Ruminant Lick Blocks, Particularly in China: A Review
Abstract
:1. Introduction
2. Types of Lick Blocks
3. Ingredients Composition and Current Status of Lick Block Usage
- Clarify the purpose for production;
- Determine the nutrient requirement of the animal;
- Determine the type and proportion of components; and;
- Constantly adjust and optimize the ingredients.
3.1. Urea
3.2. Molasses
3.3. Minerals
3.4. Filler
3.5. Coagulant
3.6. Binder
Items | Formulae 1 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NB1 | NB2 | NB3 | NB4 | NB5 | NB6 | NB7 | NB8 | NB9 | NB10 | NB11 | NB12 | NB13 | NB14 | NB15 | NB16 | NB17 | MB1 | MB2 | |
Ingredient (%) | |||||||||||||||||||
Urea | - | - | 10 | 10 | 5 | 5 | 13 | 10 | 10 | 0.4 | 0.4 | - | 2 | 8 | 8 | 8 | - | - | - |
Molasses | 38 | 38 | 10 | 20 | 40 | 25 | 20 | 20 | 25 | 2.1 | 5.16 | 22 | 10 | 12 | 12 | 12 | 52 | 5 | 12 |
Wheat bran | - | - | - | 4 | - | 32 | 18 | - | 27 | 20 | 22.1 | - | - | - | - | - | - | - | - |
Rapeseed meal | - | - | 10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Cottonseed meal | - | - | - | - | - | - | - | - | - | - | - | - | - | 5 | 5 | 5 | - | - | - |
Sesame seed meal | - | - | 10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sunflower meal | - | - | - | - | - | - | - | - | - | 25.8 | 25 | 18 | - | - | - | - | - | - | - |
Wheat flour | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Corn flour | - | - | 15 | - | - | - | - | - | - | 10 | 22 | - | - | - | - | - | - | - | - |
Dry hay meal | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Distillery dry grain soluble | - | - | - | - | - | - | - | - | - | - | - | - | - | 24 | 21 | 21 | - | - | - |
Cereal straw | - | - | - | - | - | - | - | - | - | 9 | 8 | - | - | - | - | - | - | - | - |
Rice bran | 30 | 30 | - | - | 45 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Bypass protein meal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 | - | - |
Barley grain flour | - | - | - | - | - | - | - | - | - | - | - | 32 | 20 | - | - | - | - | - | - |
Fava bean flour | - | - | - | - | - | - | - | - | - | - | - | - | 40 | - | - | - | - | - | - |
Olive cake | - | - | - | - | - | - | - | - | - | - | - | 12 | 10 | - | - | - | - | - | - |
Mango pulp and peels | - | - | - | - | - | - | - | - | - | 29 | - | - | - | - | - | - | - | - | - |
Avocado pulp and peels | - | - | - | - | - | - | - | - | - | - | 14.8 | - | - | - | - | - | - | - | - |
Palm soap | - | - | - | - | - | - | - | - | - | 1.2 | 0.04 | - | - | - | - | - | - | - | - |
Tallow | 2 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
NaCl | 1 | - | 7 | 20 | 2 | 4 | 6–10 | 30 | 10 | - | - | 6 | 6 | 8 | 5 | 5 | 10 | 65 | 66 |
CaHPO4 | - | - | - | 12.5 | - | - | - | 10 | - | - | - | - | - | - | - | - | - | 18 | - |
CaCO3 | - | - | - | - | - | - | - | - | - | 2 | 2 | - | - | - | - | - | - | - | - |
Sulfur | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Na2SO4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 5 | - |
Bone meal | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Limestone | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 | 8 | 8 | - | - | 5 |
Mineral premix | 1 | 1 | - | 8.5 | - | 5 | 26–30 | 5 | 10 | - | - | - | - | 15 | 15 | 15 | - | - | 8 |
Vitamin–mineral premix | - | - | - | - | - | - | - | - | - | 0.5 | 0.5 | 3 | 3 | - | - | - | - | 2 | - |
CaO | - | - | - | - | - | - | - | - | - | - | - | - | - | 3 | 3 | 3 | - | - | - |
MgO | - | - | - | - | - | - | - | - | - | - | - | - | - | 4 | 4 | 4 | - | - | - |
Quicklime | - | - | - | 5 | 8 | - | - | - | - | - | - | 7 | 9 | - | - | - | - | - | - |
Cement | 9 | 10 | - | - | - | - | 5 | - | 8 | - | - | - | - | - | - | - | - | - | - |
Bentonite | - | - | 30 | 20 | - | - | 8 | - | 10 | - | - | - | - | 13 | 9 | 9 | - | - | 9 |
Dolamite | - | - | - | - | - | 6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Urea–formaldehyde resin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | - |
Mold release agent | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.5 | - |
Urea calcium sulfate mixture | 18 | 18 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Fenbendazole | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.05 | - | - |
Yeast culture | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 10 | - | - | - | - |
Cellulase | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 10 | - | - | - |
Chemical composition (g/kg, DM) | |||||||||||||||||||
DM | 780 | 730 | - | - | - | 928 | - | - | - | 889 | 926 | 790 | 760 | 764 | 774 | 768 | - | - | - |
Ash | 296 | 243 | - | - | - | 215 | - | - | - | - | - | 269 | 260 | 246 | 226 | 231 | - | - | - |
CP | 350 | 355 | 430 | - | 160 | 355 | - | - | - | 189 | 173 | 104 | 132 | 428 | 502 | 464 | - | - | - |
EE | 24 | - | - | - | - | 7 | - | - | - | 31 | 39 | 3 | 3 | - | - | - | - | - | - |
NDF | 270 | 146 | - | - | - | 161 | - | - | - | 422 2 | 410 | 167 | 127 | 202 | 192 | 183 | - | - | - |
ADF | 211 | 94 | - | - | - | 102 | - | - | - | 194 3 | 244 | 80 | 24 | 82 | 78 | 81 | - | - | - |
Ca | - | - | - | - | - | 54 | - | - | - | - | - | - | - | 55 | 55 | 56 | 27 | - | - |
P | - | - | - | - | - | 20 | - | - | - | - | - | - | - | 19 | 19 | 19 | 13 | - | - |
4. Manufacturing Technology of Lick Blocks
5. Quality Evaluation of Lick Blocks
6. Factors Influencing Lick Block Intake
7. Action Mechanisms and Application Effect of Lick Blocks
7.1. Lick Blocks Affect the Productive and Reproductive Performances of Ruminants
7.2. Lick Blocks Can Partially Replace Concentrates
7.3. Lick Blocks Can Be Used as a Carrier for Additives
7.4. Lick Blocks Can Modulate the Distribution of Grazing Livestock
8. Summary and Prospects
- Introduction of a consistent naming system, production standards and quality evaluation system for LB;
- Testing cost-effective alternative local feed resources to reduce production costs;
- Improvement of the use of agro-industrial by-products to replace concentrates and reduce feed costs;
- Use of LB as a carrier for novel additives to increase the application effect;
- Use of LB in non-ruminant feeds to further expand the application scope.
Animal | LB | Intake (g/d) | Productive Performance | Reproductive Performance | Other | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
ADG (g/d) 1 | Increase (%) 2 | Milk Yield (kg/d) 3 | Increase (%) 4 | Other | ||||||
1-yr-old yak | NB3 | 250.0 | 1.2 5 | 102.5 6 | - | - | - | - | - | [2] |
2-yr-old yak | 250.0 | 8.3 5 | 85.6 6 | - | - | - | - | - | ||
Yak cows | 500.0 | 7.8 5 | 95.1 6 | 0.2 | 16.3 | Improve cheese and butter production | Improve pregnancy and birth weight | - | ||
Yak calves | MB | 16.0 | 50.0 | 60.8 | - | - | - | - | Increase content of minerals in serum; improve rumen fermentation | [90] |
Young yaks | MB | 100.0 | 91.8 | 30.4 | - | - | - | - | - | [91] |
Yak calves | 100.0 | 80.5 | 18.3 | ns 7 | ns | - | - | - | ||
Adult yaks | 100.0 | ns | ns | ns | - | - | - | |||
Tibetan sheep | NB | 21.0 | 43.5 | 97.8 | - | - | Improve nutrient intake and digestibility; increase content of growth hormone in serum | Increase content of reproductive hormone in serum; increase weight of uterus-ovary; promote follicular development | Improve activity of digestive enzymes in rumen fluid; increase number of nutrient degrading bacteria; improve rumen fermentation; promote morphological development of rumen and small intestine and absorption capacity of nutrients | [3] |
Tibetan sheep | MB | 13.1 | - | - | - | - | - | - | Increase content of minerals in serum; enhance antioxidant capacity and immune capacity | [101] |
Beef cattle | NB4 | - | 280.0 | 43.8 | - | - | Increase body size index | - | Increase content of minerals in serum and hair | [8] |
Beef cattle | NB | - | 140.0 | 11.2 | Improve DMI | - | - | [93] | ||
MB | - | 100.0 | 8.0 | - | - | - | - | - | ||
Dairy cows | NB5 | - | ns | ns | 1.5 | 11.9 | Improve milk fat content | Shorten calving interval | - | [7] |
Dairy cows | MB | 44.3 | - | - | - | - | - | Improve frozen semen yield and quality | - | [102] |
Lactating dairy cows | MB | 41.8 | - | - | ns | ns | Improve milk quality; decrease average number of somatic cells in milk | - | Decrease the incidence of mastitis; increase centrations of vitamin E and selenium in milk and serum | [47] |
Pregnant dairy cows | 47.3 | - | - | - | - | - | Increase level of reproductive hormones in postpartum cow serum; shorten interval from delivery to first estrus | Decrease incidence of postpartum diseases in cows and increase the contents of vitamin E and selenium in serum | ||
Buffalo | NB6 | 230.0 | 142.9 | 100.0 | 2.2 | 27.0 | Improve DMI; Improve condition score | [11] | ||
2-yr-old ewes | NB | 31.1 | 45.3 | 859.0 | - | - | - | - | - | [92] |
Pregnant ewes | 43.2 | - | - | - | - | - | Improve birth weight of lamb | - | ||
Young ewes | MB2 | 12.3 | 4.5 | 282.5 | - | - | - | - | - | [66] |
Adult ewes | 14.6 | - | - | - | - | - | Improve birth weight, survival rate, number of weaned lambs and lambing rate of ewes | - | ||
Sheep | MB | - | 31.9 | 32.8 | - | - | - | - | Improve carcass and meat quality; | [10] |
Sheep | MB1 | 33.0 | 37.0 | 18.6 | - | - | Decrease feed to meat ratio; increase water consumption | - | enhance antioxidant capacity; increase content of minerals in serum | [65] |
Goats | NB7 | 10.4–14.5 | 10.5–21.8 | 22.3–46.5 | - | - | Improve DMI and digestibility | - | Improve wool condition | [4] |
Goats | NB8 | 16.0 | 17.5 | 31.6 | - | - | Improve wool production | - | Improve wool condition | [62] |
Dairy goats | NB9 | - | 16.0–25.2 | 25.2–39.7 | 0.2 | 12.8–18.4 | Increase body size index | - | increase number of blood cells; increase content of minerals in whole blood | [55] |
Goats | MB | - | 16.7 | 70.9 | - | - | Decrease feed to meat ratio | Improve semen yield and quality | - | [9] |
Dairy goats | NB10 | 83.9 | ns 7 | ns | ns | ns | No difference in nutrient intake and apparent digestibility, nitrogen and energy utilization and milk composition | - | No effect on rumen fermentation; Feeding cost reduced by 10.9% | [13] |
Dairy goats | NB11 | 66.7 | 2.7 8 | 245.5 9 | ns | ns | Decrease intake of concentrate; no difference in nutrient intake and milk composition, except EE | - | - | [12] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.T. Development of Palygorskite-Biomass Functionalized Nutrition Lick Block. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2020. (In Chinese). [Google Scholar]
- Dong, S.K.; Long, R.J.; Kang, M.Y.; Pu, X.P.; Guo, Y.J. Effect of Urea Multinutritional Molasses Block Supplementation on Liveweight Change of Yak Calves and Productive and Reproductive Performances of Yak Cows. Can. J. Anim. Sci. 2003, 83, 141–145. [Google Scholar]
- Jing, X.P. Effects of Supplementation on the Growth Performance and the Development of Gastrointestinal Tract and Reproductive Organ of Tibetan Sheep Ewes in Cold Season. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2016. (In Chinese). [Google Scholar]
- Hu, H.P. Study on Formulas Technical Parameter and Feeding Effect of Molasses Multinutrient Block. Master’s Thesis, Northwest A&F University, Yangling, China, 2006. (In Chinese). [Google Scholar]
- Singh, G.; Singh, R.; Singh, D. Effect of UMMB (Urea Molasses Mineral Block) supplementation on rumen profile in buffaloes. Webmed Cent. Vet. Med. 2013, 4, WMC004340. [Google Scholar]
- Li, C.Q.; Jin, H.; Xue, S.Y. Application of PCR-DGGE technique to analyze bacterial community structure in grazing sheep supplemented with molasses-urea lick blocks. Heilongjiang Anim. Sci. Vet. Med. 2015, 19, 112–115. (In Chinese) [Google Scholar]
- Vu, D.D.; Cuong, L.X.; Dung, C.A.; Hai, P.H. Use of urea-molasses-multinutrient block and urea-treated rice straw for improving dairy cattle productivity in Vietnam. Prev. Vet. Med. 1999, 38, 187–193. [Google Scholar] [PubMed]
- Li, H.L. Study on Cattle Molasses Multinutrient Block and Feeding Effect. Master’s Thesis, Northwest A&F University, Yangling, China, 2008. (In Chinese). [Google Scholar]
- Siswoyo, P.; Tafsin, M.; Handarini, R. Potential reproduction and response of selenium and zinc mineral supplementation on quality of goat samosir semen. IOP Conf. Ser. Earth Environ. Sci. 2018, 122, 012126. [Google Scholar] [CrossRef]
- Guo, Z.G.; Wu, Y.; Wu, R.R.; Wu, P.; Peng, H.; Zhou, D.R.; Song, D.R. Effects of microelement licking brick on production, slaughter and meat quality performance of Guizhou semi-fine wool sheep after breeding. Heilongjiang Anim. Sci. Vet. Med. 2019, 22, 38–41. (In Chinese) [Google Scholar]
- Bipate, M. Effect of urea molasses mineral block supplementation on milk production in Murrah buffalo under small holder’s production system. Indian J. Anim. Nutr. 2020, 37, 307–313. [Google Scholar] [CrossRef]
- De Evan, T.; Carro, M.D.; Fernandez Yepes, J.E.; Haro, A.; Arbesu, L.; Romero-Huelva, M.; Molina-Alcaide, E. Effects of feeding multinutrient blocks including avocado pulp and peels to dairy goats on feed intake and milk yield and composition. Animals 2020, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- De Evan, T.; Carro, M.D.; Fernandez Yepes, J.E.; Haro, A.; Arbesu, L.; Romero-Huelva, M.; Molina-Alcaide, E. Feeding mango wastes to dairy goats: Effects on diet digestibility, ruminal fermentation, and milk yield and composition. Anim. Feed. Sci. Technol. 2022, 286, 115252. [Google Scholar] [CrossRef]
- Can, M.Y. Factors Influencing Qualitative Parameters of Urea-Molasses-Mineral Blocks and the Nutritional Evaluation of the Blocks Containing Yeast Culture or/and Cellulolytic Enzymes. Ph.D. Thesis, China Agricultural University, Beijing, China, 2004. (In Chinese). [Google Scholar]
- Fishpool, F.J.; Kahn, L.P.; Tucker, D.J.; Nolan, J.V.; Leng, R.A. Voluntary intake of a medicated feed block by grazing sheep is increased by gastrointestinal nematode infection. Anim. Prod. Sci. 2012, 52, 1136–1141. [Google Scholar] [CrossRef]
- Junkuszew, A.; Milerski, M.; Bojar, W.; Szczepaniak, K.; Scouarnec, J.L.; Tomczuk, K.; Dudko, P.; Studzinska, M.B.; Demkowska-Kutrzepa, M.; Bracik, K. Effect of various antiparasitic treatments on lamb growth and mortality. Small Rumin. Res. 2015, 123, 306–313. [Google Scholar] [CrossRef]
- Kaneene, J.B.; Hattey, J.A.; Bolin, C.A.; Averill, J.; Miller, R. Survivability of Mycobacterium bovis on salt and salt-mineral blocks fed to cattle. Am. J. Vet. Res. 2017, 78, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Guijosa, J.; López-Alonso, A.; Gortázar, C.; Acevedo, P.; Torres, M.J.; Vicente, J. Shared use of mineral supplement in extensive farming and its potential for infection transmission at the wildlife-livestock interface. Eur. J. Wildl. Res. 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Bailey, D.W.; Welling, G.R.; Miller, E.T. Cattle use of foothills rangeland near dehydrated molasses supplement. Rangel. Ecol. Manag. J. Range Manag. Arch. 2001, 54, 338–347. [Google Scholar]
- Bailey, D.W.; VanWagoner, H.C.; Weinmeister, R.; Jensen, D. Comparison of low-moisture blocks and salt for manipulating grazing patterns of beef cows. J. Anim. Sci. 2008, 86, 1271–1277. [Google Scholar] [CrossRef]
- Sansoucy, R. New developments in the manufacture and utilization of multinutrient blocks. World Anim. Rev. 1995, 82, 78–83. [Google Scholar]
- Ralph, C.; Hebart, M.; Cronin, G.M. Enrichment in the sucker and weaner phase altered the performance of pigs in three behavioural tests. Animals 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Maertens, L.; Buijs, S.; Davoust, C. Gnawing blocks as cage enrichment and dietary supplement for does and fatteners: Intake, performance and behaviour. World Rabbit Sci. 2013, 21, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Horne, T.M.; Drouillard, J.S.; Douthit, T.L.; Vahl, C.I.; Lattimer, J.M. Immunomodulation of supplemental omega-3 fatty acids in horses delivered via a commercially available molasses lick block. J. Anim. Sci. 2018, 96, 32–33. [Google Scholar] [CrossRef]
- Mengistu, G.; Hassen, W. Review on: Supplementary feeding of urea molasses multi-nutrient blocks to ruminant animals for improving productivity. Int. J. Anim. Husb. Vet. Sci. 2017, 2, 43–49. [Google Scholar]
- Simanungkalit, G.; Barwick, J.; Cowley, F.; Dobos, R.; Hegarty, R. A pilot study using accelerometers to characterise the licking behaviour of penned cattle at a mineral block supplement. Animals 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Insoongnern, H.; Srakaew, W.; Prapaiwong, T.; Suphrap, N.; Potirahong, S.; Wachirapakorn, C. Effect of mineral salt blocks containing sodium bicarbonate or selenium on ruminal pH, rumen fermentation and milk production and composition in crossbred dairy cows. Vet. Sci. 2021, 8, 322. [Google Scholar] [CrossRef] [PubMed]
- Helmer, L.G.; Bartley, E.E. Progress in the utilization of urea as a protein replacer for ruminants. A review. J. Dairy Sci. 1971, 54, 25–51. [Google Scholar] [CrossRef]
- Kertz, A.F. Urea feeding to dairy cattle: A historical perspective and review. Prof. Anim. Sci. 2010, 26, 257–272. [Google Scholar] [CrossRef]
- Tong, J.M.; Yao, H.L.; Zhang, J.M.; Feng, J.H.; Sa, R.N. Handbook of Feed Additives, 1st ed.; China Agricultural University Press: Beijing, China, 2001; p. 152. (In Chinese) [Google Scholar]
- Patra, A.K. Urea/Ammonia metabolism in the rumen and toxicity in ruminants. In Rumen Microbiology: From Evolution to Revolution; Puniya, A.K., Singh, R., Kamra, D.N., Eds.; Springer: New Delhi, India, 2015; pp. 329–341. [Google Scholar]
- Sweeny, J.P.A.; Surridge, V.; Humphry, P.S.; Pugh, H.; Mamo, K. Benefits of different urea supplementation methods on the production performances of merino sheep. Vet. J. 2014, 200, 398–403. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Wongwungchun, W.; Yeekeng, S.; Niltho, T.; Rakwongrit, D.; Khota, W.; Khantharin, S.; Tangmutthapattharakun, G.; Phesatcha, K.; et al. Effect of feeding feed blocks containing different levels of urea calcium sulphate mixture on feed intake, digestibility and rumen fermentation in Thai native beef cattle fed on rice straw. Anim. Feed. Sci. Technol. 2014, 198, 151–157. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. In vitro gas production in rumen fluid of buffalo as affected by urea-calcium mixture in high-quality feed block. Anim. Sci. J. 2014, 85, 420–426. [Google Scholar] [CrossRef]
- De Medeiros, T.T.B.; De Azevedo Silva, A.M.; Da Silva, A.L.; Bezerra, L.R.; Da Silva Agostini, D.L.; De Oliveira, D.L.V.; Mazzetto, S.E.; Viana Kotzebue, L.R.; Oliveira, J.R.; Souto, G.S.B.; et al. Carnauba wax as a wall material for urea microencapsulation. J. Sci. Food Agric. 2019, 99, 1078–1087. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A review regarding the use of molasses in animal nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef]
- Feedipedia. Feedipedia-Animal Feed Resources Information System-INRA CIRAD AFZ and FAO. Available online: https://www.feedipedia.org/node/561 (accessed on 16 June 2022).
- Federatie Nederlandse Diervoederketen. CVB-Veevoedertabel 2021—Chemische Samenstelling en Nutritionele Waarden van Voedermiddelen; Federatie Nederlandse Diervoederketen: Rijswijk, The Netherlands, 2021; pp. 190, 192, 194. [Google Scholar]
- Sansoucy, R.; Aarts, G.; Leng, R.A. Molasses-urea blocks as a multinutrient supplement for ruminants. In Sugarcane as Feed; Sansoucy, R., Aarts, G., Preston, T.R., Eds.; FAO Animal Production and Health Paper No. 72; FAO: Rome, Italy, 1988; pp. 263–279. [Google Scholar]
- El Hag, M.G.; Al-Merza, M.A.; Al Salti, B. Growth in the Sultanate of Oman of small ruminants given date byproducts-urea multinutrient blocks. Asian-Australas. J. Anim. Sci. 2002, 15, 671–674. [Google Scholar] [CrossRef]
- Ben Salem, H.; Znaidi, I.-A. Partial replacement of concentrate with tomato pulp and olive cake-based feed blocks as supplements for lambs fed wheat straw. Anim. Feed. Sci. Technol. 2008, 147, 206–222. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; MPG Books Group: London, UK, 2010; pp. 2–3. [Google Scholar]
- Godara, R.S.; Naskar, S.; Das, B.C.; Godara, A.S.; Ghosh, M.K.; Mondal, M.; Bhat, S.A. Effect of area specific mineral supplementation on biochemical profile in female black Bengal goats. J. Anim. Res. 2015, 5, 263–268. [Google Scholar] [CrossRef]
- Fan, Q.S.; Wang, Z.F.; Chang, S.H.; Peng, Z.C.; Wanapat, M.; Bowatte, S.; Hou, F.J. Relationship of mineral elements in sheep grazing in the highland agro-ecosystem. Asian-Australas. J. Anim. Sci. 2020, 33, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington, J.D.; Pate, F.M.; Spears, J.W. Effect of copper source and level on performance and copper status of cattle consuming molasses-based supplements. J. Anim. Sci. 2003, 81, 1357–1362. [Google Scholar] [CrossRef]
- Krause, K.M.; Dhuyvetter, D.V.; Oetzel, G.R. Effect of a low-moisture buffer block on ruminal pH in lactating dairy cattle induced with subacute ruminal acidosis. J. Dairy Sci. 2009, 92, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.R. Effects of Vitamin E and Selenium on Holstein Cows and Neonatal Calves. Master’s Thesis, Yangzhou University, Yangzhou, China, 2008. (In Chinese). [Google Scholar]
- Kikelomo, A.M. Preliminary physico-chemical investigation of local binding agents in mineral salt licks production for ruminants. Int. J. Environ. Agric. Biotechnol. 2016, 1, 997–1003. [Google Scholar] [CrossRef]
- Pujaningsih, R.I.; Widiyanto; Tampoebolon, B.I.M. Effect of organic basic multrinutrient block supplementation on total mixed ratio of Kacang goat in feedlot system. IOP Conf. Ser. Earth Environ. Sci. 2019, 372, 012062. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Fan, M.; Li, Y.; Wang, L.; Qian, H.F. Wheat bran, as the resource of dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2021, 3, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. Effects of Mineral Trace Elements Nutrition Lick Brick on the Production Performance and Health in Dairy Cows. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2017. (In Chinese). [Google Scholar]
- Tendonkeng, F.; Zogang, B.F.; Sawa, C.; Boukila, B.; Pamo, E.T. Inclusion of tithonia diversifolia in multinutrient blocks for west African dwarf goats fed brachiaria straw. Trop. Anim. Health Prod. 2014, 46, 981–986. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Liu, Z.M.; Wu, H.H.; Wang, Z.X. Effects on frost resistance of concrete mixed with ceramic polishing powder and mineral powder. J. Drain. Irrig. Mach. Eng. 2022, 40, 150–156. (In Chinese) [Google Scholar]
- Mubi, A.A.; Kibon, A.; Mohammed, I.D. Formulation and production of multinutrient blocks for ruminants in the Guinea savanna region of Nigeria. Agric. Biol. J. North Am. 2013, 4, 205–215. [Google Scholar] [CrossRef]
- Xu, Y.J. Studies on the Effect of Two Multi-Nutrient Blocks on Milk Goats. Master’s Thesis, Northwest A&F University, Yangling, China, 2004. (In Chinese). [Google Scholar]
- Asaolu, V.O. Development of moringa multi-nutrient block as a dry season feed supplement for ruminants. Livest. Res. Rural Dev. 2012, 24, 3–7. [Google Scholar]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, D.A.; Castro, T.B.D.S.; Neto, J.P.L.; Constantino, R.A.; Cunha, M.D.G.G.; Nascimento, J.W.B.D. Physical-mechanical properties of multinutrient blocks with different binders for goats and sheep intake. Rev. Bras. Eng. Agric. E Ambient. 2018, 22, 558–563. [Google Scholar] [CrossRef]
- Du, C.Y.; Wang, P.L.; Du, J.L.; Zhu, H.Y.; Bao, L.; Guo, Y.R.; Zhang, N.M.; Pan, Y.H. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize. Ecol. Environ. Sci. 2019, 28, 190–198. (In Chinese) [Google Scholar]
- Young-Jik, K.; Woo-Whan, J.; Tae-Ho, C.; In-Hag, C. Growth performance, meat quality, and carcass characteristics in growing and fattening Hanwoo steers fed bentonite. Acta Scientiarum. Anim. Sci. 2017, 39, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, M.C.; Neeff, D.V.d.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.d.P.; Albuquerque, R.d.; Azevedo, A.C.d.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Dong, P.X.; Zhang, M.H.; Lei, X.Q.; Zhu, H.J.; Xue, R. Effect of supplementary feeding multi-nutrition lick block on production performance of young cashmere goats. China Feed 2002, 13, 10–11. (In Chinese) [Google Scholar]
- Molina-Alcaide, E.; Morales-García, E.Y.; Martín-García, A.I.; Ben Salem, H.; Nefzaoui, A.; Sanz-Sampelayo, M.R. Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats. J. Dairy Sci. 2010, 93, 2076–2087. [Google Scholar] [CrossRef] [Green Version]
- Olmo, L.; Nampanya, S.; Nemanic, T.S.; Selwood, N.; Khounsy, S.; Young, J.R.; Thomson, P.C.; Bush, R.D.; Windsor, P.A. Can fenbendazole-medicated molasses blocks control Toxocara vitulorum in smallholder cattle and buffalo calves in developing countries? Studies from upland Lao PDR. Anim. Prod. Sci. 2020, 60, 2031–2043. [Google Scholar] [CrossRef]
- Xing, C. Study on the Development of Weather Resistant Mineral Block and Its Practical Application in Sheep. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2019. (In Chinese). [Google Scholar]
- Liu, F.Y. Studies on Trace Element Lick Block of Grazing Sheep and Feeding Effects. Master’s Thesis, Northwest A&F University, Yangling, China, 2008. (In Chinese). [Google Scholar]
- Ranches, J.; De Oliveira, R.A.; Vedovatto, M.; Palmer, E.A.; Moriel, P.; Silva, L.D.; Zylberlicht, G.; Drouillard, J.S.; Arthington, J.D. Low moisture, cooked molasses blocks: A limited intake method for supplementing trace minerals to pre-weaned calves. Anim. Feed. Sci. Technol. 2021, 273, 114793. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation, and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Feed supplementation block technology—Past, present and future. In Urea-Molasses Multinutrient Blocks: Simple and Effective Feed Supplement Technology for Ruminant Agriculture; Makkar, H.P.S., Sánchez, M., Speedy, A.W., Eds.; FAO: Rome, Italy, 2007; pp. 1–12. [Google Scholar]
- Wang, Y.H.; Wu, M. Status quo of MMUB research and application in cattle and sheep. China Herbiv. Sci. 2011, 31, 44–47. (In Chinese) [Google Scholar]
- Wang, S.Y.; Qi, Z.M.; Liu, Y.M.; Wang, H.; Chen, H.Q.; Li, S.K.; Liu, Z.Q. A Kind of Special Trace Element Lick Block for Calf and Preparation. Method. Patent CN103750053B, 8 April 2015. (In Chinese). [Google Scholar]
- Peng, Z.L.; Chen, S.Y.; Gao, Y.H.; Bai, X.; Zeng, Y. Preparation Method of Special Lick Block for Adult Yak in Warm Season. CN108634111A, 12 October 2018. (In Chinese). [Google Scholar]
- Wu, B.; Tan, Z.X.; Gao, B.; Li, D.C. A Fully Automatic Pig Lick Block Production System. CN212393809U, 26 January 2021. (In Chinese). [Google Scholar]
- Sansoucy, R. The sahel: Manufacture of molasses-urea blocks. World Anim. Rev. 1986, 57, 40–48. [Google Scholar]
- Mutore, R.; Madzimure, J.; Mpofu, I.D.T.; Bangira, C. Binding efficacy of clay binders in optimized ash-based vitamin-mineral block licks for cattle. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Hadjipanayiotou, M.; Verhaeghe, L.; Allen, M.; Kronfoleh, A.E.R.; Al-Wadi, M.; Amin, M.; Naigm, T.; El-Said, H.; Al-Haress, A.K. Urea blocks. I. Methodology of block making and different formulae tested in Syria. Livest. Res. Rural. Dev. 1993, 5, 6–15. [Google Scholar]
- Wang, H.; Fu, M.Z.; Yi, L.S.; Deng, Y.F.; Yi, J.; Tang, H.; Xu, Z.C.; Gan, J. A Kind of Mineral Block for Cattle and Sheep and Its Preparation Method. CN102524607A, 4 July 2012. (In Chinese). [Google Scholar]
- Callaghan, M.J.; Tomkins, N.W.; Hepworth, G.; Parker, A.J. The effect of molasses nitrate lick blocks on supplement intake, bodyweight, condition score, blood methaemoglobin concentration and herd scale methane emissions in Bos indicus cows grazing poor quality forage. Anim. Prod. Sci. 2021, 61, 445–458. [Google Scholar] [CrossRef]
- Meng, Q.X.; Zhang, X.M.; Xiao, X.J.; Gao, W.; Xia, Z.G. Research on the screening of suitable formula of multinutrition lick block feed for cattle and sheep. Feed Ind. 2002, 1, 19–21. (In Chinese) [Google Scholar]
- Adewumi, O. Physico-chemical properties and storability of urea molasses multi-nutrient feed block (UMMB) as dry season supplement for ruminants. J. Appl. Agric. Res. 2013, 5, 113–121. [Google Scholar]
- Marcos, C.N.; Carro, M.D.; Fernández-Yepes, J.E.; Arbesu, L.; Molina-Alcaide, E. Utilization of avocado and mango fruit wastes in multi-nutrient blocks for goats feeding: In vitro evaluation. Animals 2020, 10, 2279. [Google Scholar] [CrossRef]
- Imaz, J.A.; García, S.; González, L.A. Application of in-paddock technologies to monitor individual self-fed supplement intake and liveweight in beef cattle. Animals 2020, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Arthington, J.D.; Ranches, J. Trace mineral nutrition of grazing beef cattle. Animals 2021, 11, 2767. [Google Scholar] [CrossRef] [PubMed]
- Chládek, G.; Zapletal, D. A free-choice intake of mineral blocks in beef cows during the grazing season and in winter. Livest. Sci. 2007, 106, 41–46. [Google Scholar] [CrossRef]
- Aubel, N.A.; Jaeger, J.R.; Drouillard, J.S.; Schlegel, M.D.; Pacheco, L.A.; Linden, D.R.; Bolte, J.W.; Higgins, J.J.; Olson, K.C. Effects of mineral-supplement delivery system on frequency, duration, and timing of supplement use by beef cows grazing topographically rugged, native rangeland in the Kansas flint hills. J. Anim. Sci. 2011, 89, 3699–3706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriel, P.; Artioli, L.F.A.; Piccolo, M.B.; Miranda, M.; Ranches, J.; Ferreira, V.S.M.; Antunes, L.Q.; Bega, A.M.; Miranda, V.F.B.; Vieira, J.F.R.L.; et al. Effects of low-moisture, sugarcane molasses-based block supplementation on growth, physiological parameters, and liver trace mineral status of growing beef heifers fed low-quality, warm-season forage. Transl. Anim. Sci. 2019, 3, 237. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, T.G.; Rusche, W.C.; Wright, C.L.; Walker, J.A.; Smith, Z.K. Evaluation of a low-moisture, molasses-based block containing organic sources of trace minerals and a saccharomyces cerevisiae fermentation culture during the feedlot receiving phase on growth performance, efficiency of dietary net energy utilization, and liver trace mineral status in newly weaned steer calves. Ruminants 2021, 1, 137–146. [Google Scholar]
- Li, C.Q.; Jin, H.; Xue, S.Y.; Li, Z.B.; Tian, F.; Wang, L.; Guo, T.L.; Zhang, H.Y. Application of molasses urea lick block in ruminant production. Mod. Anim. Husb. 2015, 3, 6–7. (In Chinese) [Google Scholar]
- Allen, M.S. Physical constraints on voluntary intake of forages by ruminants. J. Anim. Sci. 1996, 74, 3063–3075. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.Z.; Zhang, X.W.; Xia, H.Z.; Wan, L.; Zhang, B.; Feng, Y.Z.; Cui, Z.H. Effects of mineral salt brick supplement on body weight gain, rumen fermentation and serum mineral element contents of grazing yak calves in cold season. Chin. J. Anim. Nutr. 2021, 33, 6300–6308. (In Chinese) [Google Scholar]
- Zeng, Y.; Peng, Z.L.; Chen, S.Y.; Guo, C.H.; Gao, Y.H.; Li, D. Effect of supplement of mineral block on growth preference and milk yield of grazing yak in warm season. Heilongjiang Anim. Sci. Vet. Med. 2018, 21, 149–153. (In Chinese) [Google Scholar]
- Zhang, C.J.; Zhang, L.P. Influence of brick supplementation on Gansu alpine merino production performance. Pratacultural Sci. 2015, 32, 1496–1499. (In Chinese) [Google Scholar]
- Sun, N.S.S.H.E. Effects of Supplementation of Nutrient Blocks on Rumen Fermentation, Blood Physiological and Biochemical Parameters, Production Performance and Meat Quality in Beef Cattle. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2015. (In Chinese). [Google Scholar]
- Romero-Huelva, M.; Molina-Alcaide, E. Nutrient utilization, ruminal fermentation, microbial nitrogen flow, microbial abundances, and methane emissions in goats fed diets including tomato and cucumber waste fruits. J. Anim. Sci. 2013, 91, 914–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainscough, R.J.; McGree, J.M.; Callaghan, M.J.; Speight, R.E. Effective incorporation of xylanase and phytase in lick blocks for grazing livestock. Anim. Prod. Sci. 2018, 59, 1762–1768. [Google Scholar] [CrossRef]
- Windsor, P.A.; Nampanya, S.; Kinnavong, B.; Phommasone, P.; Bush, R.D.; Khounsy, S. Do triclabendazole medicated molasses blocks have a role in control of Fasciola gigantica in smallholder cattle production in Lao PDR? Anim. Prod. Sci. 2018, 59, 787–793. [Google Scholar] [CrossRef]
- Payne, A.; Chappa, S.; Hars, J.; Dufour, B.; Gilot-Fromont, E. Wildlife visits to farm facilities assessed by camera traps in a bovine tuberculosis-infected area in France. Eur. J. Wildl. Res. 2016, 62, 33–42. [Google Scholar] [CrossRef]
- Roath, L.R.; Krueger, W.C. Cattle grazing and behavior on a forested range. J. Range Manag. 1982, 35, 332–338. [Google Scholar] [CrossRef]
- Bailey, D.W.; Stephenson, M.B.; Pittarello, M. Effect of terrain heterogeneity on feeding site selection and livestock movement patterns. Anim. Prod. Sci. 2015, 55, 298–308. [Google Scholar] [CrossRef]
- Valentine, K.A. Distance from water as a factor in grazing capacity of rangeland. J. For. 1947, 45, 749–754. [Google Scholar]
- Wang, H.; Liu, Z.Q.; Huang, M.Z.; Wang, S.Y.; Cui, D.A.; Dong, S.W.; Li, S.K.; Qi, Z.M.; Liu, Y.M. Effects of long-term mineral block supplementation on antioxidants, immunity, and health of Tibetan sheep. Biol. Trace Elem. Res. 2016, 172, 326–335. [Google Scholar] [CrossRef]
- Wu, Y.H.; Liu, T.Y.; Ma, Y.B.; Yang, C.D.; Jiang, G.E.; Liu, X.H.; Shi, Z.F. Effect of supplementary feeding E100TZ lick block on semen quality of Holstein bulls. Heilongjiang Anim. Sci. Vet. Med. 2010, 2, 79–80. (In Chinese) [Google Scholar]
No. | Items | Assessment Methods | Ref. |
---|---|---|---|
1 | Hardness | Pressing by hand | [48] |
2 | Dent depth of LB after continuous impact of hardness tester | [79] | |
3 | Hardness (kg/cm2) = Pressure/Indenter cross-sectional area [Equation (1)] | [54] | |
4 | Crushing strength (kg/cm2 or kN/mm2) = Crushing load/Bearing area [Equation (2)] | [1] | |
5 | Density | Density (g/cm3) = Weight/Volume [Equation (3)] | [65] |
6 | Waterproofness | Deliquescence (%) = (Weight before immersion in water—weight after immersion in water)/Weight before immersion in water [Equation (4)] | [75] |
7 | Vertical insertion distance of iron wire after immersion in water | [66] | |
8 | Phenotypic trait | Surface roughness, crack size, color, smell | [4] |
9 | Chemical analysis | Contents of nutrients and anti-nutrients | [80] |
10 | In vitro rumen fermentation | Gas production parameters, fermentation parameters | [81] |
11 | Animal feeding studies | Productive performance, reproductive performance | Table 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Degen, A.; Hao, L.; Liu, S. Ruminant Lick Blocks, Particularly in China: A Review. Sustainability 2022, 14, 7620. https://doi.org/10.3390/su14137620
Zhao X, Degen A, Hao L, Liu S. Ruminant Lick Blocks, Particularly in China: A Review. Sustainability. 2022; 14(13):7620. https://doi.org/10.3390/su14137620
Chicago/Turabian StyleZhao, Xinsheng, Allan Degen, Lizhuang Hao, and Shujie Liu. 2022. "Ruminant Lick Blocks, Particularly in China: A Review" Sustainability 14, no. 13: 7620. https://doi.org/10.3390/su14137620
APA StyleZhao, X., Degen, A., Hao, L., & Liu, S. (2022). Ruminant Lick Blocks, Particularly in China: A Review. Sustainability, 14(13), 7620. https://doi.org/10.3390/su14137620