Ciaschetti, G.; Conti, F.; Martino, L.D.; et al. Checklist of gypsophilous vascular flora in Italy. PhytoKeys 2018, 103, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, G.; Chmura, D.; Błońska, A.; Tokarska-Guzik, B.; Sierka, E. Applicability of functional groups concept in analysis of spatiotemporal vegetation changes on manmade habitats. Pol. J. Environ. Stud. 2011, 20, 623–631. [Google Scholar]
- Bevilacqua, C.; Calabrò, F.; Spina, L.D. New Metropolitan Perspectives. Knowledge Dynamics, Innovation-driven Policies towards the Territories’ Attractiveness Volume 1; Smart Innovation Systems and Technologies; Springer: Cham, Switzerland, 2020; Volume 177, pp. 1–282. [Google Scholar]
- Massimo, D.E.; Musolino, M.; Malerba, A. Valuation to foster-up landscape preservation. Treasuring New Elements through Landscape Planning. In La Mediterranea Verso Il 2030. Studi e Ricerche Sul Patrimonoio Storico e Sui Paesaggi Antropici, Tra Conservazione e Rigenerazione; Mistretta, M., Mussari, B., Santini, A., Eds.; ArcHistoR Extra 6, Supplemento di ArcHistoR 12; 2019; pp. 674–687. Available online: http://pkp.unirc.it/ojs/index.php/archistor/article/view/541/467 (accessed on 26 February 2022).
Types of Post-Mineral Extraction Site | Characteristics of Site Types |
---|---|
Quarries | The Silesian Upland is an area where carbonate rocks and coal mining are inherently related. Limestone excavation areas are suitable habitats for the growth and development of limestone rock and xerothermic species as well as shade-loving and photophilous (light-loving) species. Water accumulating at the bottom of the excavation contributes to the formation of water reservoirs and such habitats are inhabited by wetland plant species and peat bog vegetation [30]. |
Opencast sandpits | In the Silesia region, sand excavations cover about 50 km2 [31]. Only a few of these are still active. The closed opencast sandpits have been managed to establish forests, some of which are subject to secondary vegetation succession, while others are filled with water. These studied post-mineral extraction sites are habitats for rare plant species. |
Heaps | Post-black coal mine heaps are very common in the Silesian Upland. On the other hand, heaps associated with zinc, lead ores, and smelters are less common [6]. Heaps are different in petrographic, mineral, chemical, granulometric, and pH composition. These areas provide mineral soil substrates suitable for colonization by living organisms. Plant communities formed during constant spontaneous biological processes are composed not only of common but also rare species under legal protection [26]. |
Subsidence reservoirs | The water reservoirs in the Silesian Upland are connected with subsidence and arose as a result of the side-effects of direct or indirect human activity, and are sometimes referred to as the “Silesian anthropogenic lake district”. They were created as a consequence of underground mining. These reservoirs, due to their function, constitute an essential natural resource [32,33,34]. They contribute to forming wetland habitats for plant and animal species not previously found in the area. These areas are vitally important as breeding habitats for birds [32]. |
Sedimentation pools | During the extraction of black hard coal, water comes out of the geological layers with dissolved mineral substances. The salty water is pumped out from the mine along with the coal dust into special areas with sedimentation pools. In these pools, the coal dust is deposited by gravity onto the bottom. These types of de novo establishment sites provide habitats with wide moisture gradients from aquatic habitats, through wetland to damp terrestrial ones [15]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, G.; Chmura, D.; Nowak, T.; Bacler-Żbikowska, B.; Besenyei, L.; Hutniczak, A. Post-Extraction Novel Ecosystems Support Plant and Vegetation Diversity in Urban-Industrial Landscapes. Sustainability 2022, 14, 7611. https://doi.org/10.3390/su14137611
Woźniak G, Chmura D, Nowak T, Bacler-Żbikowska B, Besenyei L, Hutniczak A. Post-Extraction Novel Ecosystems Support Plant and Vegetation Diversity in Urban-Industrial Landscapes. Sustainability. 2022; 14(13):7611. https://doi.org/10.3390/su14137611
Chicago/Turabian StyleWoźniak, Gabriela, Damian Chmura, Teresa Nowak, Barbara Bacler-Żbikowska, Lynn Besenyei, and Agnieszka Hutniczak. 2022. "Post-Extraction Novel Ecosystems Support Plant and Vegetation Diversity in Urban-Industrial Landscapes" Sustainability 14, no. 13: 7611. https://doi.org/10.3390/su14137611
APA StyleWoźniak, G., Chmura, D., Nowak, T., Bacler-Żbikowska, B., Besenyei, L., & Hutniczak, A. (2022). Post-Extraction Novel Ecosystems Support Plant and Vegetation Diversity in Urban-Industrial Landscapes. Sustainability, 14(13), 7611. https://doi.org/10.3390/su14137611