Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Analytical Framework
3.1. Study Area Description and Data Collection
3.2. Analytical Framework
3.2.1. Modeling the Adoption Decision and Influencing Problems
3.2.2. Estimates of PSM Technique
4. Results and Discussion
4.1. Description of Variables and Summary Statistics
4.2. Variances in Household Attributes via Adopting Category
4.3. Determinants of MIT Adoption
4.4. The Impact of MIT on Wheat Production
5. Conclusions, Recommendations, and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaz, A.C.; Sasaki, N.; Tsusaka, T.W.; Szabo, S. Factors affecting farmers’ willingness to adopt a mobile app in the marketing of bamboo products. Resour. Conserv. Recycl. Adv. 2021, 11, 200056. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Zhang, S. Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers. Appl. Sci. 2022, 12, 4902. [Google Scholar] [CrossRef]
- Aquino, A.P.; Brown, E.O.; Aranas, M.; Ani, P.A.B.; Faylon, P.S. Innovative Institutional Arrangements to Revitalize Rural Communities: The Case of Abaca Supply Chain in Rural Philippines. In Extension Bulletin 659; Food & Fertilizer Technology Center: Taipei, Taiwan, 2012. [Google Scholar]
- Gomez y Paloma, S.; Riesgo, L.; Louhichi, K. The Role of Smallholder Farms in Food and Nutrition Security; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rapsomanikis, G.J.F.; Food and Agriculture Organization of the United Nations. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; FAO: Rome, Italy, 2015. [Google Scholar]
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Chapagain, T.; Raizada, M.N. Agronomic challenges and opportunities for smallholder terrace agriculture in developing countries. Front. Plant Sci. 2017, 8, 331. [Google Scholar] [CrossRef]
- Misaki, E.; Apiola, M.; Gaiani, S.; Tedre, M. Challenges facing sub-Saharan small-scale farmers in accessing farming information through mobile phones: A systematic literature review. Electron. J. Inf. Syst. Dev. Ctries. 2018, 84, e12034. [Google Scholar] [CrossRef]
- Ziemba, E. The contribution of ICT adoption to the sustainable information society. J. Comput. Inf. Syst. 2019, 59, 116–126. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W.; Wang, F.; Li, G. Does internet use improve technical efficiency of banana production in China? Evidence from a selectivity-corrected analysis. Food Policy 2021, 102, 102044. [Google Scholar] [CrossRef]
- Yu, G.; Hu, X. Rural E-commerce development and farmers’ digital credit behavior: Evidence from China family panel studies. PLoS ONE 2021, 16, e0258162. [Google Scholar] [CrossRef]
- Ullah, A.; Arshad, M.; Kächele, H.; Zeb, A.; Mahmood, N.; Müller, K. Socio-economic analysis of farmers facing asymmetric information in inputs markets: Evidence from the rainfed zone of Pakistan. Technol. Soc. 2020, 63, 101405. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Siddiqui, B.N.; Zhang, S. Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study. Land 2022, 11, 361. [Google Scholar] [CrossRef]
- Yang, L.; Lu, H.; Wang, S.; Li, M. Mobile Internet Use and Multidimensional Poverty: Evidence from A Household Survey in Rural China. Soc. Indic. Res. 2021, 158, 1065–1086. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Renwick, A.; Nie, P.; Tang, J.; Cai, R. Off-farm work, smartphone use and household income: Evidence from rural China. China Econ. Rev. 2018, 52, 80–94. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agric. Econo. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
- Siaw, A.; Jiang, Y.; Twumasi, M.A.; Agbenyo, W. The impact of internet use on income: The case of rural Ghana. Sustainability 2020, 12, 3255. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S.J. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Munyegera, G.K.; Matsumoto, T. ICT for financial access: Mobile money and the financial behavior of rural households in Uganda. Rev. Dev. Econ. 2018, 22, 45–66. [Google Scholar] [CrossRef]
- Negi, D.S.; Birthal, P.S.; Roy, D.; Khan, M.T. Farmers’ choice of market channels and producer prices in India: Role of transportation and communication networks. Food Policy 2018, 81, 106–121. [Google Scholar] [CrossRef]
- Khan, N.; Azam, T.; Khayyam, M.; Shah, S.A.; Anjum, R.; Ihtisham, M. Use of Emerging Technology and Agricultural Product Market Information: Empirical Evidence From Pakistan. J. Res. Rev. Soc. Sci. Pak. 2021, 4, 1250–1265. [Google Scholar]
- Twumasi, M.A.; Jiang, Y.; Zhou, X.; Addai, B.; Darfor, K.N.; Akaba, S.; Fosu, P. Increasing Ghanaian fish farms’ productivity: Does the use of the internet matter? Mar. Policy 2021, 125, 104385. [Google Scholar] [CrossRef]
- Kaila, H.; Tarp, F. Can the Internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, R.; Zhang, C.; Shi, G. Does Internet use improve technical efficiency? Evidence from apple production in China. Technol. Forecast. Soc. Chang. 2021, 166, 120662. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, X.; Liu, M. What drives farmers’ willingness to adopt e-commerce in rural China? The role of Internet use. Agribusiness 2020, 36, 159–163. [Google Scholar] [CrossRef]
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet use on economic well-being of rural households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Leng, C.; Ma, W.; Tang, J.; Zhu, Z. ICT adoption and income diversification among rural households in China. Appl. Econ. 2020, 52, 3614–3628. [Google Scholar] [CrossRef]
- Issahaku, H.; Abu, B.M.; Nkegbe, P.K. Does the use of mobile phones by smallholder maize farmers affect productivity in Ghana? J. Afr. Bus. 2018, 19, 302–322. [Google Scholar] [CrossRef]
- Hong, Y.; Heerink, N.; Zhao, M.; Van der Werf, W. Intercropping contributes to a higher technical efficiency in smallholder farming: Evidence from a case study in Gaotai County, China. Agric. Syst. 2019, 173, 317–324. [Google Scholar] [CrossRef]
- Lawin, K.G.; Tamini, L.D. Tenure security and farm efficiency analysis correcting for biases from observed and unobserved variables: Evidence from benin. J. Agric. Econ. 2019, 70, 116–134. [Google Scholar] [CrossRef]
- Ma, X.; Heerink, N.; Feng, S.; Shi, X. Land tenure security and technical efficiency: New insights from a case study in Northwest China. Environ. Dev. Econ. 2017, 22, 305–327. [Google Scholar] [CrossRef]
- Kiiza, B.; Pederson, G. ICT-based market information and adoption of agricultural seed technologies: Insights from Uganda. Telecommun. Policy 2012, 36, 253–259. [Google Scholar] [CrossRef]
- Ma, W.; Wang, X. Internet use, sustainable agricultural practices and rural incomes: Evidence from China. Aust. J. Agric. Resour. Econ. 2020, 64, 1087–1112. [Google Scholar] [CrossRef]
- Hou, J.; Huo, X.; Yin, R. Does computer usage change farmers’ production and consumption? Evidence from China. China Agric. Econ. Rev. 2018, 11, 387–410. [Google Scholar] [CrossRef]
- Mwalupaso, G.E.; Wang, S.; Rahman, S.; Alavo, E.J.-P.; Tian, X. Agricultural informatization and technical efficiency in maize production in Zambia. Sustainability 2019, 11, 2451. [Google Scholar] [CrossRef]
- Min, S.; Liu, M.; Huang, J. Does the application of ICTs facilitate rural economic transformation in China? Empirical evidence from the use of smartphones among farmers. J. Asian Econ. 2020, 70, 101219. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Song, H. Broadband internet, firm performance, and worker welfare: Evidence and mechanism. Econ. Inq. 2020, 58, 1146–1166. [Google Scholar] [CrossRef]
- Ziemba, E. The contribution of ICT adoption to sustainability: Households’ perspective. Inf. Technol. People 2018, 32, 731–753. [Google Scholar] [CrossRef]
- Emeana, E.M.; Trenchard, L.; Dehnen-Schmutz, K. The revolution of mobile phone-enabled services for agricultural development (m-Agri services) in Africa: The challenges for sustainability. Sustainability 2020, 12, 485. [Google Scholar] [CrossRef]
- Hübler, M.; Hartje, R. Are smartphones smart for economic development? Econ. Lett. 2016, 141, 130–133. [Google Scholar] [CrossRef]
- Khan, N.; Siddiqui, B.N.; Khan, N.; Khan, F.; Ullah, N.; Ihtisham, M.; Ullah, R.; Ismail, S.; Muhammad, S. Analyzing mobile phone usage in agricultural modernization and rural development. Int. J. Agric. Ext. 2020, 8, 139–147. [Google Scholar] [CrossRef]
- Qiang, C.Z.; Kuek, S.C.; Dymond, A.; Esselaar, S. Mobile Applications for Agriculture and Rural Development; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Chavula, H.K. The role of ICTs in agricultural production in Africa. J. Dev. Agric. Econ. 2014, 6, 279–289. [Google Scholar]
- Hwang, B.-H.; Tellez, C. The Proliferation of Digital Credit Deployments; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Kaushik, P.; Singh, N. Information technology and broad-based development: Preliminary lessons from North India. World Dev. 2004, 32, 591–607. [Google Scholar] [CrossRef]
- Ziemba, E. The contribution of ICT adoption by local governments to sustainability—Empirical evidence from Poland. Inf. Syst. Manag. 2021, 38, 116–134. [Google Scholar] [CrossRef]
- Ziemba, E. Sustainability Driven by ICT Adoption within Households, Enterprises, and Government Units. Procedia Comput. Sci. 2021, 192, 2279–2290. [Google Scholar] [CrossRef]
- Ziemba, E. The holistic and systems approach to the sustainable information society. J. Comput. Inf. Syst. 2013, 54, 106–116. [Google Scholar] [CrossRef]
- Khan, N.; Siddiqui, B.N.; Khan, N.; Ullah, N.; Ismail, S.; Ali, S.; Hussain, S.; Abbas, K.; Javed, H.H.; Ahmad, Z. Impact of newspaper and radio in promoting agricultural information among farmers. A case study of Pakistan. Int. J. Adv. Res. Biol. Sci 2020, 7, 192–198. [Google Scholar]
- Hartje, R.; Hübler, M. Smartphones support smart labour. Appl. Econ. Lett. 2017, 24, 467–471. [Google Scholar] [CrossRef]
- Lio, M.; Liu, M.C. ICT and agricultural productivity: Evidence from cross-country data. Agric. Econ. 2006, 34, 221–228. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Zhang, S.; Osabuohien, E.; Ihtisham, M. Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technol. Soc. 2022, 68, 101866. [Google Scholar] [CrossRef]
- Nie, P.; Ma, W.; Sousa-Poza, A. The relationship between smartphone use and subjective well-being in rural China. Electron. Commer. Res. 2021, 21, 983–1009. [Google Scholar] [CrossRef]
- Alshubiri, F.; Jamil, S.A.; Elheddad, M. The impact of ICT on financial development: Empirical evidence from the Gulf Cooperation Council countries. Int. J. Eng. Bus. Manag. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Zhang, F.; Sarkar, A.; Wang, H. Does Internet and Information Technology Help Farmers to Maximize Profit: A Cross-Sectional Study of Apple Farmers in Shandong, China. Land 2021, 10, 390. [Google Scholar] [CrossRef]
- Aker, J.C.; Ghosh, I.; Burrell, J. The promise (and pitfalls) of ICT for agriculture initiatives. Agric. Econ. 2016, 47, 35–48. [Google Scholar] [CrossRef]
- Ma, W.; Hongyun, Z. Heterogeneous impacts of information technology adoption on pesticide and fertilizer expenditures: Evidence from wheat farmers in China. Austr. J. Agric. Res. Econ. 2022, 66, 72–92. [Google Scholar] [CrossRef]
- Twumasi, M.A.; Jiang, Y.; Asante, D.; Addai, B.; Akuamoah-Boateng, S.; Fosu, P. Internet use and farm households food and nutrition security nexus: The case of rural Ghana. Technol. Soc. 2021, 65, 101592. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Internet use help reduce rural cropland abandonment? Evidence from China. Land Use Policy 2019, 89, 104243. [Google Scholar] [CrossRef]
- Martínez-Domínguez, M.; Mora-Rivera, J. Internet adoption and usage patterns in rural Mexico. Technol. Soc. 2020, 60, 101226. [Google Scholar] [CrossRef]
- Meng, L.; Yu, X.; Han, C.; Liu, P. Does Internet Use Aggravate Public Distrust of Doctors? Evidence from China. Sustainability 2022, 14, 3959. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, X.; Ke, W. Research on the Impact and Mechanism of Internet Use on the Poverty Vulnerability of Farmers in China. Sustainability 2022, 14, 5216. [Google Scholar] [CrossRef]
- Dohmwirth, C.; Liu, Z. Does cooperative membership matter for women’s empowerment? Evidence from South Indian dairy producers. J. Dev. Eff. 2020, 12, 133–150. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Asongu, S.A.; Ansah, S.; Zhang, S. Toward cleaner production: Can mobile phone technology help reduce inorganic fertilizer application? Evidence using a national level dataset. Land 2021, 10, 1023. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Luo, X.; Niu, C. E-Commerce Participation and Household Income Growth in Taobao Villages; The World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Dillon, A. Do differences in the scale of irrigation projects generate different impacts on poverty and production? J. Agric. Econ. 2011, 62, 474–492. [Google Scholar] [CrossRef]
- Li, X.; Guo, H.; Jin, S.; Ma, W.; Zeng, Y. Do farmers gain internet dividends from E-commerce adoption? Evidence from China. Food Policy 2021, 101, 102024. [Google Scholar] [CrossRef]
- Ngango, J.; Hong, S. Adoption of small-scale irrigation technologies and its impact on land productivity: Evidence from Rwanda. J. Integr. Agric. 2021, 20, 2302–2312. [Google Scholar] [CrossRef]
- Imbens, G.W.; Wooldridge, J.M. Recent developments in the econometrics of program evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef]
- Heckman, J.J.; Ichimura, H.; Todd, P.E. Matching As An Econometric Evaluation Estimator: Evidence from Evaluating. Rev. Econ. Stud. 1997, 64, 605–654. [Google Scholar] [CrossRef]
- Dan, Y.; Zhang, H.-W.; Liu, Z.-M.; Qiao, Z. Do cooperatives participation and technology adoption improve farmers’ welfare in China? A joint analysis accounting for selection bias. J. Integr. Agric. 2021, 20, 1716–1726. [Google Scholar]
- Sianesi, B. An evaluation of the Swedish system of active labor market programs in the 1990s. Rev. Econ. Stat. 2004, 86, 133–155. [Google Scholar] [CrossRef]
- Becerril, J.; Abdulai, A. The impact of improved maize varieties on poverty in Mexico: A propensity score-matching approach. World Dev. 2010, 38, 1024–1035. [Google Scholar] [CrossRef]
- Ali, A.; Abdulai, A. The adoption of genetically modified cotton and poverty reduction in Pakistan. J. Agric. Econ. 2010, 61, 175–192. [Google Scholar] [CrossRef]
- Khan, N.; Ullah, R.; Khan, N.; Naseem, M.; Farhatullah, M.R.; Khan, N.U.; Siddiqui, B. Agricultural Extension Worker Role in the Transfer of Garlic Production Technology: A Case Study of Balochistan Province, Pakistan. Int. J. Biosci. 2021, 18, 26–35. [Google Scholar]
- Khan, N.; Ray, R.; Ihtisham, M.; Siddiqui, B.; Khayyam, M.; Anjum, R.; Asongu, S. Socioeconomic Determinants of the awareness and adoption of apple production practices: A case study of Balochistan, Pakistan. Sarhad J. Agric. 2022, 38, 322–330. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, H.; Change, S. Does ICT change household decision-making power of the left-behind women? A case from China. Technol. Forecast. Soc. Chang. 2021, 166, 120604. [Google Scholar] [CrossRef]
- Nahayo, A.; Omondi, M.O.; Zhang, X.-H.; LI, L.-Q.; Pan, G.-X.; Joseph, S. Factors influencing farmers’ participation in crop intensification program in Rwanda. J. Integr. Agric. 2017, 16, 1406–1416. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.C.; Komarek, T. The impact of Mobile ICT on national productivity in developed and developing countries. Inf. Manag. 2021, 58, 103442. [Google Scholar] [CrossRef]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Feleke, S.; Ricker-Gilbert, J.; Manyong, V.; Awotide, B.A. Productivity and welfare effects of Nigeria’s e-voucher-based input subsidy program. World Dev. 2017, 97, 251–265. [Google Scholar] [CrossRef]
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology adoption under production uncertainty: Theory and application to irrigation technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Caliendo, M.; Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef]
Province | Zones | Districts | Tehsils | UC | Villages | Samples |
---|---|---|---|---|---|---|
KP | South | DIK | 1 | 1 | 4 | 115 |
West | Charsadda | 1 | 1 | 4 | 115 | |
East | Mansehra | 1 | 1 | 4 | 115 | |
North | Swat | 1 | 1 | 4 | 115 | |
Total | 4 | 4 | 4 | 4 | 16 | 460 |
Variables Name | Description | Mean (S.D) |
---|---|---|
Outcomes | ||
Wheat yield | Wheat yield (kg/ha) | 1995.5 (293.5) |
Treatment | ||
MIT | 1 if the farmers adopts mobile Internet technology; 0 otherwise | 0.41 (0.49) |
Independent | ||
Gender | 1 if the respondent is male; 0 if the respondent is female | 0.69 (0.46) |
Age | Age of the respondents (years) | 47.91 (11.50) |
Education | Education of the respondents (years) | 6.93 (5.04) |
Household size | Household size (number) | 6.69 (1.65) |
Farm size | The area under wheat production (ha) | 1.7 (0.90) |
Cooperative | 1 if the respondent is a member of the farmers’ cooperative membership; 0 otherwise | 0.50 (0.50) |
Access to credit | 1 if the respondent has access to credit; 0 otherwise | 0.49 (0.50) |
Agri-Extension facilities | Contacts with agri-extension workers (No/year) | 30.84 (7.89) |
Weather information | 1 if the respondent has access to the weather forecast information; 0 otherwise | 0.50 (0.50) |
Market distance | Distance between farm and market (km) | 6.65 (6.05) |
Risk perceptions | 1 if the respondent is willing to attempt new technology; 0 otherwise | 0.50 (0.50) |
Subsidy awareness | 1 if the respondent of the subsidy program on ICT; 0 otherwise | 0.53 (0.50) |
Livestock ownership | Livestock amount held in tropical livestock units | 1.38 (1.14) |
Districts dummies | ||
Dera Ismail khan | 1 if the respondent is located in DIK; 0 otherwise | 0.33 (0.47) |
Charsadda | 1 if the respondent is located Charsadda; 0 otherwise | 0.35 (0.46) |
Swat | 1 if the respondent is located in Swat; 0 otherwise | 0.23 (0.42) |
Mansehra | 1 if the respondent is located in Mansehra; 0 otherwise | 0.32 (0.47) |
Variables Name | Adopt (n = 198) | Non-Adopt (n = 262) | Mean Variance | t-Value |
---|---|---|---|---|
Wheat yield | 2250.30 | 1810.48 | 441.83 *** | 21.82 |
Gender | 078 | 0.64 | 0.15 *** | 2.82 |
Age | 48.95 | 45.48 | 3.46 *** | 3.08 |
Education | 7.48 | 4.66 | 2.83 *** | 12.40 |
Household size | 7.09 | 6.41 | 0.69 *** | 3.95 |
Farm size | 2.29 | 1.29 | 1.01 *** | 12.42 |
Agri-extension facilities | 35.45 | 27.62 | 7.84 *** | 10.65 |
Cooperative | 0.66 | 0.39 | 0.26 *** | 4.77 |
Access to credit | 0.63 | 0.41 | 0.23 *** | 4.13 |
Weather information | 0.60 | 0.45 | 0.16 *** | 0.82 |
Market distance | 0.70 | 0.36 | 0.35 *** | 6.78 |
Risk perceptions | 0.59 | 0.44 | 0.16 *** | 2.87 |
Subsidy awareness | 0.57 | 0.49 | 0.08 | 1.48 |
Livestock ownership | 2.05 | 0.89 | 1.15 *** | 10.95 |
Variables Name | Coeff. Estimates | Marginal Effects |
---|---|---|
Coeff. (S.E) | Coeff. (S.E) | |
Gender | −0.919 ** (0.440) | −0.204 ** (0.097) |
Age | −0.005 (0.015) | −0.001 (0.003) |
Education | 0.408 *** (0.029) | 0.090 *** (0.008) |
Household size | 0.014 (0.096) | 0.003 (0.022) |
Farm size | 1.269 *** (0.478) | 0.281 *** (0.107) |
Agri-extension facilities | 0.057 * (0.009) | 0.013 * (0.003) |
Cooperative | 1.693 *** (0.504) | 0.380 *** (0.109) |
Access to credit | 2.024 *** (0.516) | 0.447 *** (0.112) |
Weather information | 1.701 *** (0.698) | 0.376 *** (0.153) |
Market distance | 2.759 *** (0.781) | 0.609 *** (0.170) |
Risk perceptions | 1.877 *** (0.372) | 0.414 *** (0.080) |
Subsidy awareness | 0.780 ** (0.510) | 0.173 ** (0.113) |
Livestock ownership | −0.314 (0.288) | −0.069 (0.064) |
District dummies | ||
Dera Ismail Khan | 1.04 3 *** (0.513) | 0.207 *** (0.325) |
Charsadda | −0.248 (0.930) | −0.059 (0.105) |
Constant | −12.047 *** (1.733) | |
Model diagnosis | ||
Log-likelihood | −106.865 | |
LR chi2 | 276.89 | |
Prob > chi2 | 0.000 | |
Pseudo R2 | 0.5659 | |
N | 460 | 460 |
Algorithms | Outcomes Variables | ATT | S.E | p-Value | Critical Level of Hidden Bias |
---|---|---|---|---|---|
KBM | Wheat yield (kg) | 197.14 *** | 32.99 | 0.000 | 3.75 |
NNM | Wheat yield (kg) | 193.38 *** | 21.30 | 0.000 | 2.50 |
RM | Wheat yield (kg) | 199.79 *** | 16.58 | 0.000 | 3.75 |
Algorithms | Pseudo R2 BM & (AM) | LR ch2 (p-Value) BM | LR ch2 (p-Value) AM | Mean Std. Bias BM & (AM) | (%) Bias Reduction |
---|---|---|---|---|---|
KBM | 0.571 (0.033) | 278.43 (p = 0.000) | 8.12 (p = 0.919) | 63.30 (10.9) | 82.78 |
NNM | 0.571 (0.042) | 278.43 (p = 0.000) | 8.80 (p = 0.888) | 63.30 (8.80) | 86.09 |
RM | 0.571 (0.046) | 278.43 (p = 0.000) | 11.95 (p = 0.683) | 63.30 (12.90) | 79.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Ray, R.L.; Kassem, H.S.; Khan, F.U.; Ihtisham, M.; Zhang, S. Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers. Sustainability 2022, 14, 7614. https://doi.org/10.3390/su14137614
Khan N, Ray RL, Kassem HS, Khan FU, Ihtisham M, Zhang S. Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers. Sustainability. 2022; 14(13):7614. https://doi.org/10.3390/su14137614
Chicago/Turabian StyleKhan, Nawab, Ram L. Ray, Hazem S. Kassem, Farhat Ullah Khan, Muhammad Ihtisham, and Shemei Zhang. 2022. "Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers" Sustainability 14, no. 13: 7614. https://doi.org/10.3390/su14137614
APA StyleKhan, N., Ray, R. L., Kassem, H. S., Khan, F. U., Ihtisham, M., & Zhang, S. (2022). Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers. Sustainability, 14(13), 7614. https://doi.org/10.3390/su14137614